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Abstract
Objects under initialization are fragile: some of their fields

are not yet initialized. Consequently, accessing those unini-

tialized fields directly or indirectly may result in program

crashes or abnormal behaviors at runtime.

A newly created object goes through several states during

its initialization, beginning with all fields being empty until

all of them are filled. However, ensuring initialization safety

statically, without manual annotation of initialization states

in the source code, is a challenge, due to aliasing, virtual
method calls and typestate polymorphism.

In this work, we introduce a novel analysis based on ab-

stract interpreters to ensure initialization safety. Compared

to the previous approaches, our analysis is simpler and eas-

ier to extend, and it does not require any user annotations.

The analysis is inter-procedural, context-sensitive and flow-

insensitive, yet it has good performance thanks to local rea-
soning and heap monotonicity.

CCS Concepts: • Software and its engineering→ Object
oriented languages; Classes and objects.
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1 Introduction
Object-oriented programming is one of the main paradigms

of software construction in industry. However, 50 years after
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its introduction, language designers are still at a loss about

how to ensure initialization safety, and initialization still

causes problems for programmers in practice [Duffy 2010]:

Not only are partially-constructed objects a source

of consternation for everyday programmers, they

are also a challenge for language designers want-

ing to provide guarantees around invariants,

immutability and concurrency-safety, and non-

nullability.

The following example demonstrates the problem:
1
:

1 class Permissions:

2 val ALL: Int = READ | WRITE

3 val READ: Int = 1

4 val WRITE: Int = 2

In the code above, we would expect the field ALL to hold

the value 3 at runtime. Instead, it holds the value 0, because
the fields READ and WRITE are not yet initialized when they

are used in the second line.

A newly created object goes through several states during

its initialization, beginning with all fields being empty until

all of them are filled. Therefore, accessing the field of an

object has to respect its initialization typestate [Strom and

Yemini 1986]. Whereas types support detecting unsupported

operations on values at compile-time, typestates ensure that
only a valid subset of the supported operations are performed
for a specific state of a value. The problem of safe initialization

of objects is in essence a typestate safety problem. However,

ensuring typestate safety statically, without manual anno-

tation of typestates in the source code, is a challenge, due

to aliasing, virtual method calls and typestate polymorphism
[Liu et al. 2020].

Past research has made significant progress on the prob-

lem of object initialization, e.g., capturing initialization state

as typestates [Fähndrich and Leino 2003; Qi and Myers 2009],

using heap-monotonic typestate to deal with aliasing [Fäh-

ndrich and Leino 2003], employing subtyping to deal with

typestate polymorphism [Summers and Müller 2011], and

upholding local reasoning about initialization to avoid whole-

program analysis [Liu et al. 2020].

In particular, the latter work by Liu et al. [2020] introduces

a type-and-effect inference system that can perform type-

state inference, and thus cut down the syntactic verbosity

1
In the absence of special notes, the code examples are in Scala 3, which in

addition supports indentation syntax and thus is cleaner and more succint.
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of safe initialization systems. Our work is inspired by the

type-and-effect inference system. However, we take a very

different approach based on the following insight:

A type-and-effect system is equivalent to a heap-

monotonic abstract interpreter.

This insight enables us to develop a new analysis based

on abstract interpreters, which is simpler, easier to extend

and more regular.

We demonstrate the extensibility of the new analysis with

two improvements. The inference system in [Liu et al. 2020]

does not support leaking this to constructors without an-

notations on class parameters.

1 class A:

2 val b = new B(this)

3

4 class B(val a: A):

5 val n = 10

In the code above, the uninitialized object referred to by

this is leaked at line 2. The code is safe as it does not access
any uninitialized field at runtime. However, the inference

system of Liu et al. [2020] would require an explicit annota-

tion of initialization state on the parameter a of the class B.
While our system may also be extended to support explicit

annotations of initialization states, it removes the burden of

such annotations.

Our new analysis also avoids an awkward length-restriction
in the type-and-effect system proposed by Liu et al. [2020].

As understanding of the type-and-effect system is inessential

to the main content of this paper, we do not go into technical

details of the type-and-effect system here.

1.1 Contributions
Our work makes the following contributions:

1. Propose a novel analysis for safe initialization.
The new analysis based on abstract interpreters improves

the state of the art [Liu et al. 2020] by being simpler, easier

to extend and more regular.

2. Advocate a new approach in developing practical
analyses. Compiler writers face the dilemma that type sys-

tems for typestates are verbose whereas inter-procedural and

context-sensitive analyses are slow. Our analysis concretely

demonstrates that combining language design and analy-

sis can yield fast and useful inter-procedural and context-

sensitive analysis that can be integrated in compilers.

3. Implement the analysis in Scala 3 compiler. We

implement the new analysis in the Scala 3 compiler and

evaluate it on several real world projects.

2 Principles
It is well-known that type systems for typestates are ver-

bose whereas inter-procedural and context-sensitive analy-

ses are slow. The dilemma leaves compiler writers helpless

in checking more complex properties of programs, such as

initialization safety. Our analysis demonstrates that combin-

ing language design and analysis can yield fast and useful

inter-procedural and context-sensitive analysis that can be

integrated in compilers.

This is achieved by imposing language design rules on

user programs. Our analysis inherits several core design

principles from past work [Fähndrich and Leino 2003; Liu

et al. 2020; Summers and Müller 2011]. In this section, we

introduce the main design principles informally.

2.1 Local Reasoning
Local reasoning about initialization [Liu et al. 2020] is the

reasoning principle that:

In a transitively initialized environment, the re-
sulting value of an expression must be transitively
initialized.

