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Abstract
This paper explores a sweet spot between flow-insensitive and flow-
sensitive subset-based points-to analysis. Flow-insensitive analysis
is efficient: it has been applied to million-line programs and even its
worst-case requirements are quadratic space and cubic time. Flow-
sensitive analysis is precise because it allows strong updates, so
that points-to relationships holding in one program location can be
removed from the analysis when they no longer hold in other lo-
cations. We propose a “Strong Update” analysis combining both
features: it is efficient like flow-insensitive analysis, with the same
worst-case bounds, yet its precision benefits from strong updates
like flow-sensitive analysis. The key enabling insight is that strong
updates are applicable when the dereferenced points-to set is a sin-
gleton, and a singleton set is cheap to analyze. The analysis there-
fore focuses flow sensitivity on singleton sets. Larger sets, which
will not lead to strong updates, are modelled flow insensitively to
maintain efficiency. We have implemented and evaluated the anal-
ysis as an extension of the standard flow-insensitive points-to anal-
ysis in the LLVM compiler infrastructure.

Categories and Subject Descriptors D.3.4 [Programming Lan-
guages]: Processors; D.2.4 [Software Engineering]: Software/Program
Verification

General Terms Algorithms, Design, Experimentation, Languages,
Performance, Verification

Keywords points-to analysis, flow sensitivity, strong updates, An-
dersen’s analysis, LLVM

1. Introduction
One of the design decisions facing a developer selecting a sub-
set based points-to analysis is flow sensitivity. On one hand, flow-
insensitive analyses are well understood, and techniques have been
developed that make them quite efficient and scalable (e.g. [2, 12,
15, 19, 25, 27], among many others). On the other hand, flow-
sensitive analyses promise potentially more precise results. Re-
cently, there has been a resurgence of interest in techniques that
reduce the previously prohibitive cost of flow sensitivity [14, 22,
31, 32].

This paper proposes a hybrid subset-based analysis algorithm
that has desirable properties of both flow-insensitive and flow-
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sensitive analyses. This “Strong Update” analysis provides the key
precision benefit that flow sensitivity brings, strong updates. How-
ever, its performance is comparable to that of flow-insensitive anal-
ysis: in the worst case, it requires quadratic space and cubic time,
and in practice, it is almost as fast as flow-insensitive analysis.
More precisely, the strong update analysis requires O(V A) space
and O(EV 2) time, where V is the number of pointer variables in
the program, A is the number of variables whose address is taken
(i.e. possible pointer targets), and E is the number of edges in the
interprocedural control flow graph.

The idea that enables this good compromise is the realization
that the precise points-to sets that matter most are also cheap to
propagate, even flow sensitively. A strong update can only be per-
formed if the may-point-to set of the dereferenced pointer cor-
responds to exactly one (runtime) target; otherwise, the analysis
could not guarantee that any one of the possible targets is defi-
nitely overwritten. A necessary condition for this case is that the
points-to set must be a singleton (i.e., contain one abstract target).
When one strong update improves the precision of a given points-to
set, the more precise set may enable a chain of further strong up-
dates. Thus in order to be precise overall, an analysis must model
these small sets precisely. Yet singleton sets are also very cheap to
represent and propagate. In particular, it is possible to propagate
singleton sets flow-sensitively without significantly increasing the
asymptotic complexity of an otherwise flow-insensitive analysis or
its practical running time.

Thus our strong update points-to analysis can be summarized as
follows. It is a flow-insensitive subset-based analysis extended with
flow-sensitive modeling of singleton sets, which are used to en-
able strong updates. The analysis maintains sound flow-insensitive
points-to sets for all pointers. In addition, it provides flow-sensitive
points-to sets for those pointers and at those program points where
the sets are singletons. When a flow-sensitive set is available, the
analysis uses it, possibly to perform a strong update. When no
flow-sensitive set is available (because it is not a singleton), the
analysis falls back to the flow-insensitive information. Although
we have described the analysis here as a combination of two sepa-
rate analyses, both analyses are intertwined in the actual algorithm
and performed at the same time so that they can query each other.
Thus the flow-sensitive analysis improves the precision of the flow-
insensitive analysis, and the flow-insensitive analysis provides a
fall-back to the flow-sensitive analysis when necessary.

This paper makes the following contributions:

• It identifies and discusses the characteristics of flow-sensitive
analyses that give rise to improved precision over flow-insensitive
analyses. It argues that strong updates are the most important
such characteristic.



• It presents the hybrid strong update analysis algorithm, first as
a system of constraints, and then as an algorithm extending the
flow-insensitive algorithm.

• It shows that the worst-case complexity of the strong update
analysis is the same as that of the flow-insensitive analysis,
quadratic in space and cubic in time.

• It describes an implementation of the strong update analysis
in the LLVM compiler infrastructure [24]. The implementa-
tion is available for download at http://plg.uwaterloo.
ca/~olhotak/su.

• It experimentally evaluates the implementation on the SPECINT
2000 and SPECCPU 2006 benchmark suites [33], shows that
its practical performance is comparable to that of the flow-
insensitive analysis, and that it performs 98% of the strong up-
dates and propagates more precise sets than a flow-insensitive
analysis at 98% of the loads at which a fully flow-sensitive
analysis would.

The paper is organized as follows. Section 2 presents back-
ground material. It first defines the form of the intermediate rep-
resentation on which the analyses work. It then presents a high
level specification, in the form of subset constraints, of three exist-
ing analyses: a flow-insensitive analysis and a flow-sensitive anal-
ysis without and with strong updates. Section 3 presents the high-
level decisions guiding the design of the strong update analysis.
It discusses the key benefits of flow sensitivity and assumptions
about the intermediate representation that make analyses easier to
express. It then presents, at the same high level of subset con-
straints, the strong update analysis for comparison with the existing
flow-insensitive and flow-sensitive analyses. Section 4 presents the
strong update analysis algorithm in detail. It also proves the worst-
case complexity results. Section 5 presents details of the implemen-
tation of the strong update analysis in LLVM as an extension of the
flow-insensitive analysis already existing in that framework. Sec-
tion 6 presents results of an experimental evaluation of the strong
update analysis measuring both its practical efficiency and the ben-
efits to precision. The results show that the performance of the
strong update analysis is comparable to that of the flow-insensitive
analysis, and that the analysis provides the same benefits as a fully
flow-sensitive analysis at 98% of stores and loads. Section 7 sur-
veys other work related to efficient flow-sensitive points-to analy-
sis. Finally, Section 8 concludes.

