
Property Directed Reachability for Proving Absence of
Concurrent Modification Errors

Asya Frumkin1, Yotam M. Y. Feldman1, Ondřej Lhoták2, Oded Padon1, Mooly Sagiv1,
and Sharon Shoham1

1 Tel Aviv University, Tel Aviv, Israel
2 University of Waterloo, Waterloo, Canada

Abstract. We define and implement an interprocedural analysis for automati-
cally checking safety of recursive programs with an unbounded state space. The
main idea is to infer modular universally quantified inductive invariants in the
form of procedure summaries that are sufficient to prove the safety property. We
assume that the effect of the atomic commands of the program can be modeled
via effectively propositional logic. We then propose a variant of the IC3/PDR
approach for computing universally quantified inductive procedure summaries that
overapproximate the behavior of the program.
We show that Java programs that manipulate collections and iterators can be
modeled in effectively propositional logic and that the invariants are often universal.
This allows us to apply the new analysis to prove the absence of concurrent
modification exceptions in Java programs. In order to check the feasibility of our
method, we implemented our analysis on top of Z3, as well as a Java front-end
which translates Java programs into effectively propositional formulas.

1 Introduction

Java programs enforce consistency of iterator usage by requiring the absence of con-
current modification exceptions (CME). Intuitively, the idea is to forbid accessing a
collection via stale iterators. An iterator becomes stale when the collection it iterates is
changed not via the iterator itself. The Java standard library imposes this restriction at
runtime by throwing a runtime exception when stale iterators are accessed. Note that this
can happen both in sequential and concurrent programs. A common example is when
adding an element to a collection from inside a loop which iterates it.

In many cases a logical error in the program leads to a CME. Therefore, identifying
potential CMEs at compile-time and proving the absence of concurrent modifications
can be very useful. Indeed abstract interpretation has been used to prove the absence of
CMEs in small to medium size programs [19, 23, 16]. These methods are sound, i.e.,
whenever the absence of CMEs is proved, the program indeed cannot raise a CME.
However, these methods are incomplete, and may result in false alarms due to limitations
of the abstraction. Common sources for imprecision are aliasing of objects in the heap,
and complex interaction between various procedures of the program.

1.1 Main Results

Our key insight in this paper is that in many programs the inductive invariants required
to prove the absence of CMEs can be expressed as universal first-order formulas and
that the problem of checking inductiveness amounts to checking (un)satisfiability in
effectively propositional logic. This is surprising since the natural modeling of this
problem involves version numbers for iterators. It implies that SAT solvers can be used
to check the absence of CMEs for programs annotated with inductive invariants.

In practice it is very hard for programmers to write inductive invariants. Furthermore,
Java programs include deep nesting of method calls which makes it practically impossible.
Therefore, we implemented a method for automatically inferring universal procedure
summaries that applies to recursive programs.

We develop an iterative method for inferring the required procedure summaries
for proving absence of CMEs. Technically, we combined the procedure of inferring
universally quantified invariants in a property guided way [11] with the techniques of [7,
13] for computing procedure summaries.

This paper can be summarized as follows:

– We show that in many cases inductive invariants for proving absence of CMEs are
expressible by universally quantifying over all the iterator objects in the program
(whose number is unbounded). Specifically, for programs with (potentially recursive)
procedures, procedure summaries (Hoare triples) can also be expressed in universal
first order logic. This enables to mechanically check the inductiveness in a sound
and complete way using EPR solvers [9].

– We develop an iterative method for inferring sufficiently strong universal procedure
summaries in order to prove absence of CMEs. The method handles Java programs
with recursive procedures and infers procedure summaries, i.e., Hoare triples. Tech-
nically this algorithm generalizes [11] and follows the idea of property directed
reachability [7, 13] .

– We implemented the algorithm on top of Ivy [17] and Z3 [4].
– We implemented a front-end for Java using Soot [22] which converts Java programs

into EPR and integrates with the above procedure.

2 The Concurrent Modification Problem

The Java Collections Framework (JCF) is an important part of the Java platform as it
provides implementations for common collection data structures. An Iterator object is
used in order to access the elements in a collection in a sequential manner. Multiple
iterators can operate on the same collection. In general, it is an error to modify a
collection while an iterator is operating on it and to continue to use the iterator after the
modification. Iterators are usually implemented to be fail-fast, meaning that they throw
an exception if iteration is resumed after the occurrence of a change in a collection, either
directly or via another iterator. The exception, of type ConcurrentModificationException
(CME), can be thrown dynamically even in a single-threaded program. All JCF non-
concurrent collections provide fail-fast iterators as a safety measure for a very common
bug.

In order to prove that a Java program cannot cause a CME to be thrown, a careful
examination of the program should be performed. The proof should ensure that all
possible execution paths do not cause such an error. Specifically, we call iterators whose
collection is modified invalid or stale, and verify that no such iterator is used.

Example 1. Let us consider the code presented in Fig. 1, which contains a class manip-
ulating a list of lists. The method flatten transforms a list of lists into a simple list by
adding all the items held in the nested lists, to an output list, using the helper method
addList. Most of the operations in the main method are ones that cannot cause a CME.
The only location where a collection is modified during iteration is inside the loop in the
addList method, which is called from flatten. The active iterators during this operation,
itr1 and itr2, are iterating over the input list in while items are being added to the output
list out. Since in this program flatten is called from main method with two distinct
lists as arguments, none of the iterators becomes invalidated, and the code terminates
successfully. However, if the flatten method is examined separately from the whole
program context, we can conclude that a CME throw is possible due to aliasing. If,
for example, the in list is equal to the out list, both itr1 and itr2 would be invalidated
inside addList’s loop, and the next itr1.next() call would throw an exception. Also, if the
out list is included as one of the lists in the in list, itr2 would be invalidated once itr1
reaches out and the object pointed to by itr2 is added to out. A subsequent itr2.next() call
would throw an exception. This example demonstrates that both interprocedural analysis
and aliasing information is required in order to prove that a CME does not occur in a
program.