An object is transitively initialized if all objects reachable

from it are initialized, i.e., all fields are assigned. Intuitively,

the principle implies that, for example, if a constructor is

called with only transitively initialized arguments, the result-

ing object is transitively initialized. Similarly, if the receiver

and arguments of a method call are transitively initialized,

so is the result.

Local reasoning about initialization is a valuable reasoning

principle, as it avoids global analysis of programs, which is

the key for simple and fast initialization systems.

Liu et al. [2020] provide a modular understanding of local

reasoning as three independent properties:

• Weak monotonicity: initialized fields continue to be

initialized.

• Stackability: all fields of a class should be initialized

at the end of the class constructor.

• Scopability: there are no side channels for accessing

uninitialized objects.

From the perspective of language design, the property

of weak monotonicity suggests the removal of null from

languages, so that an initialized field cannot become unini-

tialized by assigning null to it. The property stackability
suggests that field initializers should be mandatory. The

property scopability suggests that a method may only access

uninitialized objects through this or method parameters.

Global variables and control effects (e.g. exceptions and

algebraic effects) pose a challenge to local reasoning because

they may serve as side channels for teleporting uninitial-

ized values. To maintain local reasoning about initialization,

global variables should only contain transitively initialized

objects
2
, and the initialization system needs to make sure

that only initialized values may travel through control ef-

fects.

2
The safe initialization of global variables themselves pose a challenge as

well, which is a different problem that the current paper does not handle.
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2.2 Monotonicity
One insight of Fähndrich and Leino [2003] to deal with type-

state in the presence of aliasing is monotonicity. Roughly, it
means that objects may only become more initialized but

not less initialized.

Liu et al. [2020] identify three different concepts of mono-

tonicity: weak monotonicity, strong monotonicity and perfect
monotonicity. Weak monotonicity requires that initialized

fields continue to be initialized. Strong monotonicity addi-

tionally requires that transitively initialized objects continue

to be transitively initialized. Perfect monotonicity in addition

stipulates that the initialization states of the fields of objects

are monotone.

The following example shows that weak monotonicity is

not enough to ensure initialization safety:

1 trait Reporter { def report(msg: String): Unit }

2 class FileReporter(ctx: Context) extends Reporter:

3 ctx.typer.reporter = this // problematic

4 ctx.operation() // problematic

5 val file: File = new File("report.txt")

6 def report(msg: String) = file.write(msg)

In the code above, suppose ctx is a transitively initialized

value. Now the assignment at line 3 makes this, which
is not fully initialized, reachable from ctx. This makes the

operation on ctx at line 4 dangerous, as it may indirectly call

the method report of the current object and thus reach the

uninitialized field file. Strong monotonicity would reject

the assignment at line 3 and thus defend against possible

runtime errors.

However, to enable safe usage of already initialized fields

of an object under initialization, we need an even stronger

concept, as the following example demonstrates:

1 trait Reporter { def report(msg: String): Unit }

2 class MyReporter(rp: Reporter) extends Reporter:

3 this.rp = this // problematic

4 this.operation()

5 val buffer = new ListBuffer[String]

6 def report(msg: String) = buffer.add(msg)

7 def operation() = rp.report("log)

In the code above, we assume that initially the field rp of

the class MyReporter is transitively initialized — thus the

object may be used freely. However, at line 3 we reassign the

field with this, which is not fully initialized. The assignment

is valid in the context of strong monotonicity, because strong

monotonicity only cares about the initialization state of ob-

jects rather than fields. However, the assignment makes the

initialization state of the field rp go backward. Now usage

of the field rp may potentially reach the uninitialized field

buffer.
The initialization state of an object not only includes the

set of initialized fields, but also the initialization states of the

objects that the fields point to. Perfect monotonicity enforces

that the initialization state of a field, i.e. the initialization state

of the object that it points to, is monotone across mutations.

The type-and-effect system of Liu et al. [2020] implements

perfect monotonicity with a simple rule: only a transitively
initialized value may be assigned to a field. Note that the

system distinguishes field assignment fromfield initialization

in syntax, as is the case in Scala. In field initialization, a field

may be initialized with non-initialized values. This rule is

simple for programmers and easy to implement, so we also

adopt this design in our analysis.

3 A Core Language
We first introduce a core language on which we will develop

our analysis (Section 4).

3.1 Syntax
Our language resembles a subset of Scala having only top-

level classes, mutable fields and methods. Our language is

essentially the same as the language in [Liu et al. 2020].

P ∈ Program ::= (C,D)
C ∈ Class ::= class 𝐶 ( ˆ𝑓 :𝑇 ) { F M }
F ∈ Field ::= var 𝑓 :𝑇 = 𝑒

𝑒 ∈ Exp ::= 𝑥 | 𝑡ℎ𝑖𝑠 | 𝑒.𝑓 | 𝑒.𝑚(𝑒) |
𝑛𝑒𝑤 𝐶 (𝑒) | 𝑒.𝑓 = 𝑒; 𝑒

M ∈ Method ::= def 𝑚(𝑥 :𝑇 ) : 𝑇 = 𝑒

𝑆,𝑇 ,𝑈 ∈ Type ::= 𝐶, 𝐷

A program P is composed of a list of class definitions

and an entry class. The entry class must have the form

class 𝐷 { def 𝑚𝑎𝑖𝑛() : 𝑇 = 𝑒 }. The program runs by

executing 𝑒 .

