
Automatic Parallelization for

Graphics Processing Units in

JikesRVM

by

Alan Chun-Wai Leung

A thesis

presented to the University of Waterloo

in fulfillment of the

thesis requirement for the degree of

Master of Mathematics

in

Computer Science

Waterloo, Ontario, Canada, 2008

c© Alan Chun-Wai Leung 2008

I hereby declare that I am the sole author of this thesis. This is a true copy of the

thesis, including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

Accelerated graphics cards, including specialized high-performance processors called

Graphics Processing Units (GPUs), have become ubiquitous in recent years. On the

right kinds of problems, GPUs greatly surpass CPUs in terms of raw performance.

However, GPUs are currently used only for a narrow class of special-purpose appli-

cations; the raw processing power available in a typical desktop PC is unused most

of the time.

The goal of this work is to present an extension to JikesRVM that automatically

executes suitable code on the GPU instead of the CPU. Both static and dynamic

features are used to decide whether it is feasible and beneficial to off-load a piece

of code to the GPU. Feasible code is discovered by an implementation of data

dependence analysis. A cost model that balances the speedup available from the

GPU against the cost of transferring input and output data between main memory

and GPU memory has been deployed to determine if a feasible parallelization is

indeed beneficial. The cost model is parameterized so that it can be applied to

different hardware combinations.

We also present ways to overcome several obstacles to parallelization inherent

in the design of the Java bytecode language: unstructured control flow, the lack of

multi-dimensional arrays, the precise exception semantics, and the proliferation of

indirect references.

iii

Acknowledgements

First and foremost I would like to express my gratitude to my supervisor, Ondřej

Lhoták, for all his patience, support and guidance. Without him, this work would

not be possible.

I would like to thank Rose, Telson, Helen, Joanna, my family and friends who

provided love and care before and during my academic studies.

I would also like to thank Ghulam Lashari for his help in the subject of GPU

programming and developers of JikesRVM for their research platform as well as

friendly assistance on the mailing list.

iv

Contents

1 Introduction 1

1.1 Motivation . 1

1.2 Goal . 2

1.3 Contributions . 3

2 Background 5

2.1 GPU Overview . 5

2.2 JikesRVM Overview . 10

2.3 Dependence Overview . 12

2.4 Related Work . 18

3 Implementation 21

3.1 Overview . 21

3.2 Dependence Analysis . 23

3.3 Algorithm . 29

3.3.1 Parallelization . 29

3.3.2 Vectorization . 30

3.3.3 GPU Parallelization . 31

3.3.4 Classification of Loops . 33

3.3.5 Identifying Loop Types . 34

v

3.3.6 Data Transfer . 37

3.4 Multi-pass Extension . 40

3.5 Java Specific Issues . 44

3.5.1 Java Arrays . 44

3.5.2 Inter-array Aliasing . 47

3.5.3 Intra-array Aliasing . 48

3.5.4 Bounds Checks . 54

3.5.5 Recovering Control Flow . 58

3.6 Implementation Summary . 61

4 Results 63

5 Conclusions 71

A Command Line Options 73

References 74

vi

List of Figures

1.1 GPU performance [38] . 2

2.1 GPU Pipeline . 6

2.2 Stream Programming Model . 9

2.3 Examples of different dependences 16

3.1 Overall Architecture . 22

3.2 Example dependence graph output 24

3.3 Parallelization scenario . 30

3.4 Vectorization scenario . 31

3.5 GPGPU code pattern . 32

3.6 Sample output of the dependence graph after parallelization 37

3.7 Plain matrix multiplication on GPU and CPU 38

3.8 Estimated cost vs. actual cost of execution 40

3.9 Multi-pass loop with redundant copying 43

3.10 Multi-pass loop without redundant copying 43

3.11 SOR performance . 44

3.12 Array Implementations . 45

3.13 AliasOnly edges in dependence graph dump 49

3.14 Irregularities of Java arrays . 49

vii

3.15 JikesRVM array layout . 51

3.16 Simple GOTO control flow . 59

3.17 Sharing of else blocks . 60

3.18 Cloning else blocks . 61

4.1 Image of Julia set by the CPU . 66

4.2 Image of Julia set by the GPU . 66

4.3 Running Time of matrix . 67

4.4 Running Time of mandel and julia 68

4.5 Execution Time Comparison . 68

4.6 Overall cost model accuracy . 69

viii

Chapter 1

Introduction

1.1 Motivation

The graphics card in a typical modern desktop personal computer has significantly

more raw processing power and memory bandwidth than the general purpose Cen-

tral Processing Unit (CPU). In addition to being used for displaying graphics with a

monitor, newer generations of these graphics cards are capable of offloading many

general-purpose computations from the CPU. For that reason, modern graphics

cards are usually referred to as Graphics Processing Units (GPUs).

GPUs can also have significantly high raw performance than CPUs. For exam-

ple, the NVIDIA GeForce 7800 GTX can perform 165 Giga Floating Point Oper-

ations Per Second (GFLOPS), while the theoretical peak rate of a dual-core 3.7

GHz Intel Pentium 965 is 25.6 GFLOPS [38]. Figure 1.1 shows a performance

growth comparison between GPUs and CPUs in recent years. The performance

gap between GPUs and CPUs has been widening and is likely to continue to in-

crease, even as the number of CPU cores increases. Adding CPU cores requires

duplicating control logic and implementing expensive cache-coherency protocols.

In contrast, increasing the processing power of a GPU-like tiled SIMD architecture

requires significantly fewer hardware resources.

However, the processing power provided by the GPU is unused most of the

time, except in very specific applications. In recent years, a “general-purpose”

1

Figure 1.1: GPU performance [38]

GPU (GPGPU) community has sprung up, which applies GPUs to problems other

than rendering three-dimensional scenes [38]. Despite the term “general-purpose”,

the GPGPU community focuses on adapting specific algorithms for execution on

GPUs, although there has been some work on programming systems targetting a

range of applications.

Although GPU vendors are progressively increasing the ease of use of their

GPUs in general purpose computation, programming for GPUs remains a difficult

task. Many application programmers for domain specific applications have not been

trained to program parallel architectures.

1.2 Goal

The goal of this thesis is to describe our prototype implementation of an auto-

parallelizing compiler that takes advantage of GPU resources even for code that

has not been explicitly implemented with GPUs in mind. This is accomplished

by extending a Java JIT compiler to detect loops which can be parallelized, and

which can be executed more quickly on the GPU than on the CPU. The higher raw

performance of the GPU must be weighed against the cost of transferring the input

2

and output between main memory and GPU memory. We propose a parameterized

cost model to weigh these costs and decide when it is beneficial to execute code on

the GPU. The parameters are used to tune the cost model to the specific hardware

on which the code runs.

1.3 Contributions

Our work makes the following contributions:

• It proposes a new loop parallelization algorithm tailored to the programming

model exposed by common GPU hardware. The GPU programming model

combines some characteristics of both the vector and multi-processor execu-

tion models targetted by traditional parallelization algorithms, but is distinct

from both of these models.

• It describes the prototype implementation that was built on top of an existing

research Java virtual machine.

• It identifies obstacles to parallelization that are specific to Java bytecode,

and briefly discusses the solutions that we have implemented to overcome

them. The use of Just-in-Time compilation makes it possible to overcome

these difficulties with simple but effective techniques.

• It introduces a technique for minimising the number of data transfers between

the system’s memory and the GPU’s memory.

• It proposes and evaluates a cost model for deciding whether it is profitable

to run a given loop on the GPU rather than the CPU. In particular, the cost

model balances the data transfer overhead against the faster computation

possible on the GPU.

The rest of the thesis is organized as follows: Chapter 2 provides background

on GPUs, JikesRVM, dependence analysis and related work. Chapter 3 describes

3

the core implementation of the dependence analysis, the GPU parallelization algo-

rithm, other challenges faced and improvements made. Chapter 4 reports on an

experimental evaluation of the cost model. Lastly, Chapter 5 concludes.

4

Chapter 2

Background

2.1 GPU Overview

This section of the thesis will first explain the programming model presented by

GPUs to programmers, and how it is intended to be used for rendering 3D images.

Later, we will explain how the programming model can be used for other general

purpose applications.

Under graphics application programming interfaces (APIs), the GPU program-

ming model is organized as a pipeline of several stages, as shown in Figure 2.1.

The figure shows a conceptual view of the pipeline exposed by the APIs. Actual

hardware implementation can vary. The first stage of the pipeline is the geometry

stage, and is implemented by the vertex processor. The input to this stage is a list

of vertices in a three-dimensional local coordinate space describing the scene to be

rendered. For each vertex, this stage translates it to global coordinates, calculates

lighting information, and maps it to its two-dimensional position on the screen.

The second stage is the rasterizer. The rasterizer produces a bitmap with the

same number of elements (called fragments) as the number of pixels in the image

being rendered. On this bitmap, the rasterizer draws the polygons described by

the two-dimensional vertices that were computed in the geometry stage. Each

fragment contains a fixed amount of information such as color, texture coordinates

and depth. Parameters generated by the vertex processor are also interpolated to

5

Vertex Processor Rasterizer Fragment Processor Framebuffer

Textures

Display

Figure 2.1: GPU Pipeline

each fragment.

The third stage is fragment processing. From the information stored in each

fragment, the fragment processor computes a colour for the corresponding pixel. In

addition to reading the information for the current fragment, the fragment processor

may also perform random-access reads from textures, which are additional input

arrays distinct from the fragment bitmap. The colours computed by the fragment

processor may be written either to the frame buffer to be shown on the screen, or to

a texture, from which they can be read again in subsequent fragment stage passes.

However, it is not possible to read and write to the same texture in one pass.

In older GPUs, the transformations performed by these stages were fixed by the

hardware, but in recent years, the vertex processing and fragment processing stages

have become fully programmable and have been unified into a single hardware

component. Non-graphical applications usually use only the fragment processor

because of the convenient feedback loop provided by its ability to write to and read

from textures. However, the vertex processor does expose a scatter operation.

The computation to be performed is specified to the GPU in the form of a

fragment program, which traditionally performs floating point operations on a set

of registers local to each fragment. Although early GPUs executed only straight-line

code, current models support control flow within the fragment program, including

loops. The fragment program may also perform an arbitrary number of random

access reads from textures, but it may only output a fixed, small number of floating

6

point numbers as its output, and to fixed output locations. The GPU executes the

fragment program many times (i.e.,once for each output fragment), and records the

output values generated by each execution in an element of the output texture.

Because of the limitation on the output of a fragment program, a common GPGPU

technique is to divide an algorithm into a sequence of passes, with each pass reading

the texture generated by the preceding pass.

Listing 1 Matrix-vector Example

public static float []
fix (float [] [] A , float [] B) {

float [] Bn = new float [1 0 0] ;

for (int k = 0 ; k < 10 ; k++) { // Loop 1
for (int x = 0 ; x < 100 ; x++) { // Loop 2

float s = 0 ;
for (int y = 0 ; y < 100 ; y++) { // Loop 3

s += A [x] [y] ∗ B [y] ;
}
Bn [x] = s ;

}
float [] tmp = Bn ;
Bn = B ;
B = tmp ;

}
return B ;

}

We use an example to demonstrate how computations are mapped to the GPU.

Figure 1 shows Java code for an example program that multiplies a matrix by a

vector 10 times. There are three ways in which a loop can be implemented when

using a GPU, and we will use the three nested loops in the example program to

demonstrate them. Figure 2 shows a GPU fragment shader program, written in

Cg [26], used to implement the computation. The outermost loop (Loop1) is still

executed on the CPU, and triggers the GPU program 10 times (the CPU code is

not shown). The body of the middle loop (Loop2) becomes the fragment program.

The GPU will execute the fragment program once for each element of the output

array, thereby implementing the middle loop. Neither the CPU program nor the

7

Listing 2 matrix-vector code for GPU

float iteration (
in float2 coords : TEXCOORD0 ,
uniform samplerRECT textureA ,
uniform samplerRECT textureB ,
) : COLOR {

float s = 0 . 0 ;
for (float y = 0 ; y < 100 ; y++) {

float x = coords . x ;
s += texRECT (

textureA , float2 (x , y)) ∗
texRECT (textureB , float2 (0 , y))

) ;
}
return s ;

}

GPU fragment program implements the middle loop; its implementation is implicit

in the data-parallel programming model exposed by the GPU. The innermost loop

(Loop3) is encoded in the fragment program, since it is inside the body of the middle

loop.1 We call these three implementations of loops CPU, GPU-Implicit, and GPU-

Explicit, respectively. In Section 3.3.4, we will give an algorithm to deciding how

each loop in a program should be implemented.

Unfortunately, most graphics cards can only be used with a graphics API such

as OpenGL [48] and shaders such as the Cg program shown in Listing 2. We must

set up the graphics card so that when the fragment program is run, it will compute

the desired result. First, any array data must be stored as textures. In the example

shown in Listing 1, A and B should occupy two textures. Initial values of the

two arrays should be copied into the texture before execution. The programmer

should then instruct the graphics API to draw a quad primitive that is the size of

B somewhere in the scene. The view should be set so that the quad is the only

object drawn to the viewport. Finally, the programmer must also instruct the API

to apply the shader given in Listing 2 after binding the textures accordingly. The

end result will be that the value of the frame buffer will contain the results of one

1This example could be implemented more efficiently if a loop interchange transformation was
first applied; however, the purpose of the example is to demonstrate the three kinds of loops.

8

iteration of the matrix vector multiplication. The same procedure can be repeated

after storing the framebuffer as the new texture B.

This technique is the more traditional GPGPU programming model that is

widely applicable to many GPUs. Some newer GPGPU specific programming

languages are described in Section 2.4. However, regardless of the programming

method used, the GPU can be viewed as a stream processor as shown here:

A
in

A
out

M
1

M
2

M
3

F(A[i]) {

 return x;
}

Figure 2.2: Stream Programming Model

We will call this programming model the Single Program Multiple Data (SPMD)

stream programming model. A programmer can view the GPU as a machine that

applies a small identical program (kernel) in parallel to every element of an array

and stores the result to an output array. In figure 2.2, the program F is applied to

every single element of Ain and output is stored in corresponding entries of Aout.

Also, F is allowed to access other data randomly.

There are many other differences between GPUs and CPUs. Most GPUs are

tailored to render graphics in real time, so certain tradeoffs are made in their design

that hinder other applications.