class ListOfLists {
public static void

flatten(List in, List out) {
Iterator itr1 = in.iterator();
while(itr1.hasNext()) {
List l = (List) itr1.next();
addList(out, l);

}
}

public static void
addList(List lst1, List lst2) {

Iterator itr2 = lst2.iterator();
while(itr2.hasNext()) {
Object o = itr2.next();
lst1.add(o);

}
}

}

class FlattenTest {
public static void

main(String args[]) {
int length =

Integer.parseInt(args[0]);
// create list
LinkedList ll = new LinkedList();
LinkedList subl =

new LinkedList();
for(int j = 0; j < length; ++j) {

subl.add(j*j);
}
ll.add(subl);
ll.add(subl);
List out = new LinkedList();
ListOfLists.flatten(ll, out);

}
}

Fig. 1. Usage of list of lists implementation that does not cause a CME to be thrown

Implementation of iterators in Java. The natural way to implement a check for CMEs
in a Java program is by maintaining a version number for every collection. Each iterator

of a collection is initialized with the current version number of the collection. Every
modification of the collection increments its version number, as well as the version
number of the iterator performing it, if such exists. When an iterator is accessing or
modifying the underlying collection, the iterator’s version number is compared with
the collection’s version number. A difference between these values implies, that the
collection was modified by another iterator, and the operation should not be completed.

This method, implemented as part of the runtime engine in JCF, involves maintaining
an integer value for the version number and performing arithmetic operations, such as
increment and comparison. However, in spite of the use of integer arithmetic in the
implementation, it is possible to analyze CMEs without directly modeling the version
numbers. As seen in [19], it suffices that the analysis tracks the Boolean notion of
whether an iterator is stale or not. Thus EPR is an appropriate choice for encoding the
CME problem.

3 EPR Verification Conditions for CME

In this section we present a description of Java programs that involve direct iterator and
collection manipulation. We describe how to encode these programs and their CME
verification conditions via EPR formulas.

EPR. The effectively-propositional (EPR) class of logical formulas, also known as
Bernays-Schönfinkel-Ramsey class, is a decidable fragment of first-order logic. EPR
formulas are of the form ∃∗∀∗φwhere φ is a quantifier-free formula, that contains relation
symbols and equality, but no function symbols. The satisfiability of such formulas can
be reduced to SAT by substituting the existential variables by Skolem constants and then
replacing the universally quantified variables by all possible combinations of constants.
The resulting formula is propositional, and is exponentially larger than the original
formula. We use an extension of EPR, that allows stratified function symbols in the
vocabulary, i.e. functions that obey the requirement: if there is a function mapping
sort srt1 to sort srt2, there cannot be a function mapping srt2 to srt1. Extended-EPR
formulas maintain the decidability of EPR [17]. In the sequel, we will use the term EPR
to refer to the extended EPR fragment.

3.1 Program state

To facilitate CME verification, our model for Java programs partitions Java objects
into three distinct types: container, iterator and obj. The container type includes object
types that are part of the JCF, meaning classes that implement java.util.Collections
or java.util.Map interfaces. The iterator type is used for iterator objects, whose class
implements the java.util.Iterator interface. All other Java types, including primitive types,
are modeled as obj.

Each iterator object i has a mapping cnt(i) to the container it operates on. A
container can hold either objects or containers. The binary relations member and
member cnt represent an item’s presence in a container. For each type X , there is
a corresponding unary used X relation that holds initialized items. The state of the

iterator is kept in the unary relations stale and cme, where the first keeps iterators
that are invalid, and the second — iterators on which a CME would be thrown. In
addition, for clarity, we use points to and points to cnt as shorthands, defined by
points to(i, o)

def
= ∃c0. (cnt(i) = c0) ∧member(c0, o) and points to cnt(i, c) def

= ∃c0.
(cnt(i) = c0) ∧member cnt(c0, c).

The constructs mentioned above are listed in Table 1 and used as building blocks for
implementing a “library” for modeling programs that manipulate collections via iterators.
This library supports actions such as add/remove to/from collection, iterator generation,
iterator advancement etc. (see Table 2).

In addition to the above mentioned relations we allow program specific binary
relations for class fields, where the first argument is an object and the second is the
relevant field. We denote the set of all relations used to express the program state as G.

Table 1. Abstraction relations and functions.

Name Parameters Description

cnt(I) I: iterator function which returns a
container, maps iterators to their
underlying containers

member(C,O) C: container, O: obj object is included in container
member cnt(C1, C2) C1: container, C2: container container is included in

container
used cnt(C) C: container container is initialized
used iter(I) I: iterator iterator is initialized
used obj(O) O: obj object is initialized
stale(I) I: iterator iterator is invalid
cme(I) I: iterator concurrent modification

occurred

Safety. The safety requirement of the CME problem is that a concurrent modification
exception does not occur in any possible execution of the program. In our formulation,
the requirement that a program state does not exhibit a CME violation is expressed by
the formula ∀I.¬cme(I). Initially, the cme and stale relations are empty.

3.2 Modeling Java operations in EPR

We provide the interpretation of each Java operation via a two-vocabulary EPR formula,
expressing the connection between the pre- and post-states of the operation. The vocabu-
lary G is used in order to express the pre-state, and G′ = {v′ | v ∈ G} is the vocabulary
used to express the post-state. Both G and G′ include only global relations, and the
encoding of each primitive operation via an EPR formula is given in Table 2.

Java’s Iterator interface defines three methods: hasNext, next and remove (which is
optional). An important note is that we do not model the current position of iterators,

but only the container they are pointing to, along with the state of the iterator that we
represent by the stale and cme relations. Therefore, the hasNext method is not modeled
directly. Our collection is unordered and hence, the next method is conservatively
modeled as a nondeterministic retrieval of any item from the collection, that is, an item
from points to. The retrieved item can be either obj or container, depending on the
type of the holding container. The operation also checks whether the iterator is in stale
state and updates cme accordingly, simulating a throw of CME. The remove method
is modeled by updates of the member and member cnt relations as the iterator may be
traversing either a collection of objects or a collection of collections. This operation
also updates the stale relation to mark all iterators traversing the current container as
stale, except for the current iterator. The add method is modeled by inserting the desired
object to the member/member cnt relations and updating stale to hold all iterators for the
updated container. Fresh items of type X are created by updating the used X relations
of items that were not used yet. New iterators are created with stale set to false. 3 We
note, that in addition to the abstraction involved in making collections unordered, we
also do not model arithmetic operations and specific data properties, and conservatively
overapproximate them via nondeterminism.