A class definition contains class parameters (
ˆ𝑓 :𝑇 ), field def-

initions (var 𝑓 :𝑇 = 𝑒) and method definitions (def 𝑚(𝑥 :𝑇 ) :
𝑇 = 𝑒). Class parameters are also fields of the class. All class

fields are mutable. As a convention, we use 𝑓 to range over

all fields and
ˆ𝑓 to only range over class parameters.

An expression (𝑒) can be a variable (𝑥), a self reference

(𝑡ℎ𝑖𝑠), a field access (𝑒.𝑓 ), a method call (𝑒.𝑚(𝑒)), a class in-
stantiation (new 𝐷 (𝑒)), or a block expression (𝑒.𝑓 = 𝑒; 𝑒).

The block expression is used to avoid introducing the syn-

tactic category of statements in the presence of assignments,

which simplifies the presentation and meta-theory.

A method definition is standard. The body of a method is

an expression, which could be a block expression to express

a sequence of computations.

For the simplicity of presentation, we intentionally make

the language simple so that it captures the essence of initial-

ization problems while the rules fit in one page. We do have

in mind straightforward extensions with if-expressions,
Boolean and numeric values, as well as logic and arithmetic

operations.
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Sequencing and let-bindings can be encoded with method

calls. For example, sequencing can be encoded with a two-

parameter method:

1 def seq(b: B, c: C): C = c

2 seq(fooB(), barC())

We will use these extensions freely in the code examples

and make sure that the theory carries over to the extensions

trivially. We will discuss how to scale our technique to Scala

in Section 5.3.

3.2 Semantics
The following constructs are used in defining the semantics:

Ξ ∈ ClassTable = ClassName ⇀ Class

𝜎 ∈ Store = Loc ⇀ Obj

𝜌 ∈ Env = Variable ⇀ Value

𝑜 ∈ Obj = ClassName × (FieldName ⇀ Value)
𝑙,𝜓 ∈ Value = Loc

We use𝜓 to denote the value of 𝑡ℎ𝑖𝑠 , 𝜎 to denote the heap,

and 𝜌 to denote the local variable environment of the current

stack frame.

The big-step semantics for expressions have the form

J𝑒K (𝜎, 𝜌,𝜓 ) = (𝑙, 𝜎 ′), which means that given the heap 𝜎 ,

environment 𝜌 and value𝜓 for 𝑡ℎ𝑖𝑠 , the expression 𝑒 evalu-

ates to the value 𝑙 with the updated heap 𝜎 ′
. The semantics

of programs have the form JPK, which simply evaluate the

body of the entry method with a trivial initial setting for the

heap, environment and the value for 𝑡ℎ𝑖𝑠 .

The big-step semantics is standard, thus we omit the de-

tails due to space restriction. The only note is that non-

initialized fields are represented bymissing keys in the object,

instead of a null value. Newly created objects have no fields,

and new fields are gradually inserted during initialization

until all fields defined by the class have been assigned.

The big-step semantics only cover terminating programs.

It is straightforward to instrument it with a fuel to cover all

programs [Amin and Rompf 2017]. A concrete step-indexed

big-step semantics for the language can be found inAppendix

A of the thesis of Liu [2020].

3.3 Type System
The language is equipped with a simple type system, to

ensure that fields hold values of the right type, method calls

and field access are allowed by the type of the value. The

type system is simple and straightforward, thus we omit the

detailed rules due to space restriction.

We will write ⊢ P or ⊢ (C,D) to mean that the program is

well typed, which is used as a pre-condition for the analysis

(Rule A-Prog in Figure 1).

Note that the type system defends against simple ill-formed

programs but does not guarantee initialization safety. It is

the task of the analysis in Section 4 to ensure initialization

safety of the language.

4 The Analysis
In this section, we detail the design of the abstract interpreter

based on the core language.

4.1 Introduction
Our analysis takes the form of abstract definitional inter-

preters [Darais et al. 2017]. While it is very different in form

from the type-and-effect system by Liu et al. [2020], it inher-

its the key design principles from the latter as discussed in

Section 2.

The new analysis adopts the same design restriction that

method arguments must be transitively initialized, while con-
structor arguments may take uninitialized objects. This de-

sign choice makes the analysis receiver-sensitive but insen-

sitive to method arguments. We believe it achieves a good

balance between expressiveness and performance.

The analysis is modular at the level of classes. It means

that each class is checked independently. The analysis takes

class constructors as entry points, and conducts the check

of each class separately.

4.2 Abstract Domain
The abstract domain is based on the work of Liu [2020],

which identifies the following basic abstractions:

• Cold: A cold object may have uninitialized fields.

• Warm: A warm object has all its fields initialized.

• Hot: A hot object has all its fields initialized and only

reaches hot objects.

Hot objects are transitively initialized. Note that a warm
object is not transitively initialized, because it may reach a

cold object.

More formally, our analysis uses the following abstract

domain:

ˆ𝑙 ∈ ALoc ::= This(𝐶, 𝑣,Ω) | Warm(𝐶, 𝑣)
𝑣 ∈ AValue ::= Hot | Cold | ˆ𝑙

Ω ::= { 𝑓1, 𝑓2, . . . }

The abstract values form a lattice:

Hot < ˆ𝑙 < Cold

An abstract value 𝑣 can be either Hot, Cold or an abstract

address
ˆ𝑙 . An abstract address

ˆ𝑙 can be either This(𝐶, 𝑣,Ω) or
Warm(𝐶, 𝑣). They are called abstract addresses or abstract

locations because conceptually they point to abstract objects.