2. Background
This section defines the program model and the notation that will
be used throughout the rest of the paper, briefly reviews flow-
insensitive subset-based points-to analysis (often called Andersen’s
analysis [1]), and specifies a flow-sensitive extension of that analy-
sis.

The program model commonly used in the points-to analysis
literature and in the points-to analysis implementation in LLVM
represents the program using a control flow graph containing the
four kinds of pointer-manipulating instructions shown in the left
column of Figure 1. More complicated statements that manipulate
pointers (such as statements containing multiple levels of indirec-
tion) are decomposed into these basic instructions. The ADDROF
instruction is used to model all statements that cause a pointer p to
point to some new target a. This includes not only statements that
take the address of a variable, but also statements that allocate new
objects dynamically, in which case the pointer target is the state-
ment at which the allocation takes place, the allocation site. The
COPY instruction is used to model all copying of one pointer to an-
other, including the interprocedural copying of arguments to pro-
cedure parameters due to procedure calls. The STORE and LOAD

p = &a {a} ⊆ pt(p) [ADDROF]
p = q pt(q) ⊆ pt(p) [COPY]
∗p = q ∀a ∈ pt(p) . pt(q) ⊆ pt(a) [STORE]
p = ∗q ∀a ∈ pt(q) . pt(a) ⊆ pt(p) [LOAD]

Figure 1. Constraints for flow-insensitive subset-based points-to
analysis

instructions model dereferencing of and writes and reads through
pointers.

For simplicity of presentation, we follow the LLVM conven-
tion of separating variables into two disjoint sets of top-level and
address-taken variables. The setA is defined to contain all possible
targets of a pointer, including address-taken variables and dynamic
allocation sites. The set P contains all top-level pointer variables.
The instructions in Figure 1 are restricted to operate only on top-
level pointers p, q ∈ P , except for the ADDROF instruction that
takes the address of an address-taken variable a ∈ A. If a program
contains a variable v violating this restriction (i.e. it has its address
taken, and is also used in a copy, store, or load instruction), the
program is transformed into an equivalent program that replaces
v with a separate top-level pointer pv and target variable av by
adding the instruction pv = &av and replacing all occurrences of
v in the original program with ∗pv . The set of all variables is de-
noted V = P ∪ A. We use a, b, and c to range over A, p, q, and r
to range over P , and v and w to range over V .

The flow-insensitive points-to relation pt : V → 2A, is defined
as the least solution to the subset constraints shown in Figure 1. For
each pointer in the program, it provides a set of targets to which the
pointer may point. The solution can be computed by initializing
all points-to sets to the empty set, then iteratively choosing a sub-
set constraint that is violated and propagating the contents of the
points-to set on the left-hand-side of the constraint into the right-
hand-side, thereby satisfying the constraint. In formal terms, this
process is equivalent to applying a monotone function on the carte-
sian product lattice of the powerset lattices 2A associated with each
of the individual points-to sets. The height of this lattice is finite.
The constraints therefore have a unique least solution, and the iter-
ative process converges to it [10].

The concretization of a given points-to analysis result is defined
as all execution states in which the C expression v == &a evalu-
ates to false for all v and a for which a 6∈ pt(v).

The feature that distinguishes a flow-sensitive analysis from a
flow-insensitive one is that the flow-sensitive analysis takes control
flow between instructions into account and computes a possibly
different result for each program point. The subset-based points-to
analysis can be extended to be flow-sensitive as shown in Figure 2.
Each instruction is annotated with a label ` ∈ L to indicate its
position in the control flow graph. The points-to relation is extended
with an extra parameter that dictates the program point at which
the points-to information applies. The notation ` and ` indicates
the program points immediately before and after the instruction
labelled `, respectively. For example, pt[`](v) gives the points-
to set of pointer v after the instruction labelled `. The subset
constraints modelling the four kinds of instructions are similar
to those in the flow-insensitive analysis, except they now relate
a points-to set before each instruction with a points-to set after
that instruction. The new CFLOW constraints model the effect of
control flow: whenever `2 follows `1 in the control flow graph,
the points-to sets before `2 contain everything contained in the
points-to sets after `1. The new PRESERVE constraint accounts for
the fact that any pointers not affected by an instruction maintain
the values that they had before the instruction executed. For each
pointer v not in the kill set of the instruction, the points-to set after
the instruction contains all the targets that were in the points-to



` : p = &a {a} ⊆ pt[`](p) [ADDROF]
` : p = q pt[`](q) ⊆ pt[`](p) [COPY]
` : ∗p = q ∀a ∈ pt[`](p) . pt[`](q) ⊆ pt[`](a) [STORE]
` : p = ∗q ∀a ∈ pt[`](q) . pt[`](a) ⊆ pt[`](p) [LOAD]
`1 ∈ pred(`2) ∀v ∈ V . pt[`1](v) ⊆ pt[`2](v) [CFLOW]
` ∈ L ∀v ∈ V \ kill(`) . pt[`](v) ⊆ pt[`](v) [PRESERVE]

Figure 2. Constraints for flow-sensitive subset-based points-to
analysis

set before the instruction. For a simple implementation of a flow-
sensitive analysis, it is sufficient (and sound) to define all the kill
sets to be empty, so that the PRESERVE subset constraints apply to
every pointer at every instruction.