3.3 Modeling programs using EPR

From the formulas encoding the primitive operations, we derive a modular symbolic
representation of programs by representing each procedure separately, based on the
functional approach to interprocedural analysis [21]. For simplicity of the presentation,
we consider only procedures without loops; if needed, loops can be transformed into
recursive procedures.

Our definitions are inspired by [14]. A program A is a pair 〈Π,G〉, where Π is
a non-empty set of procedures with a designated procedureM (main) serving as the
entry point. G is a set of predicate symbols representing the program’s global state.
For simplicity, we assume there are no global program variables. A procedure P is a
tuple 〈iP , oP , ΣP , βP〉, where iP and oP are lists of constant symbols denoting the
formal parameters and formal output variables, respectively, with the assumption that
iP ∩ oP = ∅.

ΣP is a second-order predicate of arity |iP ∪ oP ∪ G ∪ G′| that represents the
behavior of P when reasoning about the behavior of procedures that call P . It is used as
a placeholder for a description of the behavior of P .

The method body βP expresses the behavior of the procedure body of P w.r.t. the
behavior of callee procedures by referring to the second-order predicates ΣQ for every
procedure Q called from P .

βP is an EPR formula defined over a vocabulary that consists of the following:

– G, G′ which are used to represent the global state before and after the execution of
procedure P .

3 The translation also incorporates the fact that once a CME occurs, the normal control-flow of
the program is interrupted by the exception.

Table 2. Java statements and their EPR interpretation. c denotes a container, i an iterator, and o an
obj.

Java statement Interpretation

i.hasNext() –

o = i.next()
points to(i, o) ∧ (∀I. cme′(I) ⇐⇒ cme(I) ∨
(I = i ∧ stale(i)))

c = i.next()
points to cnt(i, c) ∧ (∀I. cme′(I) ⇐⇒ cme(I) ∨
(I = i ∧ stale(i)))

c.add(o)

∀C,O, I. (member′(C,O) ⇐⇒ member(C,O) ∨
(C = c ∧ O = o)) ∧ (stale′(I) ⇐⇒ stale(I) ∨
(cnt(I) = c ∧ used itr(I)))

c1.add(c2)

∀C1, C2, I. (member cnt
′(C1, C2) ⇐⇒

member cnt(C1, C2) ∨ (C1 = c1 ∧ C2 = c2)) ∧
(stale′(I) ⇐⇒ stale(I) ∨ (cnt(I) = c1 ∧ used itr(I)))

i.remove()

∃o, c. ∀C,C′, O, I.
((used obj(o) ∧ (member′(C,O) ⇐⇒
member(C,O) ∧ (C 6= cnt(i) ∨ O 6= o)))

∨ (used cnt(c) ∧ (member cnt′(C,C′) ⇐⇒
member cnt(C,C′) ∧ (C 6= cnt(i) ∨ C′ 6= c))))

∧ (stale′(I) ⇐⇒ stale(I) ∨ (cnt(I) = cnt(i) ∧ I 6= i

∧ used itr(I)))

c = new Collection()

¬used cnt(c) ∧ (∀I. used itr(I)⇒ (cnt(I) 6= c)) ∧
(∀O. ¬member(c,O)) ∧ (∀C. ¬member cnt(c, C) ∧
¬member cnt(C, c)) ∧ (∀C. used cnt′(C) ⇐⇒
used cnt(C) ∨ C = c)

i = c.iterator()

¬used itr(i) ∧ (cnt(i) = c) ∧ (∀I. stale′(I) ⇐⇒
stale(I) ∧ I 6= i) ∧ (∀I. used itr′(I) ⇐⇒
used itr(I) ∨ I = i)

o = new Object()
¬used obj(o) ∧ (∀C. ¬member(C, o)) ∧
(∀O. used obj′(O) ⇐⇒ used obj(O) ∨ O = o)

– Pairs of vocabularies G cs, G′cs for every call site cs in P , and the second-order
predicate symbol ΣQ for every procedureQ called by P . In case of consecutive call
sites cs1, cs2, the vocabularies G′cs1 and G cs2 will coincide.

– iP which represents the formal parameters of P , and oP which represents the formal
returns of P .

The second-order predicates in βP appear only positively and in the following form: let
cs be a call-site in P that invokes Q. In βP this is expressed by ΣQ(ics, ocs,G cs,G′cs),
where ics are the actual parameters of the call and ocs are its actual returns, which are
either constants (iP , oP) or quantified variables (typically existentially quantified which
represent local variables of P).

Recall that the body of P consists of sequential code. Hence, such a formulation is
derived in a straightforward way.

main() {
R(a) = true;
S(b) = false;
f(a, b);
f(b, a);

}

Fig. 2. A small program with procedure calls

Example 2. Let us consider the example in Figure 2. The program has two unary global
relations R, S and an entry procedure main, that includes two local variables a and b.
Procedure f, whose code is omitted, has two formal parameters and no formal returns.
main procedure calls f twice, once with a serving as first argument and b as second, and
then with b as first argument and a as second. The body of procedure main is given by
the formula:

βM = ∃a, b. R′(a) ∧ ¬S′(b) ∧ Σf (〈a, b〉, ∅, 〈R′, S′〉, 〈R′′, S′′〉) ∧
Σf (〈b, a〉, ∅, 〈R′′, S′′〉, 〈R′′′, S′′′〉)

Note, that βM includes 4 lists of global variables: 〈R,S〉, 〈R′, S′〉, 〈R′′, S′′〉, 〈R′′′, S′′′〉
(R, S are not constrained by this formula).

3.4 Verification conditions

The accurate semantics of βP has a least-fixed-point characterization as described in [14].
We omit the semantics definition and provide only the verification conditions for safety
properties.