In the formal analysis, we do not need the concept of abstract

objects nor abstract heap. However, the usage of abstract

heap and objects will result in engineering benefits in the

actual implementation (Section 5).

The abstract address This(𝐶, 𝑣,Ω) denotes objects of the
class C that are in the process of initialization in its construc-

tor, where the class parameters take abstract values 𝑣 and the

fields in Ω are initialized. As our analysis is modular at the

level of classes, there is exactly one such address in checking
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a class. The object referred to by This(𝐶, 𝑣,Ω) begins with all
fields being empty. As the initialization proceeds, more fields

become initialized. Monotonicity ensures that the initial ab-

stract values of the fields, provided by the mandatory field

initializer, are always an over-approximation of the actual

values stored in the fields. The abstract values for fields do

not change during the initialization process until the object

becomes fully initialized, i.e., hot. The fields of hot values are
always hot.

The abstract address Warm(𝐶, 𝑣) denotes objects of the
class C, where the class parameters take abstract values 𝑣 . A

warm object has all its fields initialized. However, it is not

fully initialized, because it may reach non-hot objects. The

abstract values of the fields of warm objects are determined

by the abstract values of class parameters, thus they do not

change with respect to a given warm value. In this sense,

warm values serve as indices to summaries of abstract objects,

which can be cached and reused during the analysis (Section

5.1).

4.3 The Rules
The essence of the analysis is presented in Figure 1. It as-

sumes two helper functions, initializerFor(C, f) to get

the initializer for the field f of the class C, and 𝑙𝑜𝑜𝑘𝑢𝑝 (ˆ𝑙,𝑚)
to look up the method definition of m associated with the ab-

stract value
ˆ𝑙 . The two functions are easy to implement with

the help of the class table Ξ, thus we omit their definitions.

At the high level, the analysis checks each class indepen-

dently (rule A-Prog). In checking each class, the analysis

checks each field one by one with updated initialized field

set Ω (rule A-Class). For a field, it checks its initializer with

the given abstract value for this (rule A-Field).

The main body of the rules are related to expression check.

Expression check rules have the form Ξ; ˆ𝑙 ⊩ 𝑒 → 𝑣 , which

means that given the abstract value
ˆ𝑙 for this, the expression

𝑒 takes the abstract value 𝑣 .

Variables are always hot (rule A-Var), as the analysis en-

forces that method arguments are hot. The expression this
simply takes the given abstract value

ˆ𝑙 (rule A-This).

There are several rules for field selection. If the receiver

is hot, then the field selection is also hot (A-Sel1). If the

selection selects a class parameter, then it simply returns the

corresponding abstract value of that class parameter (rule

A-Sel2 and A-Sel3).

Note that if the expression 𝑒 in 𝑒.𝑓 is cold, there are no
corresponding rules. It means it is forbidden to select fields

on cold objects.

If the field selection 𝑒.𝑓 selects a field in the class body

rather than a class parameter, there are two cases. (1) If

𝑒 evaluates to This(𝐶, 𝑣,Ω), we need to check that 𝑓 is in

the initialized set Ω. If that is the case, then we evaluate

the initializer of the field 𝑓 as the value of the selection

(rule A-Sel4). (2) If 𝑒 evaluates Warm(𝐶, 𝑣), we evaluate the

initializer of the field 𝑓 as the value of the selection (rule

A-Sel5).

The re-evaluation of a field initializer is sound because the

initializer is always an over-approximation of values stored

in the field, thanks to perfect monotonicity (rule A-Assign).

Re-evaluation is expensive and might involve duplicate com-

putation. In the implementation (Section 5.1), we will detail

how to avoid duplicate computation with caching.

The rule A-Call1 capitalizes on local reasoning: if the
receiver and method arguments are hot, the result value

must be hot. If the receiver 𝑒0 is not hot, it evaluates the

body of the method𝑚 and returns it as the resulting value

(rule A-Call2).

The rule A-New1 also exploits local reasoning: if the ar-

guments to the constructor are hot, the result is also hot.

Otherwise, a new expression evaluates to a warm value,

with the class parameters taking the abstract values of the

constructor arguments (rule A-New2). To ensure that the

abstract domain is finite, we widen the abstract values of

constructor arguments. Basically, we restrict that construc-

tor arguments may only be either Hot or Cold. In addition,

we need to also check the class again assuming that the class

parameters take the widened abstract values.

The rule A-Assign enforces perfect monotonicity: only hot
values may be assigned to a field. Without this restriction,

the rules for field selection will lead to unsoundness.

To extend our language with if-expressions, we define
the final value to be the join of the two branches:

Ξ; ˆ𝑙 ⊩ 𝑒 → Hot Ξ; ˆ𝑙 ⊩ 𝑒1 → 𝑣1 Ξ; ˆ𝑙 ⊩ 𝑒2 → 𝑣2

Ξ; ˆ𝑙 ⊩ if 𝑒 𝑡ℎ𝑒𝑛 𝑒1 𝑒𝑙𝑠𝑒 𝑒2 → 𝑣1 ⊔ 𝑣2
(A-If)

4.4 Co-induction
The rules are mutually recursive: the class check depends

on expression check, and expression check depends on class

check (rule A-New2).

Meanwhile, the rules should be read co-inductively. It

implies that the rules are declarative specifications instead of
purely algorithmic definitions. We show how to make them

algorithmic in Section 5.2.

We motivate the co-inductive reading with two examples.