In the standard GPU pipeline, fragment programs can perform data gathering

operations (i.e., reading from arbitrary data-dependent locations in texture mem-

ory), but they cannot perform data scattering operations (i.e., writing to arbitrary

data-dependent locations in texture memory). Several workarounds are possible.

NVIDIA’s new CUDA programming model allows arbitrary writes [2]. The latest

9

generation of GPUs supporting the Direct3D 10 programming model have a pro-

grammable rasterizer which could be used to perform scatter operations in between

passes of a fragment program [21]. However, hardware and drivers supporting these

new programming models are not yet widespread. In this work, we target the GPUs

that are widely available today using the ubiquitous OpenGL programming model.

For that reason, our stream programming model shown in Figure 2.2 is able to

read any textures available but can only to write to the output element associated

with the current kernel instance.

For reasons of hardware cost, some current GPUs also do not fully respect IEEE

standards when performing floating point arithmetic. Our implementation does

not transform code marked with the Java strictfp modifier, which is intended

to mark expressions which must be evaluated in strict compliance with the IEEE

754 standard. However, for code not marked with strictfp, it is possible that

the result computed by a given GPU does not comply even with the looser Java

standard for floating point arithmetic.

More information about the graphics pipeline and 3D graphics programming

can be found in the OpenGL Programming Guide [48].

2.2 JikesRVM Overview

Our implementation is built on top of an existing research Java virtual machine

called JikesRVM (Jikes Research Virtual Machine). JikesRVM (formally known as

Jalapeño) provides a flexible open testbed to prototype virtual machine technologies

and experiment with a large variety of design alternatives [6]. This subsection of

the thesis will provide some background information on JikesRVM itself.

The most distinctive design feature of JikesRVM compared to other Java virtual

machine is the language JikesRVM is written in. Much of the core functionality is

written in Java while roughly 3% is written in C++ [11]. All applications written

in Java require a VM (virtual machine) to execute. However, instead of requiring

another VM to run JikesRVM, JikesRVM is actually executing on itself. There are

a few special implementation choices made in order to facilitate this goal.

10

First, unlike most other VMs, JikesRVM never interprets the Java bytecode.

Instead, it relies only on the Just-in-Time (JIT) compilation. JikesRVM has two

different compilers: baseline and optimizing. The baseline compiler offers a quick

bytecode to machine code compiler for most initial compilation of Java methods.

The optimizing compiler, on the other hand, offers a multi-level optimizing com-

piler that requires more compilation time but which is suitable for recompilation

of frequently executed methods. Currently JikesRVM supports the x86 and the

PowerPC CPU architectures.

The build process also differs from normal Java programs. First, a static com-

piler is invoked to build each Java source file and generate all the required class

files.

One of the JIT compilers within JikesRVM is chosen to run on an external VM

to bootstrap the VM itself. Sun Microsystems’ HotSpot, for example, has been used

as the external VM. The bootstrapping process involves compiling a minimal subset

of class files needed for elementary functions of the RVM to the machine language

of the target machine. The list of class files required (called the primordial list)

will be saved as a single image on disk. When JikesRVM runs, this image is loaded

from disk, and is used to compile and run the other class files of JikesRVM and the

application begin executed. More information about the bootstrapping and build

system of JikesRVM can be found in Implementing Jalapeño in Java [10].

The self executing VM design enables many interesting optimizations. Not only

does JikesRVM perform optimization of the running application, it can optimize

itself while it is running if necessary. Recompilation decisions are made using the

adaptive optimization system. JikesRVM collects information about the executing

application by means of instrumenting and profiling branches. Based on statistics

gathered by instrumenting the generated code, the VM will decide on a recom-

pilation plan as well as use the information as an aid to optimizations. More

information about the adaptive optimization system in JikesRVM can be found in

Adaptive optimization in the Jalapeño JVM [13].

The optimizing compiler works on three intermediate representations (IR) sim-

ilar to those of Advanced Compiler Design and Implementation [35]: High-level

11

Intermediate Representation (HIR), Low-level Intermediate Representation (LIR)

and Machine-level Intermediate Representation (MIR). Much of our extension re-

sides in optimization passes that work on the HIR representation. In particular, the

Static Single Assignment (SSA) variation of HIR is where the core parallelization

phrases are implemented.

Although not directly used in our work, there are many more interesting design

decisions and implementations within JikesRVM. For example, JikesRVM deploys

a virtual processor approach for threads where threads are multiplexed onto one

or more virtual processors. The VM then schedules virtual processors to physical

ones. A ”quasi-preemption” scheduling scheme is used to allow context switching

only in specific instructions of the running program called yield points. This allows

the implementation of parallel garbage collectors. For more information related to

internals of JikesRVM and other research projects that use JikesRVM, a compre-

hensive list of all publications that involve JikesRVM can be found in the JikesRVM

publications website [7].

2.3 Dependence Overview

This section provides an overview of data dependence analysis which is essential

when determining which sections of the source code can be executed in parallel

in the GPU. An overview of dependence analysis as well as numerous definitions

that are key to understanding our implementation are discussed in this section.

More comprehensive treatments of dependence analysis can also be found in many

textbooks [51, 47, 8].

Like all optimizations, parallelization must preserve the semantics of the original

program. Consider the following example:

Listing 3 Simple Sequential Example

int x = 0 ;
x = 1 ; // S1
System . out . println (x) ; // S2

12

Suppose we would like to execute both S1 and S2 in parallel, possibly in two

different processors. Depending on which processor finishes executing its corre-

sponding instruction first, the output can vary. We might say that S2 depends on

the execution of S1 to be completely finished. The relative ordering of S1 and S2,

therefore, must be preserved.

The study of the dependence relationship between instructions is called depen-

dence analysis. The primary focus of dependence analysis is to identify possible

control or data interference relationships between pairs of instructions such as those

displayed in Listing 3. Dependence exists between specific executions of statements.

Before we can define formally what data dependence is, we must be able to classify

specific executions of a statement as a single statement might be executed multiple

times. To do that we will use iteration vectors. Consider the following program:

Listing 4 Dependence across iterations

for (int i = 0 ; i < 100 ; i++) {
for (int j = 0 ; j < 100 ; j++) {
. . . // S0
}

}

The execution of S0 when the induction variables have the values i = 5 and

j = 6 is said to have an iteration vector of ~v = (5, 6). Formally we define the

iteration vector as follows:

Definition 1 (Iteration Vector). Suppose L is a set of n nested loops L0, L1, L2...Ln

with loop induction variables i0, i1, i2...in respectively. The execution of a statement

S in L when i0 = v0, i1 = v1, i2 = v2, ...in = vn is represented by S[~v] where ~v is the

iteration vector (v0, v1, v2, ...vn) ∈ Zn.

Definition 2 (Iteration Space). The set of all possible iteration vectors of a loop

nest is called the iteration space of the loop nest.

Definition 3 (Iteration Vector Ordering). Given vectors ~v0 = (v0, v1, v2...vn−1) and

13

~v1 = (v′0, v
′
1, v
′
2...v

′
n′−1), we define the partial orders <c, < and = as follows:

~v = ~v′ ⇐⇒ v0 = v′0, v1 = v′1, ...vmin(n,n′)−1 = v′min(n,n′)−1

~v <c
~v′ ⇐⇒ v0 = v′0, v1 = v′1, ...vc−1 = v′c−1, vc < v′c

~v < ~v′ ⇐⇒ ∃c<n| ~v <c
~v′

We say ~v >c
~v′ or ~v > ~v′ if ~v′ <c ~v or ~v′ < ~v respectively.

The <c relationship between iteration vectors creates a partial ordering in Zn.

We can now formally define the execution of a statement to be the following:

Definition 4 (Execution of Order Statements). If the execution of S0[~v] occurs

before S1[~v′], we will write S0[~v]� S1[~v].

Also, given two vectors ~v and ~v′, ~v < ~v′ implies that S0[~v] executes before S1[~v′]

regardless of the lexical order of S0 and S1 in the source code [51, Theorem 4.1].

Using Definition 4, we can identify the specific execution of any statement that is

nested within loops. For statements that are outside of loops, we can define the

function body as a single loop that iterates only once. The execution of S0 when

the induction variables have the values i = 5 and j = 6 in Listing 4 will be written

as S[(0, 5, 6)]. Since our work focuses on loops, we will abbreviate execution as

S[(5, 6)].

With a formal definition of execution of statements, we can formally define

dependence.

Definition 5 (Data Dependence). A data dependence between the execution of

statements S0[~v] and S1[~v′] occurs when S1[~v] accesses the same data as S0[~v] and

S0[~v′]� S1[~v′]. We will write S0[~v]→ S1[~v′] if such a dependence exists. If not, we

will write S0[~v] 6→ S1[~v′]. Furthermore, we will write S0 → S1 if there exist ~v and

~v′ in the iteration space such that S0[~v]→ S1[~v′]. Otherwise, we will write S0 6→ S1

if for all ~v and ~v′ in the iteration space, S0[~v] 6→ S1[~v′].

The type of a dependence can be further classified as true dependence, anti-

dependence, output dependence or artificial dependence. Table 1 shows

14

the classifications of data dependences according to whether the accesses are reads

or writes. Figure 2.3 demonstrates an example of each dependence. In the first

three examples, at least one access is a write, so rearranging the relative order of

S0 and S1 will definitely alter the program’s semantics. In some memory models,

two reads may be considered to interfere. However, in our work, we assume that

pairs of reads are not considered a dependence. We shall redefine data dependence

as follows:

Definition 6 (Data Dependence (with Interference)). A data dependence be-

tween the execution of statements S0[~v] and S1[~v′] occurs when S1[~v′] accesses the

same data as S0[~v], at least one of the instruction writes to that data, and

S0[~v] < S1[~v′].

Table 1 Data dependence types.

S0 S1 Name
WRITE x READ x True Dependence
READ x WRITE x Anti-dependence

WRITE x WRITE x Output Dependence
READ x READ x Artificial Dependence

When dealing with dependence relationships between instructions across it-

erations, we can further classify data dependences as loop-carried and loop-

independent.

Definition 7 (Loop-carried Dependence). A data dependence is loop-carried if

there exist iterations ~v and ~v′ such that S0[~v]→ S1[~v′] and ~v < ~v′.

Definition 8 (Dependence Carried by a Loop). Let S0[~v]→ S1[~v′] be a loop-carried

dependence with ~v <c
~v′. We denote this dependence as S0 →c S1 and we say that

the loop-carried dependence is carried by the loop at depth c. Alternatively, we

can also write the dependence as S0 →L S1 if loop L is the loop at depth c.

Definition 9 (Loop Independent Dependence). A data dependence is loop-inde-

pendent if there exists ~v such that S0[~v] → S1[~v] and for all ~w, ~w′ w 6= w′ −→
S0[~w] 6→ S1[~w′]. To distinguish this from loop-carried dependence, we will denote

this type of dependence as S0 →∞ S1.

15

x = 0 ;
. . . .
x = 1 ; // S0
System . out . println (x) ; // S1

(a) True Dependence

x = 0 ;
. . . .
System . out . println (x) ; // S0
x = 1 ; // S1

(b) Anti Dependence

x = 0 ;
. . . .
x = 2 ; // S0
x = 1 ; // S1

(c) Output Dependence

x = 0 ;
. . . .
System . out . println (x) ; // S0
System . out . println (x) ; // S1

(d) Artificial Dependence

Figure 2.3: Examples of different dependences

16

Consider the following code segment:

Listing 5 Dependence across iterations

int x = 0 ;

for (int i = 0 ; i < 100 ; i++) {
System . out . println (x) ; // S0
x = i ; // S1

}

There is a loop-independent anti-dependence S0 →∞ S1 as well as true loop-

carried dependences on S1[0] → S0[1], S1[1] → S0[2], S1[2] → S0[3]...S1[98] →
S0[99] which can simply be denoted by S1 →1 S0.

Given a loop body, it is known that individual iterations of the body can be exe-

cuted in parallel if each iteration does not depend on the outputs of other iterations

[8, Theorem 2.8].

Theorem 1 (Dependence and Parallel Execution of Loop Iterations). Given a set

of instructions S = {S0, S1, ...Sn−1} within a loop of depth c, iterations of the loop

can be executed in parallel if ∀i,j∈[0:n−1] Si 6→c Sj.

Definition 10. A dependence graph of a program is graph G = (V,E) where v ∈ V
are the nodes representing instructions of the program and the labeled edges eω =

(v0, v1) ∈ E implies v0 →ω v1 may be true. ω is the loop that carries the dependence

and ω is ∞ if the dependence is not loop carried.

Theorem 1 show that a loop is parallelizable if there are no loop-carried depen-

dences between its iterations. For that reason, our implementation must provide

an analysis that will compute all possible dependence across loops. The result will

be stored in form of a graph called the dependence graph that is defined in

Definition 10. Edges of the dependence graph shows possible dependence relation-

ship between instructions. Because these edges represent a ”may be” dependent

relationship, it is important to create a dependence graph that is as precious as

possible.

17

2.4 Related Work

Most existing parallelization approaches fall into two categories, depending on the

hardware features that they exploit: task-level parallelism [39, 20, 42, 15, 12] and

vectorization [25, 17, 31, 19, 23, 29, 37, 36, 51, 8, 47].

Task-level parallelism is supported by multiple instances of a fully-functional

processor. The overhead of creating threads can be high, but each thread can exe-

cute an arbitrary program. Generally, the outermost loop is parallelized, resulting

in long tasks and few thread creations. In the context of parallelizing Java, three

examples of this technique are JAVAR [18], JavaSpMT [28], and SableSpMT [41].

Vectorization, on the other hand, is supported by a SIMD architecture in which

multiple computational units are controlled by a single control unit, so they execute

the same instruction. Although SIMD instructions are limited to specific types of

computations, they have little overhead, to the point that it is feasible to mix indi-

vidual SIMD instructions with sequential computations. As a result, vectorization

generally targets innermost loops. Vectorization can be categorized into two prin-

cipal approaches: the traditional loop-based parallelization [19, 37, 46, 32] and the

basic block approach [31, 27, 44].

The loop-based vectorization technique proceeds by stripmining the loop. A

single loop will be replaced by two nested loops where the number of iterations in

the inner loop is same as the vector length. Each scalar instruction in the inner loop

body will then be replaced by a corresponding vector instruction. The basic block

approach, on the other hand, unrolls the loop by a multiple of the vector length

and packs each group of isomorphic scalar instructions into a vector instruction.