Following past work on flow-sensitive points-to analysis, we fo-
cus on path-insensitive analysis (i.e. the analysis ignores condition
expressions in conditional branches). Path-sensitive analyses are
a different compromise in the tradeoff between analysis precision
and efficiency, and they are beyond the scope of our study.

Additional precision can be obtained using strong updates,
which are implemented in the analysis by defining kill sets that
are not empty. A strong update occurs when it is known that an in-
struction completely overwrites a previous value of a given pointer.
In this case, the pointer is listed in the kill set of the instruction to
prevent the PRESERVE constraints from propagating the previous
value of the pointer through the instruction.

To soundly include an abstract pointer v in the kill set, we
must be sure that the instruction definitely writes to v, and that the
abstract pointer v represents no more than a single concrete pointer
in the execution of the program. For example, if v is a dynamic
allocation site, an instruction may overwrite one but not all of the
objects allocated there, so it would be unsound to include v in the
kill set. In Section 5, we will define a set singletons ⊆ V of abstract
pointers corresponding to a single concrete pointer at run time.

Precise kill sets to implement strong updates are defined in Fig-
ure 3. Each of the ADDROF, COPY, and LOAD instructions over-
writes a target top-level pointer p, so that pointer is in the kill set.
For a STORE instruction ∗p = q, the kill set depends on the points-
to set of p before the instruction. If its size is greater than 1, the
analysis cannot determine which of the targets will be overwritten,
so the kill set is empty (because no specific target is certain to be
overwritten). If its size is exactly 1, and the unique target a is in
singletons, then the instruction will definitely overwrite a, so a is
in the kill set.

For correctness, we must also consider the case when the points-
to set of p is empty. It is tempting but incorrect to suggest that in this
case, the instruction cannot have any effect (except to dereference
a null pointer, halting the program), so the kill set should be empty.
Such a definition would violate the monotonicity of the subset
constraints, which would invalidate the guarantee of a unique least
solution and cause the analysis to loop forever on some programs
without converging to a fixed point. Concretely, suppose the points-
to set of p before ` : ∗p = q were empty, so that PRESERVE
constraints would be created at ` for all variables. Later, some target
a might be added to the points-to set of p and therefore to the kill
set of `. This would entail the removal of the PRESERVE constraint
for a. But this constraint might have been responsible for causing
a to be in the points-to set of p in the first place, so fully removing
the constraint would require removing a from the points-to set of p,
thus forcing the constraint to be added back again. Thus the analysis
would loop forever.

When the points-to set of p is empty, the correct definition of
the kill set is V , the set of all variables. As a result, no PRESERVE
constraints are generated until the points-to set of p becomes non-
empty. No subset constraints ever need to be removed after they

kill(` : p = . . .) , {p}

kill(` : ∗p = q) ,


{} if

∣∣pt[`](p)
∣∣ > 1

{} if pt[`](p) = {a} ∧ a 6∈ singletons
{a} if pt[`](p) = {a} ∧ a ∈ singletons
V if pt[`](p) = {}

Figure 3. Definition of kill sets

1 : pa = &a

2 : pb = &b

3 : pc = &c

4 : ∗pa = pb

5 : ∗pa = pc

Figure 4. Example of straight-line code on which flow sensitivity
improves precision

are generated, so the non-monotonicity of the constraints and non-
termination of the analysis are avoided. Suggesting that a derefer-
ence of an empty points-to set kills the values of all pointers may
be surprising, but it is sound. If p can only point to null, dereferenc-
ing p causes the program to abort, and therefore the values of any
pointers before the null dereference cannot be observed anywhere
in the program after the dereference. Since the statements after the
null dereference are unreachable, from the point of view of abstract
interpretation, their points-to sets should be ⊥, and indeed, in the
points-to domain, this value corresponds to all points-to sets being
empty.

3. Design Overview
In this section, we present the design objectives for the strong up-
date points-to analysis. We begin with a discussion of the beneficial
effects of flow sensitivity in a points-to analysis that are desirable in
our strong update analysis. We then discuss the performance trade-
offs that are made to achieve those precision improvements.

3.1 Benefits of flow sensitivity
The advantage of flow sensitivity can be classified into two bene-
fits: handling of straight-line code and strong updates. Of the two,
strong updates generally provide the greater improvement in pre-
cision. The strong update algorithm that we will present aims to
provide the benefit of strong updates at a cost comparable to that of
a flow-insensitive analysis.

The flow-sensitive points-to analysis that was presented in Fig-
ure 2 provides some improvement in precision even without strong
updates (i.e. when all of the kill sets are defined to be empty). If the
program being analyzed contains code that is not inside any loop
and can never be executed more than once, a flow-sensitive anal-
ysis can determine that facts established at the end of such code
do not yet hold at the beginning of such code. For example, con-
sider the short program in Figure 4. The program sets pointer a to
point to b in line 4 and then to c in line 5. A flow-insensitive anal-
ysis would report that pt(a) = {b, c}. A flow-sensitive analysis,
even one without strong updates, would determine that after line
4, a does not yet point to c: pt[4](a) = {b}. Thus flow sensitivity
improves precision for this program even without strong updates.

However, this benefit is brittle: if the same code appeared inside
a loop, the analysis would determine that pt[`](a) = {b, c} at all
points `. More generally, we can show that the points-to sets at
every point inside a given loop are always identical:



Proposition 1. Suppose that there is a cycle in the interprocedural
control flow graph leading from `1 to `2 and back to `1. Then if all
the kill sets are empty, pt[`1](v) = pt[`2](v) for every variable v.

Proof. The cycle in the control flow graph induces a similar cy-
cle of CFLOW and PRESERVE constraints pt[`1](v) ⊆ · · · ⊆
pt[`2](v) ⊆ · · · ⊆ pt[`1](v). Thus pt[`1](v) = pt[`2](v).