Given the following program:

1 class C:

2 var f: C = foo()

3 def foo(): C = foo()

In order to prove that the method call foo() is safe in

line 2, the analysis will encounter exactly the same sub-goal

to prove that the call foo() is safe. A coherent inductive

interpretation of the expression check rules needs to assume

that the call foo() returns a fixed-point value for the recur-

sive call foo(). In this example, both Cold and Hot are fixed
points for the expression foo(). We are only interested in

least fixed points, which more precisely approximate the
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Program check ⊩ (C,D)

⊢ (C,D) Ξ = 𝐶 → C Ξ;This(𝐶,Hot, ∅) ⊩ C
⊩ (C,D)

(A-Prog)

Class check Ξ;This(𝐶, 𝑣,Ω) ⊩ C

Ξ;This(𝐶, 𝑣,Ω𝑖 ) ⊩ F𝑖 Ω𝑖+1 = Ω𝑖 ∪ { 𝑓𝑖 }

Ξ;This(𝐶, 𝑣,Ω0) ⊩ class 𝐶 ( ˆ𝑓 :𝑇 ) { F M }
(A-Class)

Field check Ξ;This(𝐶, 𝑣,Ω) ⊩ F

Ξ;This(𝐶, 𝑣,Ω) ⊩ 𝑒 → ˆ𝑙

Ξ;This(𝐶, 𝑣,Ω) ⊩ var 𝑓 : 𝐷 = 𝑒
(A-Field)

Expression check Ξ; ˆ𝑙 ⊩ 𝑒 → 𝑣

Ξ; ˆ𝑙 ⊩ 𝑥 → Hot (A-Var) Ξ; ˆ𝑙 ⊩ this → ˆ𝑙 (A-This)

Ξ; ˆ𝑙 ⊩ 𝑒 → Hot

Ξ; ˆ𝑙 ⊩ 𝑒.𝑓 → Hot

(A-Sel1)

Ξ; ˆ𝑙 ⊩ 𝑒 → This(𝐶, 𝑣,Ω)
Ξ; ˆ𝑙 ⊩ 𝑒. ˆ𝑓𝑖 → 𝑣𝑖

(A-Sel2)

Ξ; ˆ𝑙 ⊩ 𝑒 → Warm(𝐶, 𝑣)
Ξ; ˆ𝑙 ⊩ 𝑒. ˆ𝑓𝑖 → 𝑣𝑖

(A-Sel3)

Ξ; ˆ𝑙 ⊩ 𝑒 → This(𝐶, 𝑣,Ω) 𝑓 ∈ Ω 𝑒 ′ = 𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒𝑟𝐹𝑜𝑟 (𝐶, 𝑓 ) Ξ;This(𝐶, 𝑣,Ω) ⊩ 𝑒 ′ → 𝑣

Ξ; ˆ𝑙 ⊩ 𝑒.𝑓 → 𝑣
(A-Sel4)

Ξ; ˆ𝑙 ⊩ 𝑒 → Warm(𝐶, 𝑣) 𝑒 ′ = 𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒𝑟𝐹𝑜𝑟 (𝐶, 𝑓 ) Ξ;Warm(𝐶, 𝑣) ⊩ 𝑒 ′ → 𝑣

Ξ; ˆ𝑙 ⊩ 𝑒.𝑓 → 𝑣
(A-Sel5)

Ξ; ˆ𝑙 ⊩ 𝑒0 → ˆ𝑙0 Ξ; ˆ𝑙 ⊩ 𝑒 → Hot 𝑙𝑜𝑜𝑘𝑢𝑝 (ˆ𝑙0,𝑚) = def 𝑚(𝑥 :𝑇 ) : 𝑇 = 𝑒1 Ξ; ˆ𝑙0 ⊩ 𝑒1 → 𝑣

Ξ; ˆ𝑙 ⊩ 𝑒0.𝑚(𝑒) → 𝑣
(A-Call2)

Ξ; ˆ𝑙 ⊩ 𝑒0 → Hot Ξ; ˆ𝑙 ⊩ 𝑒 → Hot

Ξ; ˆ𝑙 ⊩ 𝑒0.𝑚(𝑒) → Hot

(A-Call1)

Ξ; ˆ𝑙 ⊩ 𝑒 → Hot

Ξ; ˆ𝑙 ⊩ new 𝐶 (𝑒) → Hot

(A-New1)

Ξ; ˆ𝑙 ⊩ 𝑒 → 𝑣 𝑣 ′ = 𝑤𝑖𝑑𝑒𝑛(𝑣) Ξ;This(𝐶, 𝑣 ′, ∅) ⊩ Ξ(𝐶)
Ξ; ˆ𝑙 ⊩ new 𝐶 (𝑒) → Warm(𝐶, 𝑣 ′)

(A-New2)

Ξ; ˆ𝑙 ⊩ 𝑒1 → 𝑣1 Ξ; ˆ𝑙 ⊩ 𝑒2 → Hot Ξ; ˆ𝑙 ⊩ 𝑒 → 𝑣

Ξ; ˆ𝑙 ⊩ 𝑒1.𝑓 = 𝑒2; 𝑒 → 𝑣
(A-Assign)

Helpers 𝑤𝑖𝑑𝑒𝑛(𝑣) = 𝑣

𝑤𝑖𝑑𝑒𝑛(ˆ𝑙) = Cold

𝑤𝑖𝑑𝑒𝑛(𝑣) = 𝑣 otherwise

Figure 1. Co-inductive initialization check rules
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runtime semantics of expressions, so more programs may

be accepted. The greatest fixed point Cold is always safe,

but it rejects too many programs, so it is not useful. We

show how to compute the least fixed points efficiently in the

implementation (Section 5.2).