The loop-based approach requires complicated loop transformations like loop fission

(splitting up a single loop to multiple loops) and scalar expansion (replacing scaler

variables with an array) and is inhibited by loop carried dependences, especially

true data dependences shorter than the vector length. The basic block approach,

on the other hand, requires simpler analyses but incurs overhead due to packing

and unpacking of the operands of isomorphic statements. Vectorization in general

requires very sophisticated analyses and faces numerous challenges including the

difficult problem of supporting control flow in vector code [45]. In contrast, our

18

target architecture (the GPU) requires a simple loop analysis and offers a more

flexible programming model than the traditional SIMD machines.

Current GPUs cannot be decisively categorized as either multi-processor or

vector processors; they share some characteristics of both. The fragment processor

has traditionally been a SIMD processor with a limited instruction set. In recent

years, hardware for support strictly nested control flow has been added, but it is

not intended to support highly divergent control flow. The overhead required to

start a computation makes the GPU more similar to a multi-processor system.

The CUDA architecture [2] moves even further towards a general multi-processor

style of parallelism. The CUDA programming framework further exposes the GPU

to general purpose programmers. No longer do the programmers have to express

computation through a graphical API like OpenGL, thus eliminates a lot of unnec-

essary graphic initialization overhead. The programmers are given a lot of control

of the NIVDIA 8800 GPUs in terms of GPGPU programmability. They are allowed

to manage thread blocks within the GPU themselves with a C like programming

language. Unlike earlier graphics cards, CUDA compatible GPUs allow synchro-

nization like mechanism. However, much like traditional OpenGL based GPGPU

techniques, the responsibility to discover parallelism is left to the programmer.

Parallelizing an inner loop would incur high kernel startup overhead, while an

outer loop is likely to contain divergent control flow and computations not sup-

ported by the GPU. The hybrid nature of GPUs suggests a new kind of paral-

lelization algorithm targeting loops in the middle of a loop nest. In this thesis, we

present one such algorithm.

Another parallelization system targeting GPUs is that of Cornwall et al. [24],

which performs source-to-source translations to help domain experts retarget an im-

age processing library written in C++ to GPUs. Somewhat similar to the approach

described later in this thesis, their translator aims to discover potentially-parallel

assignments (PPAs) in loops by walking the abstract syntax tree of the program.

Enclosing loops whose induction variables affect the index of array assignments

of the PPAs are considered to be potentially-parallel loops (PPLs). Optimiza-

tions such as hoisting of parallelization-preventing instructions are then applied to

19

the PPLs and eventually be translated into GPU executable code. This approach

works well with programs that are known to have a specific structure. Our ap-

proach described here follows the more traditional approach to parallelization in

which parallelization attempts occur as high as possible in the loop nest tree. This

approach should facilitate extraction of more parallelism.

RapidMind is a C++ GPU metaprogramming framework which consists of two

parts [3]. The front-end is a C++ template library that provides data types and

overloads operators to generate code in the RapidMind intermediate representation

(IR) data structures. The back-end optimizes the IR and emits code for one of the

supported target architectures (GPU, Cell BE, multi-core CPU). A programmer

can embed a kernel intended to run on the GPU as a suitably delimited piece of

C++ code directly in the C++ program. Executing such a kernel requires two

steps. In the first step, the C++ code that the programmer has written is executed

on the CPU. At this stage, no computation is actually performed. Each overloaded

operator, instead of performing a computation, generates the IR instruction that

would perform the corresponding computation. Thus, the code that the program-

mer has written is code that writes the code that will run on the GPU. Once all

the code has run and the entire IR has been generated, the RapidMind back-end

processes the IR and generates suitable GPU code which can then be executed.

ASTEX [1] takes a run-time approach, in that it searches for hot traces at

run time that are amenable to GPU execution [40]. The target program is ini-

tially instrumented with monitoring code and executed. Runtime memory access

information is gathered and analyzed off-line. Favorable code segments will then be

recompiled into Hybrid Multi-core Parallel Programming (HMPP) codelets. Similar

to RapidMind, HMPP [43] aims to provide a general purpose programming envi-

ronment for numerous architectures. Unlike RapidMind, however, HMPP codelets

rely on compiler directives such as C pragmas.

Recently, interest in using JikesRVM for parallelization has grown. Zhao et

al. [50, 49] have also implemented loop parallelization in the context of Jikes-

RVM. However, rather than GPUs, their intended target is JAMAICA [4], a multi-

processor parallel architecture.

20

Chapter 3

Implementation

3.1 Overview

We have implemented GPU parallelization within an existing Java Just-In-Time

(JIT) compiler, JikesRVM [9]. In order to minimize the overhead of parallelization,

the compiler must focus on hot (frequently executed) methods of the program.

JikesRVM uses an adaptive optimization system [13] with multiple optimization

levels; optimizations at higher levels are applied only to methods observed to be

hot. GPU parallelization is done at the highest optimization level (-O2), and only

on code that is expected to be executed frequently.

Figure 3.1 shows the overall architecture of the implementation. The paralleliza-

tion algorithm is preceded by two preparatory stages. The first stage, OPT Array-

AccessAnalysis, recovers information about multi-dimensional array accesses that

is lost in Java bytecode (see Section 3.5.1). Such information will be stored within

OPT ArrayAccessDictionary in the form of OPT ArrayAccess objects. The second

stage, OPT GlobalDepAnalysis, performs dependence analysis on array accesses to

construct a dependence graph of type OPT GlobalDepGraph (see Section 2.3). The

third stage, OPT Parallelization, implements GPU parallelization, which generates

code that will run on the GPU (see Section 3.3).

The primary back-end used by the third stage is the RapidMind platform [3].

RapidMind is a C++ programming framework for expressing data parallel algo-

21

Jikes RVM

JNI RapidMind Wrapper

bytecode

OPT_ArrayAnalysis

OPT_Parallelization

IA32 / PPC Assembler RapidMind

OPT_GlobalDepAnalysis

Single Core

NVIDIA

CELL ATI

Multi Core

Figure 3.1: Overall Architecture

22

rithms in a hardware-independent way. Our code generator accesses RapidMind

using a Java Native Interface (JNI) wrapper. RapidMind is designed to generate

appropriate code at run-time for the chosen hardware. Currently, RapidMind can

generate code for GPUs from major vendors, the Cell BE processor, and multi-core

CPUs. So far, we have evaluated the system on GPUs only.

This chapter is organized as follows: Section 3.2 will describe the importance

of OPT GlobalDepGraph in parallelization and the implementation of OPT Global-

DepAnalysis. Section 3.3 will describe the parallelization process and the imple-

mentation of OPT Parallelization. Section 3.4 will describe an extension to the

parallelization algorithm to eliminate data transfer overhead. Section 3.5 will de-

scribe some of the Java specific challenges and how the implementation solves these

challenges. Since OPT ArrayAccessDictionary is a Java specific requirement, it will

be discussed in section 3.5.

3.2 Dependence Analysis

This section provides an overview of the data dependence analysis implemented by

OPT GlobalDepAnalysis. Using the theory described in Section 2.3, this compila-

tion phase will compute a dependence graph that will be used in the parallelization

pass.

Before the core OPT Parallelization phase begins, OPT GlobalDepAnalysis is

run to create the dependence graph of the method currently being compiled. The

entire dependence graph is stored in an object of type OPT GlobalDepGraph; it can

be displayed with an added compiler flag (see Appendix A). Nodes of the graph

(OPT GlobalDepGraphNode) represent JikesRVM High-level Intermediate Repre-

sentation (HIR) instructions of the current method. Given an OPT Instruction the

corresponding OPT GlobalDepGraphNode can be retrieved by the scratchObject of

the instruction. The scratchObject reference is a common way to annotate instruc-

tions to pass information between passes within JikesRVM.

Figure 3.2 shows an example dependence graph printed using the debug flag.

Each node in the graph represents a JikesRVM HIR instruction. Green edges repre-

23

sent loop-independent dependences, red edges represent loop-carried dependences

while blue edges represent the loop-carried dependences on the loops’ induction

variables.

Figure 3.2: Example dependence graph output

The rest of this section will explore how dependence relationships are computed

in the OPT GlobalDepAnalysis phrase. One interesting fact about dependence com-

putation is that extra spurious edges between instructions in the dependence graph

will not affect the soundness of the parallelization process. However, they do prevent

parallelization opportunities. The general approach we use is to start by assuming

all dependences exist and remove dependence edges by disproving their existence.

Definition 11 (Spurious Edges of Dependence Graphs). An edge Eω between S0

and S1 is spurious if for all plausible execution of the program S0 6→ω S1.

Given two instructions S0 and S1, the first step is to examine dependences

related to scalars. The use of SSA within JikesRVM HIR simplifies this process

greatly. Two instructions will have a scalar data dependence if both S0 and S1

access the same register and one of them defines a register while the other reads it.

24

The dependence S0 → S1 will be loop carried if S1 is a SSA form φ instruction that

reads a variable x in the header of a loop L while S0 is a instruction that defines x

within L. Otherwise, S0 → S1 is loop independent.

A dependence that results from accessing array elements requires a more so-

phisticated test. Array element accesses are indexed by variables. In many cases

the values of the indices are not compile-time constants. For example:

Listing 6 Array indices example

x = A [f (c)] ; // S0
A [g (c)] = y ; // S1

If both f(c) and g(c) are known to be distinct constants , we can prove they

are independent. However, when f(c) and g(c) are not constants, it would seem

that the only option is to be conservative and create k + 1 edges between S0 and

S1 as S0 →m S1,m ∈ [1, 2, ..k,∞] where k is the depth the innermost loop that

contains S0 and S1. To conserve memory, a special OPT GlobalDepGraphEdge

flagged UNKNOWN is used to represent k edges within the OPT GlobalDepGraph.

UNKNOWN edges prevent parallelization due to the fact that we are assum-

ing the existence of a loop carried dependence. A large number of parallelization

opportunities will be missed due to this limitation. Consider the following program:

Listing 7 Dependence across iterations

for (int i = 1 ; i < 100 ; i++) {
for (int j = 1 ; j < 100 ; j++) {

A [f (i , j)] = A [(g (i , j)] ; //S
}

}

This is a frequently seen array access pattern in which the index is a function

of the loop induction variable. Because i and j are induction variables, they will

not be compile-time constants and an UNKNOWN edge might seem unavoidable.

Luckily, there are known algorithms that can be used to prove independence in

many cases.

25

Suppose we are interested in knowing whether S has a true loop-carried depen-

dence on itself. What we want to determine is if there exists some ~v0 = (x, y) and

~v1 = (x′, y′) such that A[f(x, y)] is addressing the same value as A[(g(x′, y′)] while

~v0 < ~v1. Formally:

Theorem 2 (Loop-carried Dependence from Array Access). Let S0 and S1 be in

a common loop nest with induction variables i0, i1, ...in−1. Also let S0 reference

A[f(i0, i1, ...in−1)] and S1 reference A[g(i0, i1, ...in−1)], assuming that one of the ref-

erences be a write and let no other common data be accessed. S0 →c S1 holds

if and only if there exist ~v0 and ~v1 in the iteration space such that ~v0 <c ~v1 and

f(~v0) = g(~v1).

Proof. This is a straight application of Definition 7 in the special case where the

common data is an array element indexed by a function of the induction variables.

If f and g are pure functions, we could examine the possible values that the

functions return for all possible x, x′, y, y′. In practice, we need more efficient ways

to determine dependence. However, in doing so, we need to make some assump-

tions that sacrifice completeness. First, the array addressing index value must be

admissible.

Definition 12 (Admissible Function). A function is admissible if the only un-

knowns are induction variables of the loop nest.

Second, we attempt to disprove a dependence only when the index expressions

are affine functions of the induction variables of the loop nest. These two require-

ments appear to be restrictive at first glance. In practice, however, many loops are

written in this way. The previous dependence can now be generalized as follows:

Given a loop nest with induction variables i0, i1, i2, ...in with constant lower

bounds L0, L1, L2, ...Ln, constant upper bounds U0, U1, U2, ...Un, and loop invariant

constants a0, a1, a2, ...an, an+1, b0, b1, b2, ... bn, bn+1, the instructions S0 accessing

A[a0i0 + ...anin + an+1] and S1 accessing A[b0i0 + ...bnin + bn+1] do not have a

26

loop carried dependence if the following system of inequalities in 2n unknowns

(x0, x1, x2, ...xn, x
′
0, x
′
1, x
′
2, ...x

′
n) has no solution:

a0x0 + a1x1 + a2x2 + ...anxn + an+1 = b0x
′
0 + b1x

′
1 + b2x

′
2 + ...bnx

′
n + bn+1

(x0, x1, x2, ...xn) < (x′0, x
′
1, x
′
2, ...x

′
n)

L0 ≤ x0 ≤ U0, L1 ≤ x1 ≤ U1, L2 ≤ x2 ≤ U2, ..., Ln ≤ xn ≤ Un

To try to prove that the system has no solution, we apply a sequence of succes-

sively stronger tests. Within our implementation in JikesRVM, the initial test for

the nonexistence of a solution is the strong separability test [51]. If the function

is not strongly separable, the weak separability test will be used. Although strong

separability test is the weakest of all tests due to its strong assertion, it is actually

applicable in many practical applications, and is inexpensive to evaluate.

Definition 13. (Separability) Given two linear functions f(~x) = a0x0 + ...anxn +

an+1 and g(~x′) = b0x
′
0 +b1x

′
1 +b2x

′
2 + ...bnx

′
n +bn+1 where a0, a1, a2, ...an, an+1, b0, b1,

b2, ...bn, bn+1 are constants, f(~x) and g(~x′) are separable if there exists c ∈ [0 : n]

such tvec for all i ∈ [1 : n]i 6= c −→ ai = 0, bi = 0.

In this case, f(~x) can be written as f(x) = a0 + acxc and g(~x′) can be written

as f(x′) = b0 + bcx
′
c.

Furthermore, f(~x) and g(~x′) are strongly separable if ac = 0, bc = 0 is true

or if ac = bc is true. Otherwise, they are weakly separable.