Most of the code of most programs is found inside loops.
Many compiler optimizations target loops because loop bodies are
where the most frequently executed code appears. Even many long
straight-line sequences of code occur inside a large outer loop. For
example, long-running programs such as web servers or database
servers run most of their code inside an outer loop that handles
individual requests. Relying on code to be outside of any loop is
also brittle. For example, when a program is incorporated into a
benchmark suite, it is generally invoked from a test harness that
executes it multiple times, in a loop. In all of these cases, due
to Proposition 1, a flow-sensitive analysis without strong updates
would compute the same points-to sets at all program points inside
the loop. That is, its result would be no more precise than that of a
flow-insensitive analysis.

We therefore focus the design of the strong update analysis
algorithm on providing the benefits of strong updates at low cost.
The benefit of precisely handling straight-line code is minimal, and
it is difficult to achieve without an expensive analysis that maintains
distinct, large points-to sets at different program points. On the
other hand, we will show how to achieve the more significant
benefit of strong updates within the quadratic space and cubic time
bounds of a flow-insensitive analysis.

3.2 Using SSA form for strong updates of top-level variables
The kill sets from Figure 3 define strong updates of both top-level
variables (the first definition in the figure) and of address-taken
pointer targets (the second definition). It is well known that the ef-
fect of strong updates of top-level variables can be easily achieved
by first converting the program to Static Single Assignment (SSA)
form [9]. In SSA form, every variable is written to only once.
Conversion to SSA form requires identifying all of the writes to
a variable. Therefore, for a program with pointers, SSA conver-
sion requires points-to information to enumerate the indirect writes
to variables through pointers, so full SSA conversion cannot be
done before the points-to analysis. However, since top-level vari-
ables cannot be accessed through pointers, it is possible to convert
the top-level variables into SSA form prior to points-to analysis.
Specifically, we require the program to be converted to strict SSA
form, which enforces that every use of a variable is dominated by
its (unique) definition. We can show that for a program whose top-
level variables are in strict SSA form, a flow-insensitive analysis
provides the precision of flow-sensitive analysis with strong up-
dates for top-level variables:

Proposition 2. Given a program whose top-level variables are
in strict SSA form, a top-level variable p whose unique definition
is at `d, and an arbitrary label `u at which p is used, a flow-
sensitive points-to analysis with strong updates will determine that
pt[`u](p) = pt[`d](p).

Proof. Since the program is in strict SSA form, there is a path in
the ICFG from `d to `u, so pt[`d](p) ⊆ · · · ⊆ pt[`u](p) (using
CFLOW and PRESERVE constraints and the fact that no instruction
other than `d kills p). Notice that in the constraints in Figure 2,
whenever the points-to set pt[`](p) of a top-level variable p appears
on the right-hand side of a constraint, either there is a definition
of p at `, or the left-hand side of the constraint also contains the
same top-level variable (i.e., the constraint is pt[`′](p) ⊆ pt[`](p),

` : p = &a {a} ⊆ pt(p) [ADDROF]
` : p = q pt(q) ⊆ pt(p) [COPY]
` : ∗p = q ∀a ∈ pt(p) . pt(q) ⊆ pt[`](a) [STORE]
` : p = ∗q ∀a ∈ pt(q) . pt[`](a) ⊆ pt(p) [LOAD]
`1 ∈ pred(`2) ∀a ∈ A . pt[`1](a) ⊆ pt[`2](a) [CFLOW]
` ∈ L ∀a ∈ A \ kill(`) . pt[`](a) ⊆ pt[`](a) [PRESERVE]

Figure 5. Constraints for flow-sensitive subset-based points-to
analysis on SSA form

where `′ is some other label). The only label ` for which there can
be a constraint whose left-hand side is not a points-to set of p is
`d, the unique definition of p. Therefore, every path {a} ⊆ · · · ⊆
pt[`u](p) of constraints from a pointer target &a to pt[`u](p) must
pass through pt[`d](p). Since the analysis finds the least solution,
the only pointer targets in pt[`u](p) will be ones for which there is
such a path, and are therefore also in pt[`d](p). That is, pt[`u](p) ⊆
pt[`d](p). Since we also showed that pt[`d](p) ⊆ pt[`u](p), we
conclude that pt[`u](p) = pt[`d](p).

As a result of Proposition 2, we can merge all of the flow-
sensitive points-to sets pt[∗](p) of p into a single flow-insensitive
points-to set pt(p) without reducing the precision of the analy-
sis. The subset constraints after this simplification are shown in
Figure 5. Note that the CFLOW and PRESERVE constraints for a
top-level variable p reduce to the trivial pt(p) ⊆ pt(p) and are
therefore not needed. While this analysis is as precise as the flow-
sensitive analysis, it has regained some of the simplicity of the flow-
insensitive analysis. The space required to store the points-to sets
has been reduced from O(|V||L||A|) to O(|P||A|+ |A|2|L|).

SSA transformation has also been used as a preparatory step for
sparse analysis of top-level variables [17], which follows def-use
chains between top-level variables instead of paths in the control
flow graph. SSA form simplifies these def-use chains.

3.3 Quadratic-space representation of points-to sets of
pointer targets

To achieve space requirements that are quadratic in the size of the
program, we must further reduce the |A|2|L| term in the above
bound, which is due to the size of the points-to sets pt[`](a) of
address-taken variables. The strong update algorithm does this by
taking advantage of the following insights:

• Most of the precision benefit of flow-sensitivity comes from
strong updates.

• A strong update requires the points-to set of the dereferenced
pointer to contain at most one pointer target.

• A singleton points-to set is cheap to store and manipulate.
• Any larger points-to sets will not directly enable strong updates,

so there is little benefit in spending much space or time storing
them.

Therefore, the strong update analysis stores points-to sets of pointer
targets flow sensitively when they are singletons, and only flow
insensitively when they are larger.