In order to allow verification of interprocedural programs we will use procedure
summaries.

Procedure summaries. The summary SP of a procedure P overapproximates the
input/output relation of the procedure. In our setting, it is provided by a universal first-
order formula over a vocabulary that consists of two copies of the global relations G, G′:
one for the pre-state and one for the post-state, the formal arguments iP and the formal
returns oP .

Given the set of procedure summaries of a program SΠ we can now describe the
behavior of procedure P w.r.t. the summaries SΠ . Formally, let SΠ be a function
mapping every procedure Q to a summary. When SΠ is clear from the context, we use
SQ as a shorthand for SΠ(Q). Let CS be the set of all (cs,Q) where cs is call-site in P
that invokes Q. Note that if P is recursive then Q might be P itself.

The behavior of P w.r.t. the summaries SΠ is obtained by replacing every predicate
symbol ΣQ in βP with SQ, applied over the vocabulary determined by the call-site.
Formally, it is captured by the formula βP(SΠ), defined as follows:

βP(SΠ) = βP

[
SQ
[
(ics, ocs,G cs,G′cs)�(iQ, oQ,G,G′)

]
�ΣQ(ics, ocs,G cs,G′cs)

∣∣ (cs,Q) ∈ CS
]

Every satisfying model of βP(SΠ) describes a pair of feasible input-output states
of P when assuming that the semantics of every called procedure is its summary. It
also describes the intermediate input-output states of every call-site. Formally, this is
captured by the notion of a P-trace, defined below.

P-Traces and P-Transitions. For a procedure P , a P-trace σP is a model over the signa-
ture of βP , excluding the second-order predicates. Note that σP includes interpretations
to all the copies of the global relations in βP .

In contrast, a P-transition is a structure over the vocabulary iP ,G, oP ,G′ that de-
scribes a pair of input-output states of P . During the algorithm we extract transitions
from traces in the following ways:

– Given a P-trace σP , we denote by σP(P) the P-transition that is obtained from σP
by dropping the interpretation of the call-site copies of G.

– Given a P-trace σP , for every call-site (cs,Q) ∈ CS of P we denote by σP(cs)
the Q-transition that is extracted from σP in the following way. σP(cs) is defined
over the same domain as σP and it provides interpretation for G,G′ in the same
way G cs,G′cs are interpreted in σP , and provides interpretation to iQ, oQ as the
interpretation of the actual parameters and returns of the call-site ics, ocs in σP .
Intuitively this is a decomposition of the trace within P to a list of transitions, where
each transition corresponds to a procedure call within the trace.

Verification conditions. A safety property is provided by a ∀∗∃∗-formula Safe over
iM,G, oM,G′ that specifies a requirement on the input-output relation of the main
procedure (where iM and oM denote the input and output parameters of the main
procedure, respectively). Note that for the CME problem, it suffices to require safety of
main since code that is unreachable from main cannot cause an exception in run-time,

and cme becoming true in some procedure manifests itself in the main procedure as well
in our translation. Further, once cme becomes true, it remains true.

The verification conditions for safety properties are provided by the following lemma.

Lemma 1 (Verification conditions). Let A be a program with a set of procedures Π
and a main procedureM, and let Safe be the safety property ofM. Let SΠ be a function
mapping each procedure in Π to a summary. If it holds that ∀P ∈ Π. βP(SΠ)⇒ SP
and βM(SΠ)⇒ Safe then the program is safe.

The first condition in the lemma guarantees that the SΠ summaries are overap-
proximations of all the reachable behaviors of each procedure. The second condition
establishes that main is safe w.r.t the summaries in SΠ . Hence, the program is safe
according to our definition of program safety.

Note that given that bodies βP are EPR formulas and the safety property Safe
is a ∀∗∃∗ formula, then if the summaries SP are provided as universally quantified
formulas, the verification conditions are EPR formulas. Namely, checking them amounts
to checking unsatisfiability of EPR formulas and is hence decidable.

3.5 Illustrative Example

We illustrate the modeling and the use of procedure summaries for the flatten example
from Fig. 1. We wish to prove that executing the main procedure does not lead to a CME.
As explained, we do this in a modular way by constructing procedure summaries for the
procedures transitively called from main, namely the flatten and addList procedures.

We start by discussing the addList procedure. This procedure does not lead to a CME
as long as lst1 and lst2 are different lists. This can be expressed in the procedure
summary by the following formula:

∀I.¬cme(I) ∧ lst1 6= lst2→ ¬cme′(I)

As for the flatten procedure, as discussed in Section 2, it does not lead to a CME as
long as in and out point to different lists, and out is not a member of the in list. This
can be expressed in the procedure summary by the following formula:

∀I.¬cme(I) ∧ in 6= out ∧ ¬member cnt(in, out)→ ¬cme′(I)

Using additional formulas, it is possible to construct summaries for this example
that satisfy the conditions of Lemma 1, and thus prove that the program is safe. The
algorithm presented in Section 4 constructs such summaries.

4 Inference of Universally Quantified Procedure Summaries

In the previous section we defined the verification conditions using EPR formulas, based
on procedure summaries sufficient to imply the safety property. In this section we tackle
the problem of inferring such procedure summaries for a given program and safety
property. To this end we develop a property-directed reachability algorithm that infers
universally quantified procedure summaries in an interprocedural fashion.

The algorithm is based on UPDR [11] and interprocedural PDR algorithms [7, 13].
Upon termination the algorithm returns either universal summaries of the procedures
that are sufficient to prove the safety of the program, or a counterexample. Similarly to
UPDR, a counterexample discovered by the algorithm is an abstract counterexample.
This may correspond to a real, concrete counterexample, but it is also possible that the
program is in fact safe. In the latter case the abstract counterexample is a proof that the
safety of the program cannot be proved by universal procedure summaries, i.e. there is
no approximation of each procedure’s semantics by universal summaries that is accurate
enough to establish the safety property. In our tool we attempt to distinguish between
the cases using bounded-model checking in order to find a concrete counterexample that
matches the abstract one. Note that termination of the algorithm is not guaranteed.