The co-inductive interpretation is also needed for check-

ing classes. Given the following example:

1 class A(b: B) { var b2 = new B(this) }

2 class B(a: A) { var a2 = new A(this) }

Checking the class A would encounter the sub-goal of

checking the class Awith the value This(𝐴,𝐶𝑜𝑙𝑑, ∅) for this
recursively. The same holds for the class B with the value

This(𝐵,𝐶𝑜𝑙𝑑, ∅). In this case, the co-inductive interpretation

only needs to assume that the recursive sub-goal trivially

holds.

We conjecture that a program that is well-formed accord-

ing to the analysis does not get stuck at runtime.

Proposition 4.1 (Soundness). ⊩ P =⇒ ∀𝑘. JPK (𝑘) ≠ 𝐸𝑟𝑟𝑜𝑟

In the above, 𝑘 is the index to the step-indexed big-step

semantics. For step-indexed semantics, there are three possi-

ble outcomes: (1) time out; (2) error; (3) a resulting value and

an updated heap. Initialization safety is implied by sound-

ness, as initialization errors will cause the program to fail at

runtime.

We leave the soundness proof for future work.

5 Implementation
In this section, we discuss the implementation of the analysis:

(1) How to enable caching and avoid duplicate computation?

(2) How to compute the least fixed point of an expression?

(3) How to scale the analysis to complex language features?

5.1 Caching
While the presentation in the previous section shows the

essence of the analysis, it does not show how to perform

caching to avoid duplicate computation when retrieving field

values of warm objects.

For the purpose of caching, we perform some engineering

operations of the abstract domain as follows:

ˆ𝑙 ∈ ALoc ::= This(𝐶) | Warm(𝐶, 𝑣)
𝑣 ∈ AValue ::= Hot | Cold | ˆ𝑙

�̂� ∈ AStore = ALoc ⇀ AObj

𝑜 ∈ AObj = ClassName × (FieldName ⇀ AValue)

As can be seen above, we introduced abstract object 𝑜

and abstract heap �̂� . We removed Ω from This(𝐶), as it is
implied by the present fields in the abstract object pointed

to by This(𝐶). Now for field selection, we can just retrieve

the corresponding field value from the abstract object.

In checking a field definition, we put the field value in the

abstract object that corresponds to this. Thanks to mono-

tonicity, this cached value is only determined by the value of

this, and we maintain an invariant in the implementation

to ensure that it is only set once. Therefore, the abstract

heap and abstract objects only serve as a cache of summaries.

They do not play any essential role in the analysis, despite

their engineering benefits, such as uniform field access.

Another implementation change wemade is to remove the

class parameter values from This(𝐶), assuming they are al-

ways hot. In the rule A-New2, we use the value Warm(𝐶, 𝑣)
for this to check the class C instead of This(𝐶, 𝑣). This
change is motivated by two practical concerns: (1) using

the warm value will enable immediate caching of the field

values; (2) it avoids duplicate error reports in case the class

suffers from initialization errors. Doing so is safe because all

errors that can be detected in checking This(𝐶, 𝑣) can also be

detected by checking This(𝐶,𝐻𝑜𝑡) and Warm(𝐶, 𝑣), thanks
to stackability and mandatory field initializers.

One subtlety is how to construct mutually recursive warm

objects, as the following program shows:

1 class A(b: B):

2 val b2 = new B(this)

3 val c = b2.a2

4

5 class B(a: A):

6 val a2 = new A(this)

7 val c = a2.b2

The object Warm(𝐴,𝐶𝑜𝑙𝑑) uses the object Warm(𝐵,𝐶𝑜𝑙𝑑)
in line 3, and Warm(𝐵,𝐶𝑜𝑙𝑑) uses Warm(𝐴,𝐶𝑜𝑙𝑑) in line 7.

Obviously there is noway to construct the two abstract warm

objects in sequence. The solution is that when accessing a

field of a warm value which is missing in the corresponding

object, we simply evaluate the initializer of the field to get

its value — this corresponds to the rule A-Sel5 in Figure 1.

In contrast, for This(𝐶), a missing key in the corresponding

object means that field is not yet initialized, thus an error

should be reported.

5.2 Fixed-point computation
The co-inductive rules in the previous section are declarative

but algorithmic, as a valid derivation based on the rules will

depend on oracle values which are the fixed point values of

expressions in the presence of recursion. Here we show how

to compute fixed points for the abstract values of expressions.

As mentioned before, we are only interested in least fixed

points, as they admit more valid programs. The standard

technique is to introduce an inductive cache in evaluating

an expression 𝜁 [Darais et al. 2017]:

ˆ𝜁 ∈ ACache = (Exp × ALoc) ⇀ AValue

The key of the cache 𝜁 consists of the expression to be

evaluated and the value for this. Thanks to monotonicity,

we do not need to include the abstract store �̂� as part of the

key to the cache. Thanks to the restriction that all method
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parameters are fully initialized, we can safely ignore the

environment 𝜌 of the concrete domain.

As in Darais et al. [2017], we employ both an input cache

𝜁𝑖𝑛 and output cache 𝜁𝑜𝑢𝑡 . In the abstract evaluation of an

expression, we check whether the corresponding key exists

in the output cache 𝜁𝑜𝑢𝑡 . If it is in 𝜁𝑜𝑢𝑡 , we return the cached

value immediately. Otherwise, we retrieve the value from

the input cache 𝜁𝑖𝑛 (use the bottom value Hot if missing),

put it in the output cache 𝜁𝑜𝑢𝑡 , and evaluate the expression

by evaluating its sub-expressions. The output cache 𝜁𝑜𝑢𝑡 is

then updated with the new value for the expression. The

co-inductive caching ensures that cache values are only used

in recursive calls but not eagerly.