To implement this, we define the singleton-set lattice S as
shown in Figure 6. An element of this lattice is either the empty set,
a singleton set, or > indicating some larger set. For each program
point ` and for each pointer target a, the analysis stores an element
of this lattice su[`](a). However, unlike in a constant propagation
analysis, the value of > in the strong update analysis does not im-
mediately imply that a pointer can point to anything. Instead, the
analysis also stores a flow-insensitive points-to set pt(a) for each
pointer target a to be used when the flow-sensitive analysis indi-
cates >. The STORE constraint updates both pt(a) and su[`](a) if



>

{}

{a} {b} {c} · · ·

Figure 6. The singleton-set lattice S

` : p = &a {a} ⊆ pt(p) [ADDROF]
` : p = q pt(q) ⊆ pt(p) [COPY]
` : ∗p = q ∀a ∈ pt(p) . pt(q) v su[`](a) [STORE]

∀a ∈ pt(p) . pt(q) ⊆ pt(a)
` : p = ∗q ∀a ∈ pt(q) . ptsu[`](a) ⊆ pt(p) [LOAD]
`1 ∈ pred(`2) ∀a ∈ A . su[`1](a) v su[`2](a) [CFLOW]
` ∈ L ∀a ∈ A \ kill(`) . su[`](a) v su[`](a) [PRESERVE]

Where ptsu[`](a) ,

{
su[`](a) if su[`](a) 6= >
pt(a) if su[`](a) = >

Figure 7. Constraints for Strong Update Analysis

the points-to set of the variable q being stored is a singleton (and
sets su[`](a) to > if it is not). When the LOAD constraint needs
the points-to set of a at `, it first looks for a possible singleton by
consulting su[`](a); if this returns >, it falls back on the points-to
set pt(a). This is implemented by the ptsu function in Figure 7.
Only the small su sets need to be propagated flow-sensitively along
the control flow edges of the program, so the CFLOW and PRE-
SERVE constraints act only on these sets. The possibly large pt sets
are stored only once for the whole program. As a result, the space
bound of this representation isO(|P||A|+ |A|2 + |L||A|), reflect-
ing the space requirements of the points-to sets of P , the points-to
sets of A, and the sets su, respectively.

Of course, it is possible to construct examples on which this
simplification loses precision compared to a fully flow-sensitive
analysis:
p = &a;
*p = &b;
if(*) *p = &c; else *p = &d;
q = *p;
r = *q;
Both the strong update analysis and the flow-sensitive analysis
will perform strong updates at all three stores. At the final load,
su[`](a) = > due to the control flow merge, so the flow-insensitive
points-to set pt(a) = {b, c, d} will be propagated to r in the strong
update analysis, whereas the flow-sensitive analysis would propa-
gate {c, d}. However, as we will see in Section 6, such examples
are very rare in practice.

Although the asymptotic complexity of the strong update repre-
sentation is low, we should also consider actual behaviour on real-
istic programs. In most programs, only a small number of pointer
targets a will have singleton points-to sets at a given label. Thus
the representation of the sets su[`] at each program point ` should
be worst-case linear not only in |A|, but also in the (much smaller)
subset of pointer targets a for which su[`](a) is a singleton. Since
su[`](a) = > for most values of a, we use a map storing only those
pointer targets whose associated value is not >, and default to >
when we do not find a particular pointer target in the table. There is
one other special case, however. Following a store through a pointer
p whose points-to set is empty, su[`](a) = {} for all values of a.
Therefore, in our implementation, we use a boolean flag to indicate
this special value. When the flag is true, su[`](a) = {} for all val-

ues of a. When the flag is false, a map stores the values of su[`](a)
other than >, and > is returned when a pointer target is not found
in the map. This hybrid representation is compact in all of the com-
mon use cases. As we will see in Section 6, the mean number of
entries in each map is less than 2.2 in all of the SPEC benchmarks.

3.4 Sparse Allocation of Labels
Almost all practical flow-sensitive analyses share the representation
of flow-sensitive facts for successive program points at which the
facts cannot change, and the same can be done for the strong
update analysis. We do this by removing redundant labels from the
program representation. In our discussion thus far, every instruction
was assigned its own unique label `. However, most instructions do
not change the points-to sets of address taken variables a ∈ A.
The only instructions whose outgoing su value is different from
its incoming su value are STORE instructions, instructions with
multiple control flow predecessors (i.e. control flow merges), and
the very first instruction in the program.

When it is certain that the su sets at one instruction are identical
to those at its predecessor, we assign both instructions the same
label. Specifically, we relabel the instructions in the program in
the following way. First, every STORE instruction is assigned a
unique label. Second, at every control flow merge point, we add
a new no-op instruction and give it a unique label. The su value
computed at this label will be the join of the su values at the
control flow predecessors. Third, we add a no-op instruction at
the very beginning of the program and also give it a unique label.
The su value computed at this label will be λa.>, meaning that no
flow-sensitive information is known. Finally, we label every other
instruction with the label of its (unique) control flow predecessor.
As a result, every label in the program can be classified as either
a store, a merge, or a clear (the beginning of the program). In
particular, every LOAD instruction in the program is now labelled
with the same label as the most recent instruction at which the su
value may have changed.

After this relabelling process, it is necessary to update the ref-
erences to program points in the constraints from Figure 7. The
notation ` and ` for the program points immediately before and
after the instruction at ` may no longer designate the appropriate
program points when there are multiple instructions with the same
label `. Instead of distinguishing su[`] and su[`], the strong update
analysis algorithm defines one strong update value su[`] for each la-
bel `. The value su[`] is defined to describe the program state at the
point immediately after the first instruction at label `. By construc-
tion, this first instruction is always a STORE or a no-op. Because
a STORE instruction is always the first instruction at its label, the
su[`] in the STORE constraint from Figure 7 is equivalent to su[`′],
where `′ is the new label of the instruction. Similarly, because a
LOAD instruction always comes after the first instruction at a label,
the ptsu[`] in the LOAD constraint is equivalent to ptsu[`′], where
`′ is the new label of the instruction. Thus, in the remainder of this
paper, we no longer use the notation ` and `, but use simply ` to re-
fer to the program point immediately after the first instruction with
label `.