4.1 Definitions

We begin by defining the required notations to describe the algorithm. For the remainder
of this section we fix a specific program 〈Π,G〉 whose designated entry point isM∈ Π .

The algorithm maintains a sequence of frames F0,F1, . . . ,Fn. Intuitively a frame
Fi provides procedure summaries that constitute an overapproximation of the possible
input-output relations of the procedures when the call-stack depth is bounded by i. The
sequence is gradually modified and extended throughout the algorithm’s run.

Technically, a frame Fi maps every procedure in Π to a summary of the procedure.
Summaries themselves consist of a conjunction of universally quantified clauses, also
referred to as lemmas. The following properties of the frame sequence are maintained by
the algorithm: for all 0 ≤ i < n,

1. Fi(M)⇒ Safe
2. ∀P ∈ Π. Fi(P)⇒Fi+1(P)
3. ∀P ∈ Π. βP(Fi)⇒Fi+1(P)

Intuitively, the first property means that Fi is sufficient to prove the safety property when
the stack depth is bounded to i (for every frame except the last one, which the algorithm
refines). The second property means that frames are monotonic (since increasing the
allowed stack depth does not remove possible behaviors), and the third property means
that the summary of a procedure in frame Fi+1 encompasses at least the possible
behaviors of the procedure when its callees behave according to the summaries in frame
Fi. These properties ensure that the summaries of every Fi indeed overapproximate
the behavior when the stack depth is bounded to i. Note that if for some i < n the
implication of property 2 holds in the opposite direction as well, then Fi satisfies the
requirements of Lemma 1 and hence the program is safe.

Generalization by Diagrams. The essence of UPDR and the key to obtaining universally
quantified invariants is the way the algorithm generates more lemmas for strengthening
the frames. This is based on the notion of a diagram [11] , which provides a structural
abstraction of transitions by an existential formulae.

Let s = (σin, σout) be a finite P-transition. A diagramD(s) is an existential formula
defined over the same vocabulary that describes the set of models that contain (σin, σout)

as a substructure. Let U = {e1, , . . . , , e|U |} be the universe of s. The diagram is defined
[11] as

D(σin, σout) = ∃xe1 , . . . , xe|U| . ϕdist ∧ ϕconst ∧ ϕrel

where

– xe1 , . . . , xe|U| are fresh variables,
– ϕdist is a conjunction of the inequalities xei 6= xej for every ei 6= ej ∈ U ,
– ϕconst is a conjunction of the equalities c = xe for every constant symbol c ∈ iP∪oP

and e ∈ U whose interpretation in s is c,
– ϕrel is conjunction of atomic formulas p(xei1 , . . . , xeia) for every predicate symbol

of arity a and elements ē = ei1 , . . . , eia ∈ U such that the interpretation of p(ē) in
s is true, and ¬p(xei1 , . . . , xeia) if it is false.

The existentially quantified xe1 , . . . , xe|U| represent elements that constitute a substruc-
ture isomorphic to s when xei takes the role of ei.

It should be noted that all the satisfiability checks performed by the algorithm are of
EPR formulas, and since EPR enjoys the finite-model property [18], the structures used
by the algorithm are indeed all finite.

4.2 Interprocedural UPDR

Algorithm 1 presents the algorithm as set of rules, following [7, 13]. In addition to the
frame sequence F0,F1, . . . ,Fn, where n is the current frame index, the algorithm also
maintains a queue of reachability queries L. A reachability query c is a tuple 〈i,P, s〉,
where i is a frame index, P a procedure symbol, and s is a P-transition. In addition, the
algorithm holds a set R of queries that were found to be reachable. Initially, L andR
are empty and n = 0. The first frame F0 is initialized to λQ. false, which expresses the
idea that a stack depth of 0 does not allow any transition from pre-state to post-state to
be made by P .

The rules are applied, possibly in a non-deterministic order, until either the algorithm
terminates with a proof of safety when the frame sequence converges, or the algorithm
encounters a reachable bad transition of main and terminates with an abstract counterex-
ample. In the latter case, bounded-model checking is performed as an attempt find a
concrete counterexample matching the abstract one. As in UPDR, an abstract coun-
terexample may rely on transitions to a substructure, here on a structure that describes a
procedure’s transition. Assuming that the abstract counterexample was found in frame i,
the algorithm traverses the program call-graph until depth i and generates a formula that
describes all the possible bounded executions that match the abstract counterexample
call-tree. It then uses this formula to check whether a possible execution violates the
safety property by performing a satisfiability check. If a concrete counterexample is
found, it is reported. Otherwise, the abstract counterexample serves as a proof that no
universal summary exists for this program although the program may still be safe.

Unfold opens a new frame with permissive procedure summaries, to be refined
until the summaries of the frame are strong enough to exclude all the bad behaviors
(although the summaries may not yet be inductive). While a bad transition is allowed
by the summaries the algorithm attempts to strengthen the frame sequence to exclude

Algorithm 1: Interprocedural UPDR algorithm
Input: Program 〈Π,G〉 with main procedureM∈ Π and safety property Safe
Output: Safe, Not Safe (+ concrete counterexample) or No Universal Summaries
Data:

1. Current frame index n ∈ N
2. Sequence of frames F0,F1, . . . ,Fn

3. Reachability query queue L = 〈c1, . . . , ck〉, where cj = 〈i,P, s〉 is a
reachability query with i ≤ n, P ∈ Π and s a transition.

4. Set of reachable transitionsR, which holds tuples of the form 〈i,P, s〉 where
i ≤ n, P ∈ Π and s is a transition: a structure over iP ,G, oP ,G′.

Init: n = 0, F0 = λP. false, L = ∅,R = ∅.
while true do

Unreachable: If there exists an i < n s.t. ∀P ∈ Π. Fi+1(P)⇒Fi(P) return Safe.
Reachable: If there exists a query c = 〈n,M, s〉 ∈ L s.t. c ∈ R, perform bounded

model checking to find a concrete counterexample. If found, return
Not Safe. Else, return No Universal Summaries.