Table 2 Strong separability test

Condition No Solution
ac = 0, bc = 0 a0 6= b0
ac 6= 0, bc = 0 ac - (b0 − a0)
ac = 0, bc 6= 0 bc - (a0 − b0)
ac = bc 6= 0 ac - (a0 − b0) or ac > (a0 − b0)

Table 2 provides an algorithm for proving nonexistence of a solution of two

linear functions that are strongly separable. The first column specifies the values of

ac and bc and the second column provides the sufficient conditions for the system

to have no solution.

27

The first case is trivial. Given both ac = 0 and bc = 0, the array access is

strictly A[a0] and A[b0] where both a0 and b0 are constants. Independence follows

from the fact that a0 6= b0.

The second case follows from the fact that if a0 + acxc = b0, we can rewrite

the equation as acxc = b0 − a0, which implies that solution exists if and only if

ac | (b0 − a0). The third case follows the same argument as well.

The last case can be written as a0 + acxc = b0 + acx
′
c. Again, we can rewrite

the equation as ac(x
′
c − xc) = (a0 − b0). If a solution exists, then ac must divide

(a0 − b0). Also, since xc < x′c must be true, then we know that ac ≤ (a0 − b0) has

to hold as well.

If the two equations are weakly separable, we can conclude that a0 + acxc =

b0 + acx
′
c has no solution if gcd(a,−b) - (b0 − a0) [51].

This concludes the two tests currently implemented within OPT GlobalDep-

Analysis. Although the tests are not comprehensive, they do cover all the applica-

tions we targetted. Many improvements could be introduced to increase the power

of the analysis and further disprove dependence.

OPT GlobalDepAnalysis treats a0, a1, a2, ...an, an+1, b0, b1, b2, ...bn, bn+1 of f(~x)

and g(~x′) as constants only if they are actually compile time constants. In cases

where these variables are not known constants, JikesRVM provides a loop analysis

that can prove that they are loop invariant. In that case, we can symbolically

evaluate some of the dependence tests and disprove dependence by means of a

runtime check.

As shown in a later section, the whole dependence graph does not need to be

fully available before the parallelization process begins. A suggested improvement

to the implementation would be to improve execution time of the (just-in-time)

compilation process by computing dependences lazily in a demand-driven fashion.

Computation of dependence within a loop can be reserved to the cases where the

loop is GPU execution favorable.

Other possibilities for future work are to add additional tests if the separability

test fails. Next, the full GCD Test could be applied. Banerjee [16] provided many

28

more dependence tests suitable for different types of loops. Loop iteration spaces

shaped like triangles or trapezoids are not covered in our implementation and can

be added. In general, a system with ranged inequalities can be difficult to solve

and may require more powerful yet computationally intensive approaches such as

integer programming.

3.3 Algorithm

This section describes the core parallelization process of the compiler implemented

in OPT Parallelization. Using the dependence graph described in the previous

section, we can identify independent loop iterations that can be executed in parallel.

The algorithm that we use is based on a very well known algorithm (parallelize [51]).

However, because the GPU programming model differs from that of CPUs and

vector units, the existing algorithm needs to be modified.

There are two major approaches to automatic parallel execution. They are usu-

ally called parallelization and vectorization. While both focus on loop iterations

of a program, they have a slightly different goal.

3.3.1 Parallelization

Parallelization is usually referred to as execution of a single program on multiple

CPUs. Programmers who have a very firm understanding of the high level inten-

tion of the program, usually express explicit parallelism by means of task-level

parallelism. Multiple threads performing identical as well as different tasks are

created to operate on different data sets. However, task-level parallelism is often

difficult to discover automatically since the compiler knows very little about the

high level concepts of the program. In most cases, an auto-parallelizing compiler

will focus on loop structures.

The basic idea is to find loop-level parallelism between iterations. Because

thread creation is usually an expensive process, the compiler should always try to

parallelize as many instructions as possible. Therefore, the traditional algorithm

29

Method() {
 ...

 for (int k = 0; k < K; k ++) {
 ...

 }

} // end Method()

for (int x = 0; x < X; x++) {

 ...

}

....
for (int l = 0; l < L ; l ++) {

}

Method() {
 ...

 for (int k = 0; k < K; k ++) {
 ...

 }

} // end Method()

DOALL x = 0, X

 ...

}

....
for (int l = 0; l < L ; l ++) {

}

Figure 3.3: Parallelization scenario

operates on the loop tree by greedily attempting to parallelize the outer loops before

recursively searching in child loops. However, aggressively distributing a large code

portion to each CPU can result in a higher chance of loop-carried data dependences.

Fortunately, threads can be synchronized by means of locks or barriers. Figure

3.3 shows a possible auto-parallelization scenario where the outermost for loop is

translated into a Fortran-like DOALL loop that is executed in parallel.

3.3.2 Vectorization

Vectorization, on the other hand, refers to the use of vector instructions of the

target machine architecture to perform otherwise scalar operations. For example,

the instruction ADDPS from the Intel Streaming SIMD Extensions is capable of

adding two vectors of size four in parallel [5]. Vectorization mainly exploits data

parallelism, meaning that the programmer’s intention is to perform the same oper-

ation to each element of a group of data. Vector instructions are often multiples of

a single operation with no control structures. Execution is always parallel. Each

single operation must be independent. Figure 3.4 demonstrates a typical loop based

vectorization process performed by an auto-vectorizing compiler. Instead of iterat-

ing through each element of an array A, the whole loop has been replaced with a

30

Method() {
 ...

 for (int k = 0; k < K; k ++) {
 ...

 }

} // end Method()

for (int x = 0; x < X; x++) {

 ...

}

....
for (int i = 0; i < L ; i ++) {
 A[] = B[i] * C[i];
}

Method() {
 ...

 for (int k = 0; k < K; k ++) {
 ...

 }

} // end Method()

for (int x = 0; x < X; x++) {

 ...

}

....

 A[0:L] = B[0:L] * C[0:L];

Figure 3.4: Vectorization scenario

single vector instruction that operates on A.

3.3.3 GPU Parallelization

From the SPMD programming model programming model described earlier, we

can see that current GPU architecture is not strict data parallelism as in vectoriza-

tion nor is it strict task-level parallelism as in multi-threading. Current GPGPU

techniques operate on data streams so one might that consider such programming

model relates closely to SIMD applications. However, because the GPU is capable

of control flow, it should not be viewed as a SIMD machine. While the GPU can

handle complicated control flow like a threaded CPU, it is still limited by the data

stream model. Much like a threaded CPU where thread creation is a significant

overhead, GPU initialization is also a source of overhead. Finally, most GPUs are

not capable of performing synchronization of data, making it less task oriented.

Figure 3.5 demonstrates a typical program parallelized using GPGPU tech-

niques. In many cases, the programmer’s goal is to perform similar computation-

ally intensive operations on each element of some input data and store the result

in another data set. The program on the left illustrates the programmer’s intent

31

Method() {
 ...

 for (int k = 0; k < K; k ++) {
 ...

 }

} // end Method()

for (int x = 0; x < X; x++) {

 for (int y = 0; y < Y; y++) {

 A[x][y] =
 }
}

....
for (int l = 0; l < L ; l ++) {

}

CPU

GPU Explicit

GPU Implicit

Method() {
 ...

 for (int k = 0; k < K; k ++) {
 ...

 }

} // end Method()

Program P = {

}
// Apply P to each element of A.
A = P(A);

....
for (int l = 0; l < L ; l ++) {

}

Figure 3.5: GPGPU code pattern

when no parallel hardware is available. She must iterate through each element of

the loop.

The program on the right illustrates a GPGPU version of the same program.

The two data iterating loops have been removed. Instead, iterations of the loop

have been replaced by a single fragment program. The program will be invoked by

passing a two-dimensional input array to the program. The GPU will apply the

program to all individual data elements of the array. Results will be stored in the

output array. This programming model closely reflects the SPMD programming

model used to describe the GPU in figure 2.1.

Almost all GPU execution favorable programs will exhibit this type of pattern.

The most interesting part of this transformation is that the x and y loops no longer

exist in the final program. Instead, they are implicit within the GPU program.

For that reason, we are going to label such loops as GPU-Implicit. On the other

hand, loops that are inside GPU-Implicit loops become loops of the GPU executable

program. They will be labeled as GPU-Explicit. Finally, non-parallelizable outer

parents of the GPU loops will be labeled as CPU loops.

32

3.3.4 Classification of Loops

A compiler targeting the GPU must not only identify parallelizable loops, but it

must also decide, for each loop, whether to implement it on the CPU, to make

the GPU implement it implicitly by directing it to execute a fragment program

once for each iteration of the loop, or to implement it explicitly inside the fragment

program. In this section, we formulate constraints that these decisions must satisfy

for a collection of nested loops, and in the next section, we give an algorithm that

computes a solution to these constraints.

The constraints are defined on a loop nesting tree. The root of the tree represents

the whole program as a loop that is iterated exactly once. In addition, each loop in

the program is represented by a tree node. For each loop, the loops nested directly

within it become its children in the loop nesting tree. Each node in the tree must

be classified as either CPU, GPU-Implicit, or GPU-Explicit.

There are no limitations on the kinds of loops that may be classified as CPU

loops. Thus, a safe (but perhaps inefficient) solution is to classify all loops as CPU

loops.

A GPU-Implicit loop, as the name suggests, is implemented by directing the

GPU to execute a fragment program once for each iteration of the loop. In order

for a loop L to be GPU-Implicit, it must fulfill the following requirements.

Restriction 1. The parent of GPU-Implicit loop L in the nesting tree must be

either CPU or GPU-Implicit.

The outermost GPU-Implicit loop will be the control change from CPU to GPU.

Once a GPU-Implicit loop starts, the GPU will be in charge of the program until

the end of the loop. Within a GPU-Implicit loop, there can be no more CPU loops.

Restriction 2. If the parent L′ of L is also GPU-Implicit, L must be tightly nested

within L′ (i.e., L must be the entire body of L′).

Multiple loops may be implemented implicitly by the GPU, but only if all of

them are tightly nested immediately within one another. This way, the body of the

33

innermost GPU-Implicit loop becomes the GPU executable program used in the

SPMD model.

Restriction 3. No loop-carried true data dependence can exists between instruc-

tions of L.

Iterations of L will be the fragment program that the GPU executes implicitly

for each value of the induction variable. The order of execution is not necessarily

preserved as the GPU executes iterations in parallel. Restriction 3 ensures that

changing the order does not change the semantics because of Theorem 1. Surpris-

ingly, anti-dependence between loop iterations is allowed. The reason is that before

GPU execution begins, all the array data must be copied into the GPU. The data

copying, which will be discussed further in Section 3.3.6, has the same effect as

renaming, which breaks any anti-dependence.

Restriction 4. For each array store A[i1, i2, ...in] inside a GPU-Implicit loop, the

dimension n of the store must equal the number of GPU-Implicit loops, and the ik

must be the induction variables of the GPU-Implicit loops, in order of nesting, with

i1 being the induction variable of the outermost GPU-Implicit loop.

This final and perhaps the strongest restriction ensures that any program in the

GPU will not have any scatter memory write. Every GPU-Implicit iteration can

write only to the memory location associated with that iteration.

Finally, a GPU-Explicit loop is implemented explicitly in the code of the frag-

ment program. The only requirement is that it must be nested (not necessarily

tightly) inside a GPU-Implicit loop or an other GPU-Explicit loop. However, since

a GPU-Explicit loop is part of the body of a GPU-Implicit loop, Restriction 4 must

still hold. Within the GPU-Explicit loop, there should be no true data dependences

carried by any of the GPU-Implicit loops (Restriction 3), but dependences carried

by the GPU-Explicit loops are allowed.

3.3.5 Identifying Loop Types

The algorithm to decide whether each loop should be executed on the CPU or

implicitly or explicitly on the GPU begins by identifying the index expressions

34

occurring in stores in each loop. It applies the following definition to each loop.

Definition 14. For a loop L in the loop nesting tree, WriteIndices(L) is de-

fined as follows. If the body of L contains an instruction that cannot be supported

on the GPU, then WriteIndices(L) = >. Otherwise, if the body of L contains

no array writes, then WriteIndices(L) = ⊥. Otherwise, if all array writes in

the body of L have the same index vector (i1, . . . , in) and all the ik are induc-

tion variables of distinct loops, then WriteIndices(L) = (i1, . . . , in). Otherwise,

WriteIndices(L) = >.

Listing 8 WriteIndices example

int x = 0 ;

for (int i = 0 ; i < 100 ; i++) {
for (int j = 0 ; j < 100 ; j++) {

A [i] [j] = . . . ;
}

}

for (int i = 0 ; i < 100 ; i++) {
for (int j = 0 ; j < 100 ; j++) {

A [i] [j] = . . . ;
B [0] [j + j] = . . . ;

}
}

In Listing 3.3.5, the first loop clearly has WriteIndices of (i, j). The second loop

contains two array writes of different indices so the WriteIndices is >.

A loop that cannot be implemented on the GPU because it contains unsuit-

able instructions or because it writes to arrays using inconsistent indices will have

WriteIndices(L) = >. Otherwise, WriteIndices of a loop is the unique index

vector used for array writes in the loop.

Next, the algorithm computes, for each loop, the maximal set of loops that are

tightly nested within it, using the following definition.

Definition 15. For a loop L in the loop nesting tree, TNLoops(L) is defined

35

as follows. If the entire body of L is another loop L′, then TNLoops(L) =

TNLoops(L′) ∪ {L}. Otherwise, TNLoops(L) = {L}.

Finally, the algorithm traverses the loop nesting tree searching for loops that

will become the outermost GPU-Implicit loops. When there are multiple possibili-

ties, it is preferable to select the outermost loop possible to maximize the amount

of processing moved to the GPU. Therefore, the traversal proceeds from the root

of the tree to the leaves, so that it considers outer loops before inner loops. When

considering a given loop, the algorithm checks that the loop and other loops tightly

nested within it cover the induction variables needed for array stores occurring

in the loop, and that the candidate loops do not carry dependences. The algo-

rithm also considers the possibility of interchanging the tightly-nested loops. This

makes parallelization possible even if the original nesting order is inconsistent with

the array store index vector, or extra loops are nested in between those that de-

fine the induction variables used in array store indices. To determine whether

loops can be interchanged, the algorithm uses the standard technique of identifying

interchange-preventing dependences [51]. The overall parallelization algorithm is

shown in Listing 9. it is invoked on the root of the loop nesting tree.