4. Strong Update Analysis Algorithm
This section presents the strong update analysis algorithm used to
solve the constraints of Figure 7. The algorithm is an extension
of the flow-insensitive subset-based points-to analysis algorithm
already implemented in LLVM and other compilers. We therefore
begin with a brief review of that algorithm, and follow it with an
explanation of the extensions that enable strong updates.

The original flow-insensitive algorithm that solves the con-
straints of Figure 1 is shown in Figure 8. The core data structure,



1 foreach ADDROF constraint p = &a do pt(p) ∪= {a}; worklist ∪= {p} od
2 foreach COPY constraint p = q do graph ∪= {q → p} od
3 while worklist 6= {} do
4 remove a variable v from worklist
5 ∆← pt(v) \ oldpt(v)
6 oldpt(v)← pt(v)
7 foreach STORE constraint ∗v = q do foreach a ∈ ∆ do AddEdge(q, a) od od
8 foreach LOAD constraint p = ∗v do ProcessLoad(p, ∆) od
9 foreach v → w ∈ graph do
10 pt(w) ∪= ∆
11 if pt(w) changed then worklist ∪= {w} fi
12 od
13 od
14 proc ProcessLoad(p, ∆)
15 foreach a ∈ ∆ do AddEdge(a, p) od
16 endproc
17 proc AddEdge(v, w)
18 if v → w 6∈ graph then graph ∪= {v → w}; pt(w) ∪= pt(v); if pt(w) changed then worklist ∪= {w} fi fi
19 endproc

Figure 8. Original Flow-insensitive Points-to Analysis Algorithm in LLVM

graph, maintains a set of edges corresponding to the subset con-
straints being solved. The presence of the edge v → w corresponds
to the subset constraint pt(v) ⊆ pt(w). The graph is initialized
with the constraints corresponding to COPY instructions in Line 2,
and the constraints induced by STORE and LOAD instructions are
added to it as they are discovered during the analysis. The worklist
keeps track of the variables v ∈ V whose points-to set has grown
since the variable was last processed. The body of the main loop in
Lines 3 to 13 is executed for each such variable. In Lines 9 to 12,
the new elements are propagated along the edges in the constraint
graph; as a result, all of the subset constraints with v on their left-
hand side become satisfied. Any other variables whose points-to
sets grow in the process are added to the worklist. Lines 7 and 8
and the ProcessLoad and AddEdge helper procedures add new
subset constraints induced by STORE and LOAD instructions to the
graph. Whenever a new constraint v → w is added, the AddEdge
procedure immediately propagates the existing contents of pt(v)
into pt(w) in Line 18. This is necessary because the normal propa-
gation in Lines 9 to 12 propagates only the part of the points-to set
that was added since the last propagation. The algorithm maintains
the invariant that if for any variable v, there may be a constraint
pt(v) ⊆ pt(w) that is not satisfied, then v is on the worklist. There-
fore, once the worklist empties, all of the constraints are satisfied.
Every iteration increases the size of oldpt(v), and since every oldpt
is a subset of A, the iteration must eventually terminate.

The extended algorithm that enables strong updates and solves
the constraints of Figure 7 is shown in Figure 9. The lines marked
with asterisks are additions to the original flow-insensitive algo-
rithm. Lines not marked with asterisks are identical to or only triv-
ially changed from corresponding lines in the flow-insensitive al-
gorithm of Figure 8.

An important change is in the worklist: in the strong update
algorithm, the worklist holds not only variables v whose subset
constraints need to be reprocessed, but additionally labels ` whose
su constraints need to be reprocessed. More precisely, the algorithm
maintains the following invariants:

1. If there is a constraint pt(v) ⊆ pt(w) that is not satisfied, then
v is on the worklist.

2. If there is a LOAD or STORE instruction dereferencing p that
induces subset constraints not already in graph, then p is on the
worklist.

3. If there is a constraint ptsu[`](a) ⊆ pt(p) induced by a LOAD
that is not satisfied, then a is on the worklist.

4. If there is a constraint of the form su[`](a) v su[`′](a′) that is
not satisfied, then ` is on the worklist.

5. If there is a STORE instruction (` : ∗p = q) that induces the
constraint pt(q) v su[`](a) and this constraint is not satisfied,
then ` is on the worklist.

The first two invariants were already present in the original flow-
insensitive points-to analysis algorithm. Invariant 3 is a variation of
Invariant 1 adapted to the modified constraint involving ptsu that
is induced by a LOAD instruction. Invariants 4 and 5 ensure that
all violated constraints involving su are tracked by the worklist
and eventually satisfied. We will explain how the invariants are
maintained shortly.

First, however, we explain how the algorithm processes a label
` appearing on the worklist. As was explained in Section 3.4, each
label is associated with either a clear, a control flow merge, or a
unique store instruction ` : ∗p = q. The first two possibilities are
handled in the obvious manner in Lines 17 and 18. The interesting
case is that of a STORE instruction. If pt(p) is empty, then su[`]
remains at⊥ (i.e. λa.{}), as was explained in Section 2, so nothing
needs to be done (Line 20). Note that it is not possible for pt(p)
to be empty when su[`] is not ⊥, because all of the code that
modifies su[`] is conditional on pt(p) being non-empty, and pt(p)
never shrinks, so once it is non-empty, it can never become empty
again. When pt(p) is non-empty, the algorithm needs to establish
the constraints ∀a ∈ pt(p) . pt(q) v su[`](a) due to the STORE
instruction. The algorithm first converts pt(q) into an element of
the singleton set lattice of Figure 6, substituting > if pt(q) is not a
singleton set; this is done by the PtToSu procedure. Then a strong or
weak update is done to su[`]. If the points-to set of p is a singleton
{a}, the target a of p is certain to be overwritten by the store, so
the algorithm simply assigns PtToSu(q) to su[`](a), overwriting the
existing value (which came from the control flow predecessor of
` in Line 21). This is a strong update (Line 24). If pt(p) is not
a singleton, weak updates to all the locations a to which p may
be pointing are performed, by joining PtToSu(q) with the existing
value of su[`](a) which came from the control flow predecessor of
` (Line 25).