The iterative algorithmworks on the granularity of classes.

For each iteration, it checks whether 𝜁𝑖𝑛 and 𝜁𝑜𝑢𝑡 are the same.

If not, it will use 𝜁𝑜𝑢𝑡 as the new 𝜁𝑖𝑛 , reset 𝜁𝑜𝑢𝑡 to empty, revert

heap changes in the last iteration, and check the class again

until a fixed point is reached. The fixed point always exists

as the checking function is monotone with respect to the

abstract cache.

For most real-world programs, the fixed point is reached

after one iteration. The following example shows where

more than one iteration is needed:

1 class C:

2 val self = foo(5)

3 def foo(x: Int): C =

4 if (x < 5) then this else foo(x - 1).self

The code above, when run, will access the uninitialized

field self. However, if we run the iteration once, the recur-

sive call foo(x - 1) will simply take the value Hot from

the co-inductive cache. The error can only be detected in

the second iteration, where the recursive call retrieves the

updated cache value This(𝐶, ∅, ∅). The field self is not yet
in the initialized set, thus accessing the field is an error.

5.3 Scalability
Scala has many features far beyond the core language, e.g.

inheritance, nested classes, traits, lazy fields, functions.

Following Liu et al. [2020], the analysis performs full-

construction analysis, i.e., it takes constructors of concrete

classes as entry points and handles super-constructor calls

as if they are inlined. This way, the precise class of this
and all warm objects is known, so virtual method calls on

these receivers can be statically resolved. Any argument that

leaks to a virtual method that cannot be statically resolved is

required to be fully initialized, so the analysis does not need

to analyze bodies of such methods. Therefore, inheritance

does not create more challenges in the implementation. This

approach does raise some concerns about modularity, though

it does not assume a closed world. The design trade-off is

discussed further in Liu et al. [2020].

The analysis assumes erasure semantics for parametric

polymorphism, therefore complex type-level features, such

as F-bounded polymorphism, recursive types, refinement

types and higher-kinded types do not pose a challenge in

the implementation.

The traits are initialized following a scheme called lin-
earization [Odersky 2019]. The implementation follows the

linearization semantics in initialization as well as in the res-

olution of virtual method calls.

To handle nested classes, we augment warm values with

a field outer, which represents the abstract value for the

immediate outer reference of the class klass:

1 case class ThisRef(klass: ClassSymbol)

2 case class Warm(

3 klass: ClassSymbol, outer: Value,

4 ctor: Symbol, args: List[Value])

Note that in ThisRef (which corresponds to This in the

paper), an outer field is not needed because we assume that

outer references and class parameters of ThisRef are all hot.
Each object may have a matrix of outer references: each

class in the inheritance chain has a list of outer references

going outward. Why does it suffice to only store one outer

reference in Warm? The insight here is that all outer refer-
ences are determined by the immediate outer reference of

the class at the bottom of the inheritance chain. While we

do cache all outer references in the abstract warm object for

fast access, in the warm value, which serves as a key to the

abstract object, it suffices to store just the determining outer

reference.

Local classes are handled as if they were inner classes

located in the closest enclosing classes. This approach is safe

because in the system, all method parameters are required

to be hot. The only possible initialization effects that could

be observed in a local class are the initialization effects of its

enclosing class.

To handle functions, we introduce the value Fun:

1 case class Fun(

2 expr: Tree, thisV: Addr,

3 klass: ClassSymbol, env: Env)

For function application, we enforce the same restriction

as method calls: the arguments must be hot. In most cases,

the env is empty, as we require method arguments to be

hot. Functions inside secondary constructors may contain a

non-hot env if the arguments to the secondary constructor

are not hot.

Lazy fields are treated as method calls. Field accesses in

Scala are actually method calls, which could be overridden.

The analysis follows the semantics closely.

5.4 Early Promotion
The implementation introduces an optimization called early
promotion. Semantically, in the process of initialization, the

initialization state of an object can be promoted naturally

to hot when all objects reachable from it are initialized. The

natural promotion happens when we use local reasoning for
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new expressions (Rule A-New1 in Figure 1). This is called a

commitment point in Summers and Müller [2011].

However, there are two possible improvements to natural

promotion, which we dub early promotion. First, if all fields
of an object are initialized, we may promote the object to hot

before the commitment point, as the following code shows:

1 class C:

2 val a = 10

3 this.foo()

In the above, after line 2, wemay promote this to hot, thus
skip checking the body of the method foo, which improves

performance of the checker. Of course, such a promotion is

safe only if all the class parameters and outers are hot.

Second, a warm object can be thought of as promoted as

long as it is impossible to access an uninitialized object from

it even if it reaches an uninitialized object in the heap. This

can be illustrated by the following example:

1 class C:

2 case class Data(value: Int)

3 val a = Data(3)

4 val ref = foo(a) // safe to leak a

In the code above, the field a at line 3 is initialized with a

warm value when checking the class C. The value is not hot
because the anonymous class instance implicitly captures

the outer reference C.this, which is not hot. However, in

normal code (without reflection), it is impossible to get hold

of the uninitialized object pointed to by C.this from the

value a, thus it is safe to leak the value a at line 4.