Listing 9 GPU parallelization algorithm

Algorithm Parallelize(loop L):
1: if WriteIndices(L) = (i1, . . . , in)

and {i1, . . . , in} ⊆ TNLoops(L)
and no dependences are carried by loops i1, . . . , in
and TNLoops(L) can be interchanged so the outermost n loops are i1, . . . , in,
in this order then

2: interchange TNLoops(L) in this way
3: generate GPU program for body of loop in
4: replace loop L with code to execute GPU program
5: else
6: for each child loop L′ of L in the loop nesting tree do
7: Parallellize(L′)

Figure 3.6 shows the dependence graph output after the parallelization phase.

Besides the dependence information shown by the edges, each node has been color

coded to represent the loop classification process. For this example, the algorithm

36

Figure 3.6: Sample output of the dependence graph after parallelization

discovered two GPU-Explicit loops and the sole loop nested inside them becomes

the GPU-Implicit loop. The green colored nodes are instructions that have not been

parallelized and remain a CPU loop. Cyan colored nodes are instructions that have

been classified as GPU-Implicit loops. The red colored nodes are classified as the

GPU-Explicit loops (which also are part of GPU-Implicit loops). Not only is this

final graph representation of the parallelization process useful for debugging the

compiler’s parallelization phase, it is helpful for providing feedback to the users of

the compiler. An Integrated Development Environment (IDE), for example, could

use the information provided by this graph to inform the user which parts of their

code is GPU parallelizable and which dependences are preventing parallelization.

3.3.6 Data Transfer

Graphics cards have dedicated memory with a very high transfer rate to the graphics

processor. However, GPU computations cannot directly access main memory, and

CPU instructions cannot directly access GPU memory. The speed-up of using the

GPU may be limited by the overhead of copying data between main memory and

GPU memory. This section proposes a cost model to determine whether executing

code on the GPU is beneficial despite the copying overhead.

Figure 3.7 shows the execution time of a matrix multiplication benchmark. The

set of plots in blue is the execution of a plain CPU execution. The set of plots

37

in red shows a parallelized version for the GPU using our compiler. The graph

shows that for matrices of size 120 × 120 or less, the CPU outperforms the GPU

due to the overhead associated with using the GPU. We will propose a execution

cost model to estimate the execution time needed for CPU execution and GPU

execution. At runtime, we will decide whether the speed-up from the parallel GPU

execution overcomes the associated overhead.

 1

 10

 100

 0 50 100 150 200 250 300 350 400 450

T
im

e
(m

s)

n by n matrix multiplication

CPU
GPU

Figure 3.7: Plain matrix multiplication on GPU and CPU

The model estimates the time that a loop nest will take to execute on both

the CPU and the GPU (including copying overhead). With hundreds of models of

CPUs and GPUs in use today, no single formula is suitable for all configurations.

Therefore, we propose a parameterized formula, in which the parameters can be

tuned to the specific target hardware on which the code will execute.

The value of each of the parameters to the model becomes available at one of

three different stages of compilation: when the JIT compiler is installed on the

machine, when the JIT compiler compiles the loop, and whenever the compiled

code executes the loop. When the JIT compiler is installed, micro-benchmarks

are executed to estimate the processing power of the CPU and the GPU. These

parameters remain constant for all programs. The estimated number of instructions

in the body of the loop becomes known either when the loop is compiled or when

the loop executes (if other loops are nested within it and their iteration counts

depend on runtime values). Whenever the compiled code prepares to execute the

38

loop, the number of iterations and the size of the input and output data become

known. At that point, all the parameters are known, and the compiled code uses

the model to decide whether to execute that instance of the loop on the CPU or

the GPU.

Listing 10 Cost estimation
Costcpu = tcpu × insts× Aout.size
Costgpu = tgpu × insts× Aout.size + copy×

∑
A∈Ainout A.size + init

Costcpu estimates the time needed to execute all iterations of the loop on the

CPU. The parameter tcpu is the average time needed to execute one bytecode in-

struction as determined by the off-line micro-benchmarks. We assume that all

instructions require the same amount of time, though a more precise model could di-

vide instructions into different classes. The parameter insts is the expected number

of instructions to be executed in the body of the loop. We assume that conditional

branches are taken 50% of the time and that nested loops execute for ten iterations,

unless their iteration count is a known constant. The parameter Aout.size, the size

of the output array, becomes known when the loop is to be executed. The loop

will iterate once for each element in the output array. The estimated cost is the

product of these three parameters.

The GPU processing time Costgpu is modelled as a product of three similar

parameters, but two additional terms are added to model data transfer. The pa-

rameter copy estimates the time needed to copy one floating point number to or

from the GPU memory, and is multiplied by the number of elements in the input

and output arrays. If the same array is both read and written, it is counted twice.

The parameter init is a constant term estimating the time needed to set up the

GPU to execute a given shader program.

To determine the fixed parameters of the model (i.e. tcpu, tgpu, copy , and init),

a benchmark is executed on both the CPU and GPU on a range of test inputs of

different sizes and the actual execution times are recorded. Least squares regres-

sion is performed to determine the parameter values that most closely reflect the

observed times. We will call these benchmarks the training benchmarks.

Figure 3.8 demonstrates a cost estimation of a matrix multiplication kernel. The

39

green area represents the initialization cost (init). The yellow area represents the

copying cost (copy ×
∑

A∈Ainout A.size). The orange unit represents the execution

cost (tgpu× insts×Aout.size). The sum of the three areas represents an estimate of

the total running times (Costgpu). The points along the curve represent the actual

recorded running time. As the figure shows, our estimation closely models the

actual running time for this particular benchmark. This is partly due to the fact

that the training benchmark is the same as the actual benchmark. Section 4 will

further investigate the effects of different training benchmarks.

 0

 100

 200

 300

 400

 500

 600

 700

 0 100 200 300 400 500 600 700 800

T
im

e
(m

s)

n by n matrix multiplication

Est GPU Execution
Est GPU Copying

Est GPU Init
GPU Recorded Time

• tgpu = 7.81× 10−8 ms / instruction

• copy = 1.01× 10−4 ms / element

• init = 66.57 ms

Figure 3.8: Estimated cost vs. actual cost of execution

3.4 Multi-pass Extension

Experience shows that data transfer occupies a significant portion of the execution

time and is the main source of performance degradation. Therefore it is highly

beneficial to reduce the amount of data copying between the GPU’s memory and

the main memory. A common pattern in which this is especially important is that

40

of a loop that repeatedly applies some operation to a single array. For example,

this pattern occurs in the Successive Over Relaxation (SOR) benchmark from the

Java Grande Suite and in stencil applications [30]. The following is a simplified

version of the kernel in SOR:

Listing 11 Successive over relaxation kernel

for (int k = 0 ; k < 30 ; k++) {
for (int x = 1 ; x < size − 1 ; x++) {

for (int y = 1 ; y < size − 1 ; y++) {
Y [x] [y] =

(omega ∗ X [x] [y]) + (one_minus_omega ∗ (

X [x−1] [y] +

X [x+1] [y] +

X [x] [y−1] +

X [x] [y+ 1])) ;

}
}
swap (X , Y)

}

Each iteration of the outermost loop reads from an input array, performs a set

of computations and writes to a new array. At the end of the iteration, the input

reference and output reference are swapped in preparation for the next iteration.

We assume that the input and output arrays are not aliased. There are no loop

carried dependencies within the two inner loops. Using the algorithm described in

section 3.3, we can parallelize by classifying the loops as shown in Figure 3.9.

In Figure 3.9, each execution of the loop outside the outermost GPU-Implicit

loop requires a texture transfer from the CPU to the GPU. In this case, the array M

and M ′ are needed and will be copied into TEXTURE M and TEXTURE M ′ ac-

cordingly. The program P will strictly operate on TEXTURE M and TEXTURE M ′.

After each GPU execution, all textures that had been modified need to be copied

41

back into the virtual machine’s address space. This type of transfer is very expen-

sive. Since the output textures are not modified between the end of the iteration

and the beginning of the next GPU execution, we would like to keep those data

within the GPU.

To efficiently handle this common case, we introduce a fourth kind of loop:

Multi-pass loops. Like a CPU loop, a Multi-pass loop executes on the CPU, and its

body may contain GPU loops. However, the following restrictions ensure that it is

safe to copy the data to and from the GPU memory only once, rather than every

time a GPU implicit loop executes. Restriction 5 ensures that the Multi-pass loop

is outside all GPU-Implicit loops. Restriction 6 enforces that any array copied into

the GPU is not used outside of the GPU. Thus, all data transfer for all loops inside

the Multi-pass loop can be done once before the Multi-pass loop begins and after it

finishes.

Restriction 5. The parent of a Multi-pass loop must be a CPU loop and contain

at least one child loop that is GPU-Implicit.

Restriction 6. All array reads or writes to an array must strictly reside inside

GPU-Implicit children of the Multi-pass loop or strictly outside of all GPU-Implicit

children but not both.

We have adapted the algorithm from Listing 9 to find Multi-pass loops. After

the algorithm finishes classifying the original three loop types, potential Multi-pass

loops are identified by examining the parents of outermost GPU-Implicit loops.

Loops satisfying the above two restrictions are classified as Multi-pass loops. In our

implementation, the introduction of Multi-pass loops shows an average performance

increase of 19.6% for the SOR benchmark with a data size of 625 and a number of

iterations ranging from 1 to 100.

Figure 3.10 shows a Multi-pass variant of the loop classification of Figure 3.9.

The texture copying has been moved outside of the loop that has been deemed

as Multi-pass. The Multi-pass extension effectively eliminates K − 1 downloads as

well as K − 1 uploads per texture. For large K, the speed-up is highly noticeable.

Figure 3.11 shows the performance of SOR for an input of 100× 100 elements after

42

Method() {
 ...
 for (int k = 0; k < K; k ++) {
 ...

 }
} // end Method()

for (int c = 0; c < C; c++) {

 SWAP(M, M');
}

for (int x = 0; x < X; x++) {

 for (int y = 0; y < Y; y++) {

 M[x][y] = f(M'[X][Y]);
 }
}

....
for (int l = 0; l < L ; l ++) {

}

CPU

GPU Explicit

GPU Implicit

Method() {
 ...
 for (int k = 0; k < K; k ++) {
 ...

 }
} // end Method()

Program P = {

}
// Apply P to each element of M.
TEXTURE_M = P(TEXTURE_M');

....
for (int l = 0; l < L ; l ++) {

}

Multi­pass for (int c = 0; c < C; c++) {
 TEXTURE_M = M;
 TEXTURE_M' = M';

 SWAP(M, M');
}

Figure 3.9: Multi-pass loop with redundant copying

1 to 10 successive relaxations. The green line shows the execution time without the

Multi-pass extension while the red line shows the execution time with Multi-pass.

Without Multi-pass, copying overhead is significant. On the other hand, with the

Multi-pass extension, additional iterations of SOR are almost free.

Method() {
 ...
 for (int k = 0; k < K; k ++) {
 ...

 }
} // end Method()

for (int c = 0; c < C; c++) {

 SWAP(M, M');
}

for (int x = 0; x < X; x++) {

 for (int y = 0; y < Y; y++) {

 M[x][y] = f(M'[X][Y]);
 }
}

....
for (int l = 0; l < L ; l ++) {

}

CPU

GPU Explicit

GPU Implicit

Method() {
 ...
 for (int k = 0; k < K; k ++) {
 ...

 }
} // end Method()

Program P = {

}
// Apply P to each element of M.
TEXTURE_M = P(TEXTURE_M');

....
for (int l = 0; l < L ; l ++) {

}

Multi­pass TEXTURE_M = M;
TEXTURE_M' = M';
for (int c = 0; c < C; c++) {

 SWAP(TEXTURE_M, TEXTURE_M');
}

Figure 3.10: Multi-pass loop without redundant copying

43

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

 1 2 3 4 5 6 7 8 9 10

T
im

e
(m

s)

Iterations

Multi-pass Extension
No Multi-pass Extension

Figure 3.11: SOR performance

3.5 Java Specific Issues

The algorithm in Section 3.3 is generic in that it should be applicable to different

programming languages. This section discusses obstacles specific to the choice of

Java bytecode as the source language. As we will see, implementing parallelization

in a just-in-time compiler makes it possible to use run-time information to effectively

overcome these otherwise difficult obstacles.

3.5.1 Java Arrays

A key problem in parallelizing Java is its lack of real multi-dimensional array data

structures. Java supports only one-dimensional arrays; multi-dimensional arrays

are simulated as arrays of arrays. Figure 3.12 demonstrates the differences in Java’s

array implementation as compared to other programming languages. The left of

Figure 3.12 shows how a typical programming language such as C or Fortran rep-

resent a multi-dimensional array. A four-by-four matrix is usually represented by a

continuous block of memory. The right of the figure shows the Java representation

of a four-by-four matrix.

44

A
[4x4]

A

Real Multi­Dimensional Array Pseudo Multi­Dimensional Array

Figure 3.12: Array Implementations

The first difference is that an array in Java is a non-primitive object that is

always accessed by reference. References behave very much like pointers, hence the

first level of indirection implied by the first arrow from the variable A. Second,

multi-dimensional arrays in Java are actually arrays of array references. Despite

the complication, much of the implementation is transparent to the programmer.

However, it is possible to create programs that make analysis very difficult.

Our optimizations must work on multi-dimensional arrays represented in this

way; restricting them to work only on one-dimensional arrays would severely limit

the programs to which they can be applied. Since the compiled Java bytecode does

not have a concept of multi-dimensional arrays, the programmers’ intended uses of

multi-dimensional arrays are lost when the source code is compiled and are replaced

with multiple dereferences. Consider the following code segment:

Listing 12 Simple Sequential Example

float [] [] [] K = ;

.

K [1] [2] [3] = 25 .0 f ;

The above would be translated to the same bytecode as the following equivalent

Java program:

45

Listing 13 Simple Sequential Example

float [] [] [] K = ;

.

float [] [] tmp1 = K [1] ;

float [] tmp2 = tmp1 [2] ;

tmp2 [3] = 25 .0 f ;

Finally, JikesRVM would translate the bytecode into the following (simplified)

HIR code:

Listing 14 Simple Sequential Example

ref_aload tmp1 ([[F) = K ([[[F) , 1
ref_aload tmp2 ([F) = tmp1 ([[F , d) , 2
float_astore 25 . 0 , tmp2 ([F) , 3

In Listing 14, the first instruction loads the pointer stored in K[1] to tmp1.