Unfold: If βM(Fn)⇒ Safe then set Fn+1 := λP. true, increment n to n+ 1, and
set L := ∅.

Candidate: If exists aM-trace σM s.t. σM |= βM(Fn) ∧ ¬Safe, add
〈n,M, σM(M)〉 to L.

Decide: If there exists a query c = 〈i,P, s〉 ∈ L with i > 0 and a P-trace σP s.t.
σP |= βP(Fi−1) ∧ D(s), add 〈i− 1,Q, σP(cs)〉 to L for every
(cs,Q) ∈ CS.

Reachable-Base: If there exists a query c = 〈1,P, s〉 ∈ L and a P-trace σP such that
σP |= βP(F0) ∧ D(s), add c toR.

Reachable-Ind: If there exists a query c = 〈i,P, s〉 ∈ L with i > 1 and a P-trace σP
s.t. σP |= βP(Fi−1) ∧ D(s), and 〈i− 1,Q, σP(cs)〉 ∈ R for every
(cs,Q) ∈ CS, then add c toR.

Strengthen: If there exists a query c = 〈i,P, s〉 ∈ L with i > 0 s.t.
βP(Fi−1)⇒¬D(s), then compute
ϕ = UNSAT-CORE(βP(Fi−1), D(s)). Set Fj(P) := Fj(P) ∧ ϕ for
all 0 ≤ j ≤ i.

Push: If ϕ is a conjunct of Fi−1(P) and βP(Fi−1)⇒ ϕ then set
Fi(P) := Fi(P) ∧ ϕ.

Reachability-Cache: If 〈i,P, s〉 ∈ L and 〈j,P, s0〉 ∈ R with j ≤ i and s |= D(s0),
then add 〈i,P, s〉 toR.

end

that bad transition (Candidate), in a way that maintains the frame sequence invariants.
This is done by placing the bad transition in the reachability query queue for further
processing.

The next rules process reachability queries in the queue. Strengthen applies when
the summaries of the previous frame are restrictive enough to exclude the possibility of a
transition in question in the successive frame. In this case we intuitively learned that the
transition is impossible for the bounded behavior of the procedure, and we strengthen
the summaries of the procedure in the frame sequence with a new lemma that reflects it.
To obtain a universal strengthening of the frames we try to exclude not just the concrete
transition itself, but all the transitions in the diagram. This makes the strengthening
process more powerful since it excludes more transitions, which must be excluded if
universal summaries are to be used. To achieve convergence we further generalize the
strengthening lemma by interpolation (using unsat cores).

Decide applies when the procedure summaries of the previous frame are insufficient
to exclude the transition in question. In this case we attempt to (recursively) refine
procedure summaries of the called procedures. This is done by analyzing a specific
trace of the procedure that matches the query, and trying to exclude at least one of
the transitions made by called procedures along this trace. To this end, the transitions
of all the called procedures are added to the queue of reachability queries. Note that
in this sense, the reachability queries unfold into a tree where each node represents a
procedure call and a transition associated with it. Note further that if at least one of these
transitions will turn out to be unreachable (in the corresponding frame) by Strengthen,
then its frame will be refined, causing the trace of the caller to be unreachable as well.
Reachable-Base and Reachable-Ind handle the case that none of the called procedures’
transitions can be excluded, since they are all reachable and hence the transition of the
caller is marked reachable.

The rest of the rules provide optimizations over the basic algorithm. Push attempts
to push learned summary lemmas to the next frames when possible, in an attempt to
achieve two equivalent frames as quickly as possible. Reachability-Cache attempts to
avoid the need to go back in the frame sequence in order to understand that a transition is
in fact reachable by reusing known reachable transitions. Note that since we are working
with relaxed reachability it is sufficient to find a reachable transition in the diagram of
the transition in question.

Lemma 2 (Correctness). If the algorithm terminates with the result Safe then the safety
property holds for the program. If the algorithm terminates with the result Not Safe
then there is an execution of the program that violates the property. If the algorithm
terminates with the result No Universal Summaries then there is no function SP that
maps every procedure to a universally quantified summary which satisfies the verification
conditions of Lemma 1.

5 Implementation and Experiments

We have implemented an interprocedural version of UPDR on top of the Ivy frame-
work [17]. The framework is implemented in Python (2.7), and uses Z3 (4.4.2 32 bit)

for satisfiability checking. We also implemented a front-end in Java, based on the Soot
framework [22], that translates Java programs to Ivy’s relational modeling language
(RML). The experiments reported here were run on a machine with a 3.4GHz Intel Core
i7-4770 8-core, 32GB of RAM, running Ubuntu 14.04.

Table 3. Experimental results.

#Sum. Max
Program #Lines #Meth. Time (#Tot) Max F. #Z3 sum. D. W. N.

simple loop 11 1 66 4(15) 7 706 7 0 1 1
call outside loop 17 2 89 8(20) 7 1507 12 0 1 1

call in loop 17 2 91 8(20) 13 1816 10 0 1 1
update call in loop 18 2 142 8(20) 13 2726 17 1 1 1
call depth2 in loop 22 3 177 11(22) 15 3433 17 2 1 1

call depth2 22 3 97 5(22) 14 1712 1 2 1 1

sm 53 6 514 8(27) 11 5263 14 1 2 1
div 27 2 291 7(22) 11 2767 15 rec 2 rec

worklist 26 5 577 8(26) 17 7475 41 3 2 1
map test 40 3 306 10(24) 14 4753 16 1 1 1

c 18 3 33 8(18) 6 791 8 2 2 0
flatten 45 3 800 14(27) 18 10412 39 2 1 2

c error 18 3 35 — 5 662 — 2 2 0
flatten error 45 3 790 — 15 8746 — 2 1 2

#Lines denotes the number of code lines and #Meth. is the number of methods.
Time is measured in seconds. #Sum is the number of non-trivial computed sum-
maries, i.e. summaries that are not equivalent to true, while #Tot is the overall
number of summaries. Max F. denotes the highest frame reached by the algorithm.
#Z3 represents the number of calls to Z3. Max sum. denotes the number of clauses
in the largest obtained summary. D. denotes the maximal depth of the call-graph,
where a collection update occurs (main method is treated as 0 depth). W. is the
maximal number of calls to functions that update collections from a single method.
N. is the maximal number of nested loops that contain updates. rec represents a
recursive program.