However, the following example shows that blind early

promotion is unsound:

1 def qux[T](e: E[T]) = e.foo

2 abstract class E[T] { def foo: T }

3 class C:

4 val a: E[C] = new E { def foo = C.this.ref }

5 val ref: C = qux(a) // error

When this code runs, it will access the uninitialized field

ref. Therefore, the checker should report an error at line 5.

Early promotion for warm objects works by checking that

(1) each method can be safely called and its result value can

be safely promoted; and (2) each field value can be safely

promoted to Hot.

6 Evaluation
We implement the analysis in the Scala 3 compiler and run

the analysis on several projects. The result is presented in

Figure 2. As the projects are widely used in the industry, we

expect all the warnings to be false positives
3
.

Compared to the previous implementation based on the

type-and-effect system, we can see the number of warn-

ings has decreased for most projects. The reduction comes

3
The work by Liu et al. [2020] does report a few true positives. Our analysis

is able to detect the same true positives.

from three improvements: (1) allowing non-hot arguments to

constructors; (2) early-promotion; and (3) allowing non-hot

values to be assigned to local variables.

The reduction of warnings in the project stdLib213 mainly

benefits from the support of allowing non-hot arguments

to constructors. The early promotion improvement helps

suppress numerous warnings in the project Dotty and the

project intent.

However, in some projects, such as Scalacheck and Scalap,

the number of warnings has increased significantly. For the

Scalap project, all of the new warnings are due to changes in

how warnings are reported. More concretely, it comes from

the change in reporting as shown in the following example:

1 class TestSuite:

2 test(this)

3 test(this)

4 // ...

The previous checker only reports one warning at line 2,

while the new checker reports two warnings.

For the ScalaCheck project, the original 6 warnings disap-

pear in the new checker, thanks to early promotion. However,

we expect the 22 new warnings to be reported by the previ-

ous checker as well, but it does not. This looks like to be a

bug of the previous checker.

There is another change in reporting incurred by the

support of non-hot arguments to constructors. This can be

demonstrated by the following program:

1 class A { var b = new B(this) }

2 class B(a: A):

3 println(a.b)

4 println(a.b)

Without the support of leaking this to constructors, the

previous checker only reports one warning at line 1, not

allowing the constructor to be called at all. The new checker

does allow the constructor call, but then reports two warn-

ings within the constructor body at lines 3 and 4.

7 Related Work
Our work takes inspiration from several milestone papers

on the problem of initialization.

Typestate Inference for initialization. Our analysis is
inspired by the type-and-effect system proposed by Liu et al.

[2020]. Despite being different in form, our analysis inherits

several design principles, such as local reasoning and perfect

monotonicity, as well as the design restriction of requiring

arguments to methods being fully initialized.

Our formal system as presented in Section 4 is as expres-

sive as that of Liu et al. [2020]. Meanwhile, it supports leaking

non-hot values to constructors without explicit annotations

of initialization states on class parameters, as the following

code shows:
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Figure 2. False positive warnings on Scala 3 community projects.

1 class A { val b = new B(this) }

2 class B(val a: A @cold) { val name = "B" }

To support the example above, the formal system in Liu

et al. [2020] requires the annotation @cold on the class pa-

rameter a. However, the implementation of that system in

the Scala 3 compiler does not support annotations
4
, thus it

is less expressive than the implementation of our system in

the Scala 3 compiler.

We claim our analysis to be simpler, easier to extend and

more regular. It is conceptually simpler as it does not depend

on concepts such as proxy effects and proxy potentials. The

algorithm does not have a separate summarization phase.

Meanwhile, the abstract interpreter follows the structure of

concrete interpreters, so it is easier to maintain.

Our analysis also removes the length restriction of the

aforementioned type-and-effect system. The length restric-

tion ensures that the abstract domain is finite. For example,

it is needed for the analysis to terminate for the following

program:

1 class A:

2 var a: A = this.g

3 def g: A = this.g.g

However, the restriction looks artificial and makes the

analysis irregular. Our analysis completely eliminates the

restriction and does not have any fixed length limit on the

abstraction.

The compiler for X10 [Zibin et al. 2012] employs an inter-

procedural analysis to ensure safe initialization, which re-

moves the annotation burden required when calling final or

private methods on this. However, the analysis algorithm is

4
The introduction of annotations requires changes to the standard library,

which is difficult to convince for an experimental feature and it takes a long

language improvement process.

not presented in the paper. To call virtual methods on this,
annotations are required on method definitions.

Type systems for safe initialization. Fähndrich and

Leino [2003] introduce raw types of the form 𝑇 raw(𝑆)
. A

value of such a type is possibly under initialization, and

all fields up to the superclass 𝑆 are initialized. Class fields

may not hold raw values; thus the system does not support

creating cyclic data structures. Delayed types [Fähndrich
and Xia 2007] overcome this limitation by ensuring that the

initialization of objects forms stacked time regions.

Qi and Myers [2009] introduce a flow-sensitive type-and-

effect system for initialization based on masked types. The

system is expressive, but it leaves open the problems of type-

state polymorphism and type-and-effect inference.

Summers and Müller [2011] show that initialization of

cyclic data structures can be supported in a light-weight,

flow-insensitive type system. The system cleverly uses sub-

typing to achieve typestate polymorphism. However, it leaves

open the design of a dataflow analysis that enables the usage

of already initialized fields.

The Billion-Dollar Fix [Servetto et al. 2013] introduces a

new linguistic construct placeholders and placeholder types
to support initialization of circular data structures. The work

is orthogonal to the current work, in that we are constrained

from introducing new language constructs and semantics.
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