The second instruction dereferences the value stored in tmp1 and store it in tmp2.

Finally, the last instruction stores 25.0 to the memory address that 3+ tmp2 points

to.

From HIR code similar to Listing 14, we would like to recover the original

intention of the array element store of 25.0 to K[1][2][3]. The single array access

now appears as several instructions, each accessing one dimension of the array. The

translator must recover the original index vector from these separate instructions.

Listing 3.5.1 shows a pseudo-code algorithm to recover such information. The

algorithm, which performs a single pass of the code, takes advantage of the HIR

being in SSA form. An aload or astore is recognized as an array read or write,

respectively. If the unique definition reaching the base of load/store S1 is also an

array load S2, the two statements are linked together. This is repeated until the

definition reaching the base of the array access is no longer an array access. The

chain of array accesses discovered in this way gives the full multidimensional array

index vector.

46

The array recovery algorithm is implemented by OPT ArrayAnalysis. OPT-

ArrayAccess objects can be of type read or write depending on the array ac-

cess. These objects are stored within an OPT ArrayAccessDictionary object. Con-

sumers of the OPT ArrayAccessDictionary can retrieve an array access using an

OPT Instruction as key. Caution must be taken when recovering array informa-

tion. In cases where the definition comes from a different basic block or if the

definition comes from other instructions besides a ref aload, little is known about

where the array originates. For such cases, those instructions will be associated

with an OPT ArrayAccess object with an UNKNOWN type. The UNKNOWN

type will force future compilation phases to perform parallelization much more

conservatively.

Listing 15 Array recovery algorithm

Algorithm Array Recover(Program P):
1: for inst ∈ Instructions(P) do
2: if inst is aload or is astore then
3: dim← 0
4: ~I[dim]← array index of inst
5: var ← array pointer of inst
6: def ← get single reaching definition of var
7: while def is ref aload do
8: dim← dim+ 1
9: ~I[dim]← array index of def

10: var ← array pointer of def
11: def ← get single reaching definition of var

return var, ~I in reverse order

3.5.2 Inter-array Aliasing

Even with the multi-dimensional information fully recovered, analysis on Java ar-

rays is still difficult. One reason is that two lexically different variable references

can point to the same data. This phenomenon, called aliasing, can drastically alter

some of the results of the dependence analysis that were described in Section 2.3.

Since arrays are always accessed by reference, lexically different array variables can

reference the same array. Aliasing between arrays introduces dependences that are

not considered in traditional dependence analysis for languages without aliasing.

47

The loop below demonstrates the problem. A dependence analysis that treats

A and B as distinct arrays will find no dependence. However, if A and B reference

the same array, S1 has a loop-carried dependence with itself, so the loop should

not be parallelized.

Listing 16 Aliasing problem.

for (int i = 1 ; i < 100 ; i++) { // L1
A [i] = B [i − 1] ; // S1

}

Static alias analysis is complicated, often imprecise, and difficult to do efficiently

enough to be included in a JIT compiler. Like described in the work by Artigas

et al. [14], our implementation detects aliasing using only runtime checks. Opti-

mized code that assumes arrays are unaliased is protected by guards that check

this assumption. To minimize the number of runtime checks, guards are inserted

only when array aliasing would cause a loop carried dependence that prevents par-

allelization.

During the dependence graph creation phase, all array accesses are considered

to be to the same array. However, a dependence edge caused by different array

variables is marked as AliasOnly and annotated with the pair of Java array variables

that must be aliased for the dependence to occur.

The parallelization algorithm will continue to parallelize a loop even if it carries

dependences, as long as all of those dependences are marked as AliasOnly. When

such a loop is parallelized, the variable pairs corresponding to the dependences are

added to a list of pairs that must be checked for aliasing in the guard.

3.5.3 Intra-array Aliasing

The array of arrays implementation of multi-dimensional arrays mentioned in the

previous section is not totally hidden from to the programmer. A programmer

can create strange irregular arrays in Java that make some of the analysis very

difficult. Figure 3.14 shows three array variables A, B and C. Both A and B are

two dimensional arrays while C is a single dimension array.

48

Figure 3.13: AliasOnly edges in dependence graph dump

A
[][]

0

1

2

3

NULL

4

0

1

2

B
[][]

C
[]

Figure 3.14: Irregularities of Java arrays

49

The first irregularity is Intra-array Aliasing. Rows 2 and 3 of A are an

example of this phenomenon. Given this configuration, A[2][i] and A[3][i] ∀i∈[0:4]

address the same data, which is impossible in programming with a real multi-

dimensional array implementation. Intra-array aliasing can also happen between

two array variables. B[2] and A[4] also point to the same array data, meaning

that B[2][i] and A[4][i] ∀i∈[0:4] address the same array data element. To further

complicate the matter, it is possible to have an array variable that is one dimension

smaller to alias a sub-array of a bigger array. C is an example this phenomenon,

where C points to A[4]. Accessing C[i] and A[4][i] ∀i∈[0:4] also address the same

data.

Aliased sub-arrays introduce unexpected dependences, since a write to a given

location also writes to other aliased locations. Let us consider an example where

intra-array aliasing can affect data dependence analysis.

Suppose we have the following program:

Listing 17 Intra-array aliasing in parallelization

for (int i = 0 ; i < 5 ; i++) { // L1

A [i] [0] = A [i] [0] ∗ 2 ; // S

}

Because S only refers to the array A, we will try to apply Theorem 2. Without

using the separability test, we can list out the iteration space: 0, 1, 2, 3, 4. Every

iteration accesses a different array index and according to Theorem 2, there should

be no loop-carried data dependence. However, this is not the case if A points to an

array like the one in figure 3.14. A[2][0] and A[3][0] are actually the same element,

therefore S[2]→ S[3] or S →1 S. Theorem 2 fails when there is intra-array aliasing.

50

A
[]

0

1

2

3

4

GC Information

Java Information .hashCode

.length.length

locks

Misc. Information

High Memory

Low Memory

dense

Figure 3.15: JikesRVM array layout

Since we can only apply the theorem on arrays that do not have intra-array

aliasing, our analysis must detect such irregularities and avoid parallelizing the

code when they occur. Fortunately, these irregularities are rare, so this restriction

has little effect on the number of realistic programs that can be parallelized. To

cheaply and conservatively ensure that parallelized code executes only on arrays of

unaliased sub-arrays, our implementation adopts the dense flag technique of [34].

An extra one-bit flag is added to the header of every multi-dimensional array.

Figure 3.15 shows how JikesRVM represents an array object in memory. Each

array object in JikesRVM is divided into four sections. The first section contains

garbage collection related information such as reference counters and other markers.

The second section has been alloted for research purposes. The third section stores

some Java specific information such as hashcode, length of the arrays and lock

information. Finally, the last section contains n pointers to each element of the

array.

We are going to use an extra bit in the second section to store what we call the

51

dense flag.

Definition 16 (Dense Array). An array of arrays A is dense if the elements of A

are not NULL and they are not inter-array aliased.

The dense flag of array A is set to true if A is known to be dense. It is set to

false if A might not be dense. Using a runtime detection approach, we will attempt

to discover possible intra-array aliasing. When the array is created using the multi-

anewarray bytecode instruction, the flag is set to true. The array returned by this

instruction always has unaliased sub-arrays. When executing any instructions that

could cause this property to be violated, such as overwriting one of the sub-arrays

of the array, the flag is reset to false. The following example demonstrates how the

flag is set:

Listing 18

float [] [] K = new float [M] [N] ; // K. dense = true

K [0] [0] = 1 .0 f ; // K. dense = true

K [0] = new float [N] // K. dense = f a l s e ;

Given a 2D array reference A, if the dense flag of A has not been set to false,

this implies that A does not contain any intra-array aliasing. This is not true for

an array of dimension greater than two. The dense flag only signifies that the

immediate dimension of sub-arrays is dense. The sub-arrays themselves can be

dense or not dense. Consider the following example:

Listing 19

float [] [] [] K = new float [2] [2] [2] ; // K. dense = true

K [0] [0] = new float [2] ;

// K[0] . dense i s f a l s e but K. dense remains t rue

To quickly validate that any given n-dimensional array A contains no intra-array

aliasing, we must recursively check each sub-array of A. We can safely conclude A

52

contains no intra-array aliasing within itself if the dense flag of A is true and each

sub-array element of A contains no intra-array aliasing within itself.

Given two 2D non-aliased array references A and B, the sub-array elements of

A and B can not be intra-array aliased if both dense flags of A and B are true.

This is true because if there is some A[x] that points to some B[x′], a reference

store to A must have been executed. This will in turn set the dense flag of A to be

false. Again, for arbitrary n-dimensional array, this is not always true. Listing 20

is such an example and the dense flag check must recursively check each element’s

density.

Listing 20

float [] [] [] A = new float [2] [2] [2] ;
float [] [] [] B = new float [2] [2] [2] ;
A [0] [0] = B [1] [1] ;

The parallelization process will require some code splitting. Initially, OPT Array-

Analysis will create OPT ArrayAccess objects by assuming that no intra-array alias-

ing can occur. OPT GlobalDepAnalysis will proceed as usual, again, assuming that

intra-array aliasing does not exist. Finally, when code is generated, run time checks

are inserted to validate the assumptions. Consider the following program:

Listing 21

for (int i = 0 ; i < N ; i++) {
for (int j = 0 ; j < N ; j++) {

A [i] [j] = B [i] [j] ∗ B [i] [j] ;

}
}

The above will be transformed as the following:

53

Listing 22

if (IsDense (A) && IsDense (B)) {

// GPU ve r s i on

. . .

} else {
for (int i = 0 ; i < N ; i++) {

for (int j = 0 ; j < N ; j++) {
A [i] [j] = B [i] [j] ∗ B [i] [j] ;

}
}

}

Thus, the parallelized code can take advantage of the invariant that the sub-

arrays of each array are not aliased and that they are not null. The guard that

tests the dense flag ensures that, if these conditions could be violated, the array is

processed on the CPU instead.

3.5.4 Bounds Checks

Every array access in Java can throw a NullPointerException or ArrayIndex-

OutOfBoundsException. According to the Java Language Specification, the ex-

ceptional control transfer must occur exactly at the time of the access causing the

exception, and any side-effects occurring before it must be preserved. The Java

exception semantics thus impose a control dependence between every pair of ar-

ray accesses. To safely parallelize Java code, it is necessary to ensure that these

exceptions cannot occur in the code.

For every loop compiled for the GPU, the implementation also compiles a fall-

back CPU version with the standard exception semantics. Before executing the

54

loop on the GPU, the implementation performs conservative checks to ensure that

all array accesses will be to non-null arrays and within the array bounds. If any

check fails, the CPU version of the loop is executed instead of the GPU version.

For every array reference accessed in the loop, the implementation checks that it is

non-null and loop-invariant before the loop. Every array index expression must be

either loop-invariant or of the form ax+ b, where x is a loop induction variable and

a and b are loop-invariant. The bounds on an index expression in this form can be

determined from the bounds on x, and compared to the array size on entry to the

loop. Consider the following code segment:

Listing 23 Bounds example

for (int i = 0 ; i <= 100 ; i++) {
. . . = A [4 ∗ i + 1] ;

}

Knowing that i goes from 0 to 100 in the iteration space will allow us to conclude

that reads of A range from 1 to 401. The guard can be inserted like so:

Listing 24 Bounds guard example

if (A . length >= 401) {
// GPU Vers ion

. . .

} else {
for (int i = 0 ; i <= 100 ; i++) {

. . . = A [4 ∗ i + 1] ;

}
}

The checks are slightly more complicated when the access is multi-dimensional.

Suppose we have the following code segment.

55

Listing 25 2D array bounds check example

for (int i = 0 ; i <= 10 ; i++) {
for (int j = 0 ; j <= 100 ; j++) {

. . . = A [i] [j] ;

}
}

We might have to check each sub-array like so:

Listing 26 2D array bounds guard example

if (A . length >= 10 && A [0] . length >= 100) {
// GPU Vers ion

. . .

} else {
for (int i = 0 ; i <= 10 ; i++) {

for (int j = 0 ; j <= 100 ; j++) {
. . . = A [i] [j] ;

}
}

}

The above check is safe except for another irregularity caused by Java’s pseudo

multi-dimension array. Each sub-array can be of a different length. This is demon-

strated in Figure 3.14. B[1] has a length of 2 as opposed to 4 like the other elements

of B. A bounds check guard before the loop as shown in Listing 26 would alter the

semantics of the original program if exceptions are thrown.

Definition 17 (Rectangular Array). An n dimension Java array A is rectangu-

lar if each sub-array A[0].length = A[1].length = A[2].length... = A[A.length −
1].length and each sub-array A[0], A[1], ...A[A.length− 1] are also rectangular.

56

Surely, we can iterate the whole array and verify that each sub-array indeed

has the required length. However, that would introduce a significant overhead. We

would like a quick check to determine if an array is rectangular. When an multi-

dimensional array is created with the multianewarray bytecode instruction, it is

guaranteed to be rectangular. Once again, we can deploy a flag to record if an sub-

array has been reassigned. This flag, however, would also contain the same value

as the dense flag. Our prototype therefore relies on the dense flag to determine

if the array is both dense and rectangular. The example in Listing 25 would be

transformed into the following:

Listing 27 Modified 2D array bounds guard example

if (IsDense (A) &&

A . length >= 10 &&

A [0] . length >= 100) {
// GPU Vers ion

. . .

} else {
for (int i = 0 ; i <= 10 ; i++) {

for (int j = 0 ; j <= 100 ; j++) {
. . . = A [i] [j] ;

}
}

}

Although our approach is very conversative, it is applicable in most situations.

Irregular shaped arrays exist but are rarely deployed by programmers. Also, our

approach requires no static computation. Overhead is introduced when subarrays

are being assigned but rarely do programmers use arrays in such fashion. Also,

many array bound check elimination techniques exist in the literature that could

be added to our compiler to rule out the bounds check. For example, ABCD [22] is a

demand-driven lightweight bounds check elimination algorithm that was once part

of JikesRVM. Regioning [33] is another approach that could be added to subdivide

57

the iteration space into two sections: a safe section where we know for sure that

no exceptions can be thrown and a non-safe section where exceptions might be

thrown.