The Soot-based front-end transforms Java programs to an intermediate language
based on Ivy’s RML. It splits every Java method to its basic blocks, and each basic
block is transformed to a procedure that requires a summary, and can include calls to
other procedures, including itself. For uniformity of implementation loops are effectively
translated to tail recursions. A by-product of this is that the interprocedural analysis sees
many procedures for every Java method, i.e., one for each basic block. In addition, due
to our abstraction of the non-CME related operations, some of these procedures contain
just a skip instruction, and their summary is trivial.

We evaluated our implementation on several Java programs that manipulate collec-
tions via iterators and are known to be safe. The test programs were inspired by code
examples taken from [19] (worklist, map test), an example (flatten) and a false alarm
example (sm) taken from the tool in [16], and our own implementation (div, c). The

worklist example contains a class that manipulates a list class field. The div example
includes a method that divides a list recursively and inserts some of its items to an output
list. The map test example performs basic checks on a sorted map structure. The c test
includes two iterators operating on the same collection when one is an alias to the other.
The flatten example includes a class that performs a flattening of a list of lists structure.

For all programs, the analysis was able to prove the absence of CMEs. The results
are summarized in Table 3. In addition, we intentionally inserted bugs to the code of c
and worklist and our tool succeeded in detecting them.

To examine the effect of different code properties on our algorithm, we applied
our tool on a few slightly different versions of a simple safe program. The simple loop
example has a single main method that iterates over a collection and updates it. The
call outside loop and call in loop programs are similar, but also contain a method that
has no effect on the collection, and is called outside of the iteration loop (call outside loop)
or from within the loop (call in loop). The update call in loop example calls a method
that updates a collection from the loop body. call depth2 in loop, call depth2 perform
the same updates as before, but wraps the update inside another method. The properties
we checked in this test are the depth of collection updates (add/remove) in the call-graph
and the loop nesting depth of the updates. The results show that both properties have a
major effect on the running times, frame number and number of Z3 calls.

The results indicate that the main factor affecting the run-time of the analysis is not
the code length, but rather the location of collection updates in the call-graph. When
the call-graph is deeper, the generated summaries are usually larger, more calls to Z3
are preformed, and run-time grows. Methods that do not manipulate collections do not
appear to affect the size of the summaries. Thus, we expect that our method can be
applied to large programs, with reasonably shallow update depth, width and nesting. We
also expect that an additional engineering effort can significantly reduce the run-time
of the analysis, as we regard our implementation as a proof-of-concept rather than an
optimized implementation.

6 Related Work

Property Directed Reachabilty. The IC3/PDR algorithm [2, 5] has led to many success-
ful applications both in software and in hardware verification. More recently, UPDR
(Universal PDR) [11] introduced the idea of using diagrams as a way to lift PDR to
infinite state systems. Our work builds on these works, and can be seen as an application
of UPDR to infer universally quantified procedure summaries rather then loop invariants.

Interprocedural Analysis. Interprocedural analysis [21, 20] is an important theme for
verification and program analysis. Following the introduction of the IC3/PDR algorithm,
[7] and [13, 14, 12] developed a way to apply it to interprocedural analysis. The main
idea, which we also apply in this work, is to infer procedure summaries in the same way
PDR infers loop invariants. While this line of works has been applied in the context of
various array theories and arithmetic, our work is the first to apply it using EPR, inferring
universal summaries by using diagrams.

Modeling with Decidable Logics. While any logic that fully describes computer programs
is undecidable, there have been many attempts to identify decidable logic fragments that
are still useful for analyzing programs. Decidability has the potential to make program
verification tools more predictable and useful. The array property fragment [3] and its
variants are often used to analyze programs that use arrays and perform simple arithmetic.
Logics such as Mona [6], Strand [15] and EPR [9, 8] have been used to model heap
manipulating programs. In this context, our work is using the EPR logic, and identifies
a new problem domain for which it can be useful: proving the absence of concurrent
modification errors in Java programs. Extending the range of applicability of decidable
logics is an ongoing research effort, and our work can be seen as another step in this
process.

Concurrent Modification Errors and Analyzing Java Programs. Several static analyses
have been developed to detect possible Concurrent Modification Exceptions in Java
programs, as well as violations of other typestate properties involving multiple objects.
[1] presented a flow-sensitive typestate analysis based on an intraprocedural must-alias
analysis that can rule out CME violations if the collection is created, iterated over,
and modified only within a single procedure. [16] evaluated an interprocedural context-
sensitive analysis of aliasing and multi-object typestate that can rule out CME violations,
but does not reason precisely about objects that escape to the heap and are no longer
directly referenced by any local variable. [10] presented a specification language for
describing properties such as CME violations and a pragmatic static verifier that is
neither sound nor complete, but effective in practice.

Acknowledgments. We would like to thank Nikolaj Bjørner, Roman Manevich and
Eran Yahav for their helpful discussions, and the Programming Languages team in TAU
for their support and feedback on the paper. The research leading to these results has
received funding from the European Research Council under the European Union’s
Seventh Framework Programme (FP7/2007-2013) / ERC grant agreement no [321174].

References

1. E. Bodden, P. Lam, and L. J. Hendren. Finding programming errors earlier by evaluating
runtime monitors ahead-of-time. In Proceedings of the 16th ACM SIGSOFT International
Symposium on Foundations of Software Engineering, 2008, Atlanta, Georgia, USA, November
9-14, 2008, pages 36–47, 2008.

2. A. Bradley. Sat-based model checking without unrolling. In R. Jhala and D. Schmidt, editors,
Verification, Model Checking, and Abstract Interpretation, volume 6538 of Lecture Notes in
Computer Science, pages 70–87. Springer Berlin Heidelberg, 2011.