The processing of LOAD instructions is updated to take advan-
tage of the flow-sensitive information available in su in Lines 34



1 foreach ADDROF constraint p = &a do pt(p) ∪= {a}; worklist ∪= {p} od
2 foreach COPY constraint p = q do graph ∪= {q → p} od
3 while worklist 6= {} do
4 remove a variable v or a label ` from worklist
5 if a variable v was removed then
6 ∆← pt(v) \ oldpt(v)
7 oldpt(v)← pt(v)
8* foreach STORE constraint ` : ∗v = q do worklist ∪= {`} od
9* worklist ∪= affected[v]
10 foreach STORE constraint ` : ∗v = q do foreach a ∈ ∆ do AddEdge(q, a) od od
11 foreach LOAD constraint ` : p = ∗v do ProcessLoad(`, p, ∆) od
12 foreach v → w ∈ graph do
13 pt(w) ∪= ∆
14 if pt(w) changed then worklist ∪= {w} fi
15 od
16* else // a label ` was removed
17* if ` is a clear then su[`]← λa.>
18* else if ` is a merge then su[`]←

⊔
`′∈pred(`) su[`′]

19* else // ` is a store ∗p = q
20* if pt(p) = {} then continue fi
21* su[`]← su[pred(`)]
22* if |pt(q)| ≤ 1 then affected[q] ∪= {`} else affected[q] \= {`} fi
23* if pt(p) = {a} and a ∈ singletons
24* then su[`](a)← PtToSu(q) // strong update
25* else foreach a ∈ pt(p) do su[`](a) t= PtToSu(q) od fi // weak update
26* fi
27* if su[`] changed then
28* worklist ∪= succ(`)
29* foreach LOAD constraint ` : p = ∗q do ProcessLoad(`, p, pt(q)) od
30* fi
31 fi od
32 proc ProcessLoad(`, p, ∆)
33 foreach a ∈ ∆ do
34* if su[`](a) = >
35 then AddEdge(a, p)
36* else pt(p) ∪= su[`](a); if pt(p) changed then worklist ∪= {p} fi fi
37 od endproc
38 proc AddEdge(v, w)
39 if v → w 6∈ graph then graph ∪= {v → w}; pt(w) ∪= pt(v); if pt(w) changed then worklist ∪= {w} fi fi
40 endproc
41* proc PtToSu(q)
42* if |pt(q)| ≤ 1 and pt(q) ⊆ singletons then return pt(q) else return > fi
43* endproc

Figure 9. Strong Update Points-to Analysis Algorithm

and 36. These lines simply implement the ptsu function and the
modified LOAD constraint that uses it from Figure 7. Whereas in
the original flow-insensitive algorithm, a subset constraint a → p
was added to graph unconditionally, it is now done only when
su[`](a) is >; otherwise, only su[`](a) is propagated to pt(p).

The algorithm must ensure that it maintains the invariants enu-
merated earlier. Invariants 1 and 2 are guaranteed by the existing
code from the original flow-insensitive algorithm and by the simi-
lar addition of p to the worklist in Line 36. Invariant 3 for a LOAD
` : ∗p = q can be violated when, for some a ∈ pt(p), either
su[`](a) changes, or su[`](a) = > and pt(a) changes. The first
case is handled by Line 29, which calls ProcessLoad, which up-
dates pt(p) to restore the invariant in Line 36. The second case is
handled the same way as in the original flow-insensitive algorithm:
when su[`](a) becomes >, an edge a → p is added to graph in
Line 35, which establishes the invariant and ensures that it remains
established in response to changes in pt(a) using the normal prop-
agation code of Lines 12 to 15. Invariant 4 applies to constraints

modelling control flow in the program. Line 28 restores the invari-
ant by ensuring that whenever su[`] changes, every control-flow
successor of ` is added to the worklist. Invariant 5 is the most com-
plicated. For a given STORE ` : ∗p = q, the invariant can be invali-
dated when either pt(p) or pt(q) grows. Growth of pt(p) is detected
by the loop on Line 8. Growth of pt(q) is handled by Line 9, by
adding all affected stores to the worklist. The affected array is used
to keep track of all the STORES ` : ∗p = q whose invariant may be
invalidated by a change in pt(q). These are all stores whose right-
hand side is q, but excluding those for which pt(q) was already seen
to be a non-singleton in Line 22 and whose su values are therefore
already>. Line 22 ensures that the affected array is correctly main-
tained.

The invariants ensure that when the worklist is empty, all of the
constraints of Figure 7 are satisfied. A variable v is added to the
worklist only when pt(v) grows. A label ` is added to the worklist
only when some su[`′] grows or when ` labels a STORE ∗p = q and
either pt(p) or pt(q) has grown. Since each pt(v) and su[`] can grow



only a finite number of times, the algorithm eventually terminates
at a fixed point that satisfies all of the constraints. Since each update
of pt(v) or su[`] is the application of a monotone function, and since
the algorithm begins with all of these values at⊥, the fixed point at
which it converges is the least fixed point of all the constraints.

4.1 Worst-case complexity
As we have already discussed in Section 3.3, the strong update al-
gorithm maintains the quadratic space bound of the flow-insensitive
points-to analysis algorithm. We will now show that the strong up-
date algorithm also maintains the cubic time bound of the flow-
insensitive algorithm.

For the worst-case analysis, we assume that the set propagation
operation s1 ∪= s2 takes time proportional to the size of the set
being propagated (i.e. O(|s2|) time).

Lemma 1. The total number of times that a variable is removed
from the worklist is O(|V||A|), and the sum of the sizes of all the
sets ∆ computed in Line 6 is also O(|V||A|).

Proof. A given variable v is added to the worklist only when pt(v)
changes. Since the maximum size of pt(v) is |A|, and elements
are never removed from pt(v), pt(v) can only change |A| times.
Moreover, the sum of all the increases in the size of pt(v) is at most
|A|. Thus a variable is added to the worklist O(|V||A|) times and
the sum of the sizes of ∆ is also O(|V||A|).