3.5.5 Recovering Control Flow

Control flow is expressed in Java bytecode in an unstructured form using GOTO and

conditional GOTO instructions, but most shader programming languages support

only structured control flow expressed using if-then-else and while constructs,

as does our analysis. Therefore, the transformation must recover the structure of

the control flow.

There are two fundamental control structures that can be created within the

Java programming language: Loops and if-else structures.

JikesRVM includes a mechanism to recover loop structure in its high level in-

termediate representation HIR [50]. However, conditional branches are left in the

form of unstructured branches.

In most cases, the compiler will be able to recreate the original structured control

flow. However, there are cases where this is impossible without restructuring the

program. The problem arises when GOTOs are used to branch into the middle of

control structures. This type of control flow is impossible to express in the Java

language because the lack of support for GOTO statements. However, the compiled

bytecode operates purely on GOTOs. Therefore, a hand-assembled class file or other

optimization passes can generate this type of program.

Definition 18 (Reducible loop). A loop is reducible if there is only one unique

entry point.

There are two main types of control flow that cannot be recovered directly. The

first type is irreducible loops. JikesRVM’s loop analysis does not support irreducible

loops. At a high optimization level, the optimizing compiler will not attempt to

optimize the method if it contains irreducible loops and our parallelization phase

is not executed. In our work, we will focus strictly on methods in which all loops

are reducible.

58

After loops have been identified, each loop can be considered as a single node in

a control flow graph. The resulting graph will be acyclic. For example the simple

control flow structure shown in Figure 3.16 can be translated to the Java equivalent

in Listing 28.

A

B

T

C

F

D

Figure 3.16: Simple GOTO control flow

Listing 28 Simple Recover Example

// A:

if (. . .) {
// B:

} else {
// C:

}
// D:

However, some control flow graphs cannot be directly translated into if-else

constructs even though they are acyclic. Figure 3.17 is an example of such phe-

nomenon. The node E in the figure is a common else block of two different

if-else constructs. This situation has no Java source equivalent. In particular,

the code within node E will have to be cloned as shown in Figure 3.18 and the

generated code will look like that shown in Listing 30.

Instead of determining which blocks need to be cloned, our implementation

59

uses a recursive graph traversal to generate code for each node. The nodes are

visited in a way such that a node that needs to be cloned will be visited multiple

times, creating multiple copies of that node. The pseudo-code shown in Listing 29

is used to translate an acyclic control flow graph into a structured control flow

using if-then-else statements. The basic idea is to traverse the control flow graph

from the two successors of a conditional branch until a basic block is reached that

post-dominates the condition.

Definition 19 (Post-dominance). A basic block A post-dominates B if all paths

from B to any of the function’s return statements must pass through A.

A

B

T

C

F

D

T

E

F T

F

F

G

Figure 3.17: Sharing of else blocks

Listing 29 Algorithm for recovering if-then-else structure.

Algorithm generate(BB block, BB condBl):
1: if block = null or (condBl 6= null and block postdominates condBl) then
2: return empty list
3: ret ← GPU code for block
4: if block ends in unconditional branch or falls through then
5: return ret + generate(successor of block, condBl)
6: if block ends in conditional branch with condition cond then
7: if cond then
8: return ret + generate(branch successor of block, block)
9: else

10: return ret + generate(fall-through successor of block, block)

60

E

G

E

A

B

T

C

F

F

D

T T

F

F

Figure 3.18: Cloning else blocks

Listing 30 Complicated Recover Example

// A:

if (. . .) {
if (. . .) {

// B:

} else {
// ∗E∗ (c loned) :

}
} else {

if (. . .) {
// ∗E∗ (c loned) :

} else {
// F :

}
}
// G:

3.6 Implementation Summary

In this chapter, we have provided a generic algorithm that discovers GPU exe-

cutable loops. Of all the GPU executable loops, we provided a cost model that

61

estimate performance changes if the loop is executed on the GPU. We also pro-

vided an extension that improves performance by eliminating extra data transfer.

Finally, we addressed problems that arise when implementing our algorithm in a

Java environment.

62

Chapter 4

Results

To quantify the performance improvements from executing code on the GPU and

to evaluate the accuracy of the cost model, we measured the execution times of

a set of benchmarks, which were chosen to vary in the ratio of computation to

memory bandwidth required. The GPU parallelization algorithm was implemented

in JikesRVM 2.9.0. The benchmarking system contained an Intel Pentium 4 CPU

running at 3.0 GHz with 1 GB of memory, and an NVIDIA GeForce 7800 GPU

with 256 MB of GPU memory. The machine was running Ubuntu 6.06.1 with Linux

kernel version 2.6.15 and NVIDIA driver version 100.14.11.

The purpose of the benchmarks is not to demonstrate the raw computing power

of the GPU compared to the CPU. This has already been demonstrated in Sec-

tion 1.1 (in particular, Figure 1.1). Instead, our experiments are targeted to show

that our prototype implementation can take advantage of the added computation

power using our automated. Five benchmarks are used in our experiment: mul,

mandel, julia, matrix and raytrace.

The mul benchmark is a simple loop that multiplies a number by itself n times,

repeated for an array of m initial numbers (10 ≤ n ≤ 250, 1000 ≤ m ≤ 20000).

The following is the simplified version of the kernel:

63

Listing 31 mul kernel

for (int j = 0 ; j < size ; j++) {
float t = a [j] ;

for (int k = 0 ; k < i ; k++) {
t = t ∗ C ;

}
a [j] = t ;

}

The matrix benchmark is a slightly more complicated micro benchmark. It

multiplies two n by n matrices (10 ≤ n ≤ 320) in the following way:

Listing 32 matrix kernel

for (int x = 0 ; x < size ; x++) {
for (int y = 0 ; y < size ; y++) {

float s = 0.0 f ;

for (int k = 0 ; k < size ; k++) {
s += B [x] [k] ∗ C [k] [y] ;

}
A [x] [y] = s ;

}
}

The mandel benchmark generates a fractal image from the Mandelbrot set.

Given a single point c in the complex plane, the complex function Fc(z) = z2 + c

is repeatedly applied to the starting point 0. If the output eventually converges,

the point c is said to belong in the Mandelbrot set. A color is chosen for each

converged point depending on the speed of the convergence. To compute the set,

we repeatedly apply the function to a point up to 250 applications. The point is

believed to not be in the set if it does not converge within 250 applications. Much

like a 3D graphics application, the color of each complex coordinate is independent

64

from the values of other coordinates. This type of computation is ideal for executing

on GPUs.

The julia benchmark generates a fractal image from the Julia set which is

closely related the Mandelbrot set. The same function (Fc(z) = z2 + c) from the

Mandelbrot set is used in computing the Julia set. However, c is now a fixed

complex number. For each z in the complex plane, F is repeatedly applied in

search of a fixed point. The identical technique and problem sizes as the mandel

benchmark are examined.

Lastly, the raytrace benchmark is an implemenation of a ray caster. Given a

set of n by n pixels as a view port, n × n rays are traced from the eye and tested

for intersection with m spheres in a given scene. Like the two fractal benchmarks,

rays are independent of each other and each ray can be computed in parallel. Each

of our test units renders a scene of n by n pixels containing m spheres (50 ≤ n ≤
300, 25 ≤ m ≤ 250).

One interesting observation to note is the difference between the output images

of the CPU and GPU executions of raytrace and the fractals. In Section 2.1 we

have mentioned the loss of precision using the GPU. In fact, the color values in the

two sets of generated pictures are indeed different. Because of the chaotic nature

of the fractal generating functions, slight differences between applications of F can

result in a huge difference in output. However, differences in the output images

were barely observable by human eye even at a high resolution. Figure 4.1 shows

a 500-by-500 pixel image of the Julia set generated by the CPU. Figure 4.2 shows

the same set generated by the GPU. The two images look almost identical.

65

Figure 4.1: Image of Julia set by the CPU

Figure 4.2: Image of Julia set by the GPU

Each input size of all the benchmarks was repeated twenty times. Each ex-

ecution was separately compiled. A warm-up run is first executed, then the ex-

ecuted time of the actual run is recorded. Ten of the twenty runs are executed

with parallelization enabled (GPU execution) and ten more runs are executed with

parallelization disabled (unmodified). The averages of the ten execution times is

recorded.

66

 0

 20

 40

 60

 80

 100

 120

 140

 0 50 100 150 200 250 300

T
im

e
(m

s)

n by n matrix

CPU
GPU

Figure 4.3: Running Time of matrix

Figure 4.3 shows the execution times of the matrix benchmark on the CPU and

the GPU. For matrices of 100 by 100 elements and smaller, the copying overhead

dominates GPU execution time, so the multiplication is faster on the CPU. For

larger matrices, however, the GPU is faster, and the computation time increases

much more slowly as the matrix becomes larger. The mandel and julia benchmarks

exhibit a similar trend, as shown in Figure 4.4.

The benchmark execution times for all the benchmarks are shown in Figure 4.5.

Each bar represents the total time needed to execute a benchmark on its full range

of test inputs. The times are normalized to the time required to execute entirely

on the CPU, with the GPU parallelization disabled; this is shown as the left-most

bar for each benchmark. The right-most bar for each benchmark is the smallest

time possible if the implementation made an optimal choice, for each test input,

whether to use the CPU or the GPU. The bars inbetween show the execution time

when the choice between CPU and GPU is made according to the model proposed

in Section 3.3.6, tuned using each of the benchmarks. The second-right-most bar

for each benchmark shows the execution time when the model is tuned using a

combination of all benchmarks except the benchmark whose execution time is being

measured.

67

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0 50 100 150 200 250 300 350 400 450 500

T
im

e
(m

s)

n by n solution fractal

Mandelbrot set on GPU
Julia set on GPU

Mandelbrot set on CPU
Julia set on CPU

Figure 4.4: Running Time of mandel and julia

 0

 0.2

 0.4

 0.6

 0.8

 1

julia mandel matrix mul raytrace

R
un

tim
e

(N
or

m
al

iz
ed

)

Benchmarks

cpu
julia

mandel
matrix

mul
raytrace

overall
ideal

Figure 4.5: Execution Time Comparison

68

julia mandel matrix mul raytrace

Figure 4.6: Overall cost model accuracy

The ideal speedup over the CPU ranges from 27% for mul to 13 × for raytrace.

When the choice between CPU and GPU is made according to the cost model,

the performance improvements are generally close to the ideal choice regardless of

which benchmark is used to tune the model. When the model is tuned on all but

the benchmark being measured, execution time using the cost model is within 4.7%

(julia) to 11.5% (raytrace) of the ideal time.

To better understand the accuracy of the cost model, we compared the choices

suggested by the model to the ideal choices. The results of this comparison are

depicted in Figure 4.6, which is to be interpreted as follows. Each square represents

the executions of one of the benchmarks using a cost model tuned on all but the

benchmark being measured. The area of each of the squares represents the full set

of test input sizes for the benchmark. The fraction of each square that is white is

the fraction of test inputs for which the model makes the ideal (“correct”) choice;

the black area of each square represents test inputs for which the model makes the

wrong choice. The area to the left of the vertical line is the proportion of inputs

which can be processed faster on the CPU than the GPU, while the area to the

right represents the inputs on which the GPU is faster. Thus, for example, the

top-left black rectangle in each square represents the fraction of inputs for which

the CPU would be faster, but the model incorrectly suggested using the GPU.

The mul benchmark executes faster on the CPU than the GPU on 83% of the

test inputs, as shown by the square labelled mul; for the other benchmarks, the

GPU is faster more often than the CPU. The raytrace benchmark always executes

faster on the GPU than on the CPU. Most of the area of each square is white (87%

on average), indicating that the model often makes the correct choice. On the julia

and mul benchmarks, the model is balanced, in that it errs in both directions: it

sometimes suggests using the CPU when the GPU would be faster, and vice versa.

On the mandel benchmark, in 27% of the cases in which the GPU would be faster,

69

the model instead suggests using the CPU. However, as Figure 4.5 shows, the effect

on overall runtime is small, because the cases on which the model is incorrect are

the smallest inputs, whose execution time is negligible on either processor.

We draw the following conclusions from these results. The potential perfor-

mance improvement from using the GPU is very large, up to 13 × for the raytrace

benchmark. Because of this, a large improvement is possible even when the cost

model is tuned on only a single benchmark. When the cost model is tuned on a

variety of benchmarks, it predicts the faster processor for 87% of the test inputs,

achieving total execution times within 4.7% to 11.5% of the ideal time.

70

Chapter 5

Conclusions

We have presented a loop parallelization algorithm that detects loops that can be

executed in parallel in the programming model exposed by modern GPU hardware.

We have also addressed some of the extra overhead issues with copying data be-

tween the GPU and the CPU. In addition, we identified Java-specific obstacles to

parallelization imposed by the semantics of Java, and suggested simple but effective

ways to overcome those obstacles in the context of a JIT compiler. We also proposed

a cost model for deciding whether it is profitable to execute a given loop on the

GPU rather than the CPU. The techniques were implemented in JikesRVM, and

empirically evaluated. Specifically, executing numerical code on the GPU instead

of the CPU was shown to give speedups of up to 13 × on a ray casting benchmark.

The cost model, when tuned on realistic benchmarks, generalizes well to other re-

alistic benchmarks. When the cost model is used to choose between the CPU and

the GPU, the resulting performance is very close to that of the ideal choice.

The choice of Java as our input language imposed lots of difficulties. Although

we were able to overcome most of them, there are still cases that we fail to recognize.

The ideal goal where the parallelization is totally transparent is difficult. On the one

hand, the programmer can be trained to write computationally intensive code with

a certain pattern in order to benefit from auto-parallelizing compilers. On the other

hand, the compiler should be able to provide some feedback to the programmer to

provide information such as favorable loops, parallelization-preventing dependences

and failure in runtime dense flag checks. The colored dependence graph shown in

71

Figure 3.2 can also be incorporated within integrated development environments

(IDEs) to assist programmers in performance optimization.

The GPU parallelization algorithm performs loop interchange when this is nec-

essary to execute a loop on the GPU. In the future, we would like to increase the

applicability of the parallelizer by adding some of the many other loop transforma-

tion that have been proposed [51, 8, 47] for uncovering parallelization opportunities.

Finally, GPU architectures are changing quickly. The parallelization algorithm

presented in this thesis can be used as a base, and extended as necessary to take

advantage of new GPU features as they are added.