3. A. R. Bradley, Z. Manna, and H. B. Sipma. What’s decidable about arrays? In E. A. Emerson
and K. S. Namjoshi, editors, Verification, Model Checking, and Abstract Interpretation,
7th International Conference, VMCAI 2006, Charleston, SC, USA, January 8-10, 2006,
Proceedings, volume 3855 of Lecture Notes in Computer Science, pages 427–442. Springer,
2006.

4. L. M. de Moura and N. Bjørner. Z3: An efficient SMT solver. In TACAS, pages 337–340,
2008.

5. N. Eén, A. Mishchenko, and R. K. Brayton. Efficient implementation of property directed
reachability. In P. Bjesse and A. Slobodová, editors, International Conference on Formal
Methods in Computer-Aided Design, FMCAD ’11, Austin, TX, USA, October 30 - November
02, 2011, pages 125–134. FMCAD Inc., 2011.

6. J. G. Henriksen, J. L. Jensen, M. E. Jørgensen, N. Klarlund, R. Paige, T. Rauhe, and A. Sand-
holm. Mona: Monadic second-order logic in practice. In Tools and Algorithms for Con-
struction and Analysis of Systems, First International Workshop, TACAS, pages 89–110,
1995.

7. K. Hoder and N. Bjørner. Generalized property directed reachability. In A. Cimatti and
R. Sebastiani, editors, Theory and Applications of Satisfiability Testing - SAT 2012 - 15th
International Conference, Trento, Italy, June 17-20, 2012. Proceedings, volume 7317 of
Lecture Notes in Computer Science, pages 157–171. Springer, 2012.

8. S. Itzhaky, A. Banerjee, N. Immerman, O. Lahav, A. Nanevski, and M. Sagiv. Modular
reasoning about heap paths via effectively propositional formulas. In the 41st Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL, pages
385–396, 2014.

9. S. Itzhaky, A. Banerjee, N. Immerman, A. Nanevski, and M. Sagiv. Effectively-propositional
reasoning about reachability in linked data structures. In Computer Aided Verification - 25th
International Conference, CAV, pages 756–772, 2013.

10. C. Jaspan and J. Aldrich. Checking framework interactions with relationships. In ECOOP
2009 - Object-Oriented Programming, 23rd European Conference, Genoa, Italy, July 6-10,
2009. Proceedings, pages 27–51, 2009.

11. A. Karbyshev, N. Bjørner, S. Itzhaky, N. Rinetzky, and S. Shoham. Property-directed inference
of universal invariants or proving their absence. In Computer Aided Verification - 27th
International Conference, CAV, pages 583–602, 2015.

12. A. Komuravelli, N. Bjørner, A. Gurfinkel, and K. L. McMillan. Compositional verification of
procedural programs using horn clauses over integers and arrays. In R. Kaivola and T. Wahl,
editors, Formal Methods in Computer-Aided Design, FMCAD 2015, Austin, Texas, USA,
September 27-30, 2015., pages 89–96. IEEE, 2015.

13. A. Komuravelli, A. Gurfinkel, and S. Chaki. Smt-based model checking for recursive pro-
grams. In A. Biere and R. Bloem, editors, Computer Aided Verification - 26th International
Conference, CAV 2014, Held as Part of the Vienna Summer of Logic, VSL 2014, Vienna,
Austria, July 18-22, 2014. Proceedings, volume 8559 of Lecture Notes in Computer Science,
pages 17–34. Springer, 2014.

14. A. Komuravelli, A. Gurfinkel, and S. Chaki. Smt-based model checking for recursive programs.
Formal Methods in System Design, 48(3):175–205, 2016.

15. P. Madhusudan and X. Qiu. Efficient decision procedures for heaps using STRAND. In Static
Analysis - 18th International Symposium, SAS 2011, Venice, Italy, September 14-16, 2011.
Proceedings, pages 43–59, 2011.

16. N. A. Naeem and O. Lhoták. Typestate-like analysis of multiple interacting objects. In
Proceedings of the 23rd Annual ACM SIGPLAN Conference on Object-Oriented Programming,
Systems, Languages, and Applications, OOPSLA 2008, October 19-23, 2008, Nashville, TN,
USA, pages 347–366, 2008.

17. O. Padon, K. L. McMillan, A. Panda, M. Sagiv, and S. Shoham. Ivy: safety verification
by interactive generalization. In Proceedings of the 37th ACM SIGPLAN Conference on
Programming Language Design and Implementation, PLDI 2016, Santa Barbara, CA, USA,
June 13-17, 2016, pages 614–630, 2016.

18. R. Piskac, L. M. de Moura, and N. Bjørner. Deciding effectively propositional logic using
DPLL and substitution sets. J. Autom. Reasoning, 44(4):401–424, 2010.

19. G. Ramalingam, A. Varshavsky, J. Field, D. Goyal, and S. Sagiv. Deriving specialized program
analyses for certifying component-client conformance. In Proceedings of the 2002 ACM
SIGPLAN Conference on Programming Language Design and Implementation (PLDI), Berlin,
Germany, June 17-19, 2002, pages 83–94, 2002.

20. T. W. Reps, S. Horwitz, and S. Sagiv. Precise interprocedural dataflow analysis via graph
reachability. In R. K. Cytron and P. Lee, editors, Conference Record of POPL’95: 22nd ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, San Francisco,
California, USA, January 23-25, 1995, pages 49–61. ACM Press, 1995.

21. M. Sharir and A. Pnueli. Two approaches to interprocedural data flow analysis, chapter 7,
pages 189–234. Prentice-Hall, Englewood Cliffs, NJ, 1981.

22. R. Vallée-Rai, P. Co, E. Gagnon, L. J. Hendren, P. Lam, and V. Sundaresan. Soot - a java
bytecode optimization framework. In Proceedings of the 1999 conference of the Centre for
Advanced Studies on Collaborative Research, November 8-11, 1999, Mississauga, Ontario,
Canada, page 13, 1999.

23. E. Yahav and G. Ramalingam. Verifying safety properties using separation and heterogeneous
abstractions. In Proceedings of the ACM SIGPLAN 2004 Conference on Programming
Language Design and Implementation 2004, Washington, DC, USA, June 9-11, 2004, pages
25–34, 2004.