72

Appendix A

The following is a list of extra command line options added to JikesRVM to use

and debug the parallelization process.

• -oc:parallelization=<boolean> This is a boolean flag that enables (de-

fault) or disables GPU parallelization phrase.

• -oc:parallel program implementation=<string> This is a string option

changes the code generating backend implementation. The string should be

the full class name of the implementation class. The default is jrm.rapid-

mind.RapidmindProgramImp. A dummy implementation class jrm.Debug-

ProgramImp will print out the pseudo shader code to standard output.

• -oc:debug prebuild rm program=<boolean> This is a boolean flag that en-

ables (default) or disables static ahead of time compiling of Rapidmind pro-

grams during JIT compilation.

• -oc:debug parallelization analysis=<boolean> This is a boolean flag

that disables (default) or enables printing of debug information of the analysis

that determines if loops are parallelizable.

• -oc:debug parallelization perform=<boolean> This is a boolean flag that

disables (default) or enables printing of debug information of the analysis that

translate HIR code to Rapidmind code.

• -oc:print global array dep=<boolean> This is a boolean flag that disables

(default) or enables printing of nodes and edges of the dependence graph that

involve array access in text.

73

• -oc:print global scalar dep=<boolean> This is a boolean flag that dis-

ables (default) or enables printing of nodes and edges of the dependence graph

that involve scalar access in text.

• -oc:print global carried dep=<boolean> This is a boolean flag that dis-

ables (default) or enables printing of nodes and edges of the dependence graph

that involve loop carried dependences.

• -oc:print global dep dot=<boolean> This is a boolean flag that disables

(default) or enables printing of nodes and edges of the complete dependence

graph in a Graphviz DOT file format.

74

Bibliography

[1] Astex. http://www.irisa.fr/caps/projects/Astex, 2007. 20

[2] NVIDIA CUDA. http://developer.nvidia.com/object/cuda.html, 2007. 9, 19

[3] Rapidmind. http://www.rapidmind.net/, 2007. 20, 21

[4] The Jamaica Project. http://intranet.cs.man.ac.uk/apt/projects/jamaica/,

2007. 20

[5] Intel 64 and ia-32 architectures software developer’s manual. 2008. 30

[6] JikesRVM. http://jikesrvm.org/, 2008. 10

[7] List of all publications that use JikesRVM. http://jikesrvm.org/Publications,

2008. 12

[8] John R. Allen and Ken Kennedy. Optimizing compilers for modern architec-

tures: a dependence-based approach. Morgan Kaufmann Publishers Inc., San

Francisco, CA, USA, 2002. 12, 17, 18, 72

[9] B. Alpern, C. R. Attanasio, J. J. Barton, M. G. Burke, P. Cheng, J.-D. Choi,

A. Cocchi, S. J. Fink, D. Grove, M. Hind, S. F. Hummel, D. Lieber, V. Litvi-

nov, M. F. Mergen, T. Ngo, J. R. Russell, V. Sarkar, M. J. Serrano, J. C.

Shepherd, S. E. Smith, V. C. Sreedhar, H. Srinivasan, and J. Whaley. The

Jalapeño virtual machine. IBM Syst. J., 39(1):211–238, 2000. 21

[10] Bowen Alpern, Dick Attanasio, John J. Barton, Anthony Cocchi, Susan Flynn

Hummel, Derek Lieber, Mark Mergen, Ton Ngo, Janice Shepherd, and Stephen

Smith. Implementing Jalapeño in Java. In ACM SIGPLAN Conference on

75

Object-Oriented Programming Systems, Languages, and Applications (OOP-

SLA ’99), 1999. 11

[11] Bowen Alpern, Maria Butrico, Tony Cocchi, Julian Dolby, Stephen Fink, David

Grove, and Ton Ngo. Experiences Porting the Jikes RVM to Linux/IA32. In

2nd Java Virtual Machine Research and Technology Symposium (JVM ’02),

2002. 10

[12] S. Amarasinghe, J. Anderson, M. Lam, and C.-W. Tseng. An overview of

the SUIF compiler for scalable parallel machines. In Proceedings of the Sev-

enth SIAM Conference on Parallel Processing for Scientific Computing, San

Francisco, CA, 1995. 18

[13] Matthew Arnold, Stephen Fink, David Grove, Michael Hind, and Peter F.

Sweeney. Adaptive optimization in the Jalapeño JVM. In OOPSLA ’00:

Proceedings of the 15th ACM SIGPLAN conference on Object-oriented pro-

gramming, systems, languages, and applications, pages 47–65, New York, NY,

USA, 2000. ACM. 11, 21

[14] Pedro V. Artigas, Manish Gupta, Samuel P. Midkiff, and José E. Moreira.

Automatic loop transformations and parallelization for Java. In ICS ’00: 14th

Int. Conf. on Supercomputing, pages 1–10, 2000. 48

[15] Prithviraj Banerjee, John A. Chandy, Manish Gupta, John G. Holm, An-

tonio Lain, Daniel J. Palermo, Shankar Ramaswamy, and Ernesto Su. The

PARADIGM Compiler for Distributed-Memory Message Passing Multicom-

puters. In The First International Workshop on Parallel Processing, pages

322–330, Bangalore, India, Dec. 1994. 18

[16] Utpal Banerjee. Dependence Analysis. Kluwer Academic Publishers, Norwell,

Massachusetts, 1997. 28

[17] Aart J. C. Bik. Software Vectorization Handbook, The: Applying Intel Multi-

media Extensions for Maximum Performance. Intel Press, 2004. 18

76

[18] Aart J. C. Bik and Dennis B. Gannon. Automatically exploiting implicit par-

allelism in Java. Concurrency: Practice and Experience, 9(6):579–619, 1997.

18

[19] Aart J. C. Bik, Milind Girkar, Paul M. Grey, and Xinmin Tian. Automatic

intra-register vectorization for the intel architecture. Int. J. Parallel Program.,

30(2):65–98, 2002. 18

[20] William Blume, Rudolf Eigenmann, Keith Faigin, John Grout, Jay Hoeflinger,

David A. Padua, Paul Petersen, William M. Pottenger, Lawrence Rauchwerger,

Peng Tu, and Stephen Weatherford. Polaris: Improving the effectiveness of

parallelizing compilers. In Languages and Compilers for Parallel Computing,

pages 141–154, 1994. 18

[21] David Blythe. The Direct3D 10 system. In SIGGRAPH ’06, pages 724–734,

2006. 10

[22] Rastislav Bodik, Rajiv Gupta, and Vivek Sarkar. ABCD: eliminating array

bounds checks on demand. In SIGPLAN Conference on Programming Lan-

guage Design and Implementation, pages 321–333, 2000. 57

[23] Gerald Cheong and Monica S. Lam. An optimizer for multimedia instruction

sets. In Proceedings of the Second SUIF Compiler Workshop, 1997. 18

[24] Jay L. T. Cornwall, Olav Beckmann, and Paul H. J. Kelly. Automatically trans-

lating a general purpose C++ image processing library for GPUs. In Proceed-

ings of the Workshop on Performance Optimisation for High-Level Languages

and Libraries (POHLL), page 381, April 2006. 19

[25] A. Eichenberger. Optimizing compiler for the cell processor. In 14th Inter-

nation Conference Parallel Architectures and Compilation Techniques, pages

161–172, 2005. 18

[26] Randima Fernando and Mark J. Kilgard. The Cg Tutorial: The Definitive

Guide to Programmable Real-Time Graphics. Addison-Wesley Longman Pub-

lishing Co., Inc., Boston, MA, USA, 2003. 7

77

[27] F. Franchetti, S. Kral, J. Lorenz, and C.W. Ueberhuber. Efficient utilization

of simd extensions. In Proceedings of the IEEE, volume 93, pages 409–425,

2005. 18

[28] Iffat H. Kazi and David J. Lilja. JavaspMT: A speculative thread pipelining

parallelization model for Java programs. In Proceedings of the 14th Inter-

national Parallel & Distributed Processing Symposium (IPDPS’00), Cancun,

Mexico, May 1-5, 2000, pages 559–564, 2000. 18

[29] Andreas Krall and Sylvain Lelait. Compilation techniques for multimedia pro-

cessors. International Journal of Parallel Programming, 28(4):347–361, 2000.

18

[30] Sriram Krishnamoorthy, Muthu Baskaran, Uday Bondhugula, J. Ramanujam,

Atanas Rountev, and P Sadayappan. Effective automatic parallelization of

stencil computations. In PLDI ’07: Proceedings of the 2007 ACM SIGPLAN

conference on Programming language design and implementation, pages 235–

244, New York, NY, USA, 2007. ACM. 41

[31] Samuel Larsen and Saman Amarasinghe. Exploiting superword level paral-

lelism with multimedia instruction sets. In PLDI ’00: Proceedings of the ACM

SIGPLAN 2000 conference on Programming language design and implementa-

tion, pages 145–156, New York, NY, USA, 2000. ACM. 18

[32] Corinna G. Lee and Mark G. Stoodley. Simple vector microprocessors for

multimedia applications. In International Symposium on Microarchitecture,

pages 25–36, 1998. 18

[33] José E. Moreira, Samuel P. Midkiff, and Manish Gupta. From flop to megaflops:

Java for technical computing. ACM Transactions on Programming Languages

and Systems, 22(2):265–295, 2000. 57

[34] José E. Moreira, Samuel P. Midkiff, and Manish Gupta. A comparison of

three approaches to language, compiler, and library support for multidimen-

sional arrays in Java. In JGI ’01: Proceedings of the 2001 joint ACM-ISCOPE

conference on Java Grande, pages 116–125, 2001. 51

78

[35] Steven S. Muchnick. Advanced Compiler Design and Implementation. Morgan

Kaufmann, 1997. 11

[36] Dorit Naishlos. Autovectorization in GCC. In GCC Developer’s Summit, pages

105–118, 2004. 18

[37] Dorit Naishlos, Marina Biberstein, Shay Ben-David, and Ayal Zaks. Vector-

izing for a simdd dsp architecture. In CASES ’03: Proceedings of the 2003

international conference on Compilers, architecture and synthesis for embed-

ded systems, pages 2–11, New York, NY, USA, 2003. ACM. 18

[38] John D. Owens, David Luebke, Naga Govindaraju, Mark Harris, Jens Krüger,

Aaron E. Lefohn, and Timothy J. Purcell. A survey of general-purpose compu-

tation on graphics hardware. Computer Graphics Forum, 26(1):80–113, 2007.

vii, 1, 2

[39] Yunheung Paek and David A. Padua. Automatic parallelization for non-cache

coherent multiprocessors. In Languages and Compilers for Parallel Computing,

pages 266–284, 1996. 18

[40] Eric Petit, Sebastien Matz, and Francois. Partitioning programs for auto-

matically exploiting GPU. SC’06 Workshop: General-Purpose GPU Comput-

ing: Practice And Experience http: // www. gpgpu. org/ sc2006/ workshop/

INRIA_ GPU_ partitioning. pdf . 20

[41] Christopher J. F. Pickett and Clark Verbrugge. SablespMT: a software frame-

work for analysing speculative multithreading in Java. In PASTE ’05: The

6th ACM SIGPLAN-SIGSOFT Workshop on Program Analysis for Software

Tools and Engineering, pages 59–66, 2005. 18

[42] Constantine D. Polychronopoulos, Miliand B. Gikar, Mohammad R.

Haghighat, Chia L. Lee, Bruce P. Leung, and Dale A. Schouten. The structure

of parafrase-2: an advanced parallelizing compiler for c and fortran. In Se-

lected papers of the second workshop on Languages and compilers for parallel

computing, pages 423–453, London, UK, UK, 1990. Pitman Publishing. 18

79

http://www.gpgpu.org/sc2006/workshop/INRIA_GPU_partitioning.pdf
http://www.gpgpu.org/sc2006/workshop/INRIA_GPU_partitioning.pdf

[43] Stéphane Bihan Romain Dolbeau and François. Bodin. Hmpp: A hybrid multi-

core parallel programming environment. In Workshop on General Purpose

Processing on Graphics Processing Units (GPGPU 2007), 2007. 20

[44] J. Shin, J. Chame, and M. Hall. Compiler-controlled caching in superword

register files for multimedia extension architecture, 2002. 18

[45] Jaewook Shin. Introducing control flow into vectorized code. In PACT ’07:

Proceedings of the 16th International Conference on Parallel Architecture and

Compilation Techniques (PACT 2007), pages 280–291, Washington, DC, USA,

2007. IEEE Computer Society. 18

[46] N. Sreraman and R. Govindarajan. A vectorizing compiler for multimedia ex-

tensions. International Journal of Parallel Programming, 28(4):363–400, 2000.

18

[47] Michael Joseph Wolfe. High Performance Compilers for Parallel Computing.

Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1995. 12,

18, 72

[48] Mason Woo, Jackie Neider, Tom Davis, and Dave Shreiner. OpenGL Program-

ming Guide: The Official Guide to Learning OpenGL, Version 1.2. Addison-

Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1999. 8, 10

[49] Jisheng Zhao, Matthew Horsnell, Ian Rogers, Andrew Dinn, Chris Kirkham,

and Ian Watson. Optimizing chip multiprocessor work distribution using dy-

namic compilation. In Proceedings of Euro-Par, pages 28–31, 2007. 20

[50] Jisheng Zhao, Ian Rogers, Chris Kirkham, and Ian Watson. Loop parallelisa-

tion for the Jikes RVM. In PDCAT ’05: Proceedings of the Sixth International

Conference on Parallel and Distributed Computing Applications and Technolo-

gies, pages 35–39, 2005. 20, 58

[51] Hans Zima and Barbara Chapman. Supercompilers for parallel and vector

computers. ACM Press, New York, NY, USA, 1991. 12, 14, 18, 27, 28, 29, 36,

72

80

	Introduction
	Motivation
	Goal
	Contributions

	Background
	GPU Overview
	JikesRVM Overview
	Dependence Overview
	Related Work

	Implementation
	Overview
	Dependence Analysis
	Algorithm
	Parallelization
	Vectorization
	GPU Parallelization
	Classification of Loops
	Identifying Loop Types
	Data Transfer

	Multi-pass Extension
	Java Specific Issues
	Java Arrays
	Inter-array Aliasing
	Intra-array Aliasing
	Bounds Checks
	Recovering Control Flow

	Implementation Summary

	Results
	Conclusions
	Command Line Options
	References