Lemma 2. The total number of times that a label is removed from
the worklist is O(E|A|), where E is the number of edges in the
interprocedural control flow graph.

Proof. A given label ` is added to the worklist only when su[`′]
changes for some `′ ∈ pred(`), or, if ` is a store ∗p = q, when
pt(p) or pt(q) changes. The total number of times that the former
can happen is at most 2E|A|, since for any given a ∈ A, su[`′](a)
can change at most twice (from an empty set to a singleton, then
to >). The total number of times that the latter can happen is 2|A|
for any given store, or a total of 2|L||A| times. Since every label
in the control flow graph has a predecessor (else it would not be
reachable), |L| < E, and so the total number of times that a label
can be added to the worklist is O(E|A|).

Theorem 1. The worst-case running time of the strong update
algorithm is O(E|V|2), where E is the number of edges in the
interprocedural control flow graph. Thus it is cubic in the size of
the program being analyzed.

Proof. By Lemma 1, the block from Line 6 to 15 is executed
at most O(|V||A|) times. Most of the lines in this block take at
most O(max{|V|, |L|}) time. The only exceptions are Lines 10
and 13, which take O(|L||∆|) and O(|V||∆|) time. Since the sum
of the sizes of all the ∆ sets is O(|V||A|), the total time spent
in these lines is O(|V||A|(|L| + |V|)). Since |V| is in O(|L|),
the total amount of time spent in the block from Line 6 to 15 is
O(|V||A||L|).

By Lemma 2, the block from Line 17 to 26 is executed at most
O(E|A|) times. All of the operations in it complete inO(|A|) time,
so the total time spent in this block is O(|A|2|L|).

For each load ` : p = ∗q, ProcessLoad is called only when su[`]
or pt(q) changes, each of which can happen O(|A|) times. Each
call to ProcessLoad completes in O(A) time. Therefore the total
time spent in ProcessLoad is O(|A|2|L|).

AddEdge does a propagation takingO(|A|) time, but only when
a new edge is added to graph, which can happen at most O(|V|2)
times, so the total time spent in AddEdge is O(|V|2|A|).

>

⊥

p q r · · ·

Figure 10. The top-level variable equivalence lattice

All of the bounds on the total time spent in each section of the
algorithm are in O(E|V2|), so the overall algorithm completes in
O(E|V2|) time.

In general graphs, the number of edges can be up to quadratic
in the number of vertices. However, it is well known that control
flow graphs are very sparse, since most instructions have one suc-
cessor, some have two (conditional branches), and few rare ones
have more (switch statements and indirect function calls). Other
complexity analyses of flow-sensitive points-to analysis also rely
on this empirical fact [13].

4.2 An improvement: equivalence to top-level variables
The precision of the strong update algorithm can be further im-
proved “for free” by a small extension to the lattice from which
su[`](a) values are chosen. Given a store ∗p = q where pt(p) =
{a}, the lattice presented so far (and shown in Figure 6) can rep-
resent the fact that pt(a) is a singleton set after the store, if pt(q)
happens to be a singleton set. However, the analysis can be easily
extended to track that pt(a) = pt(q) even when pt(q) is not a sin-
gleton, and this extension has no effect on the asymptotic complex-
ity. In the extended analysis, su[`] maps each address taken variable
a to a pair 〈α, β〉. Theα component is a value from the singleton set
lattice, as in the original analysis. The β component is an element
of the lattice shown in Figure 10: it is either a top-level variable p,
or > or ⊥. For example, the pair su[`](a) = 〈{b}, p〉 indicates that
at `, pt(a) = {b} = pt(p), while su[`](a) = 〈>, p〉 indicates that
although pt(p) may not be a singleton set, pt(a) = pt(p).

To adapt the algorithm to this extended lattice, only minor
changes are needed. The if statement in Line 42 is updated to return
〈pt(q), q〉 in the then clause and 〈>, q〉 in the else clause. To take
advantage of the additional information, an extra else-if clause is
added to the if statement in Line 34. When su[`](a) is 〈>, q〉 but not
〈>,>〉, this new clause calls AddEdge(q, p) so that the contents
of pt(q) (which the su information says are equal to pt(a)) are
propagated to pt(p).

This simple extension increases the height of the lattice that
su[`](a) ranges over from 3 to only 4, so it does not affect the
asymptotic complexity of the algorithm and has a negligible effect
on actual running times. Knowing that pt(a) = pt(p) when pt(p) is
not a singleton may not directly enable additional strong updates,
but it can yield some improvement in analysis precision.

4.3 Constraint optimization
For flow-insensitive points-to analysis, several techniques have
been developed to speed up the analysis by simplifying the sub-
set constraints [12, 15, 16, 26, 28]. With suitable modifications,
these techniques can also be used for strong update analysis. We
have adapted and implemented strong update versions of the three
techniques used in LLVM: Hash-based Value Numbering (HVN),
HVN with Union (HU), and Hybrid Cycle Detection (HCD).



4.3.1 HVN and HU
Both HVN and HU, as well as the earlier Off-line Variable Substi-
tution (OVS) [28], are intended to simplify the original constraints
before the constraint solving begins. All three of the techniques
perform the following two steps:

1. Identify top-level pointers whose points-to sets are known to be
equal.

2. Merge the nodes representing these top-level pointers and up-
date all the subset constraints to refer to the newly merged node.

The techniques differ in how aggressive they are in Step 1: each
technique finds possibly different sets of pointers that are provably
equal.

All three techniques are based on the idea of a subset graph [28]
(also called the pointer assignment graph [25] and the offline con-
straint graph [16]). Nodes in the graph are top-level pointers p,
addresses &a, and dereferences ∗q, and edges in the graph corre-
spond to the ADDROF, COPY, and LOAD statements from Figure 1.
For each node of the subset graph, we can define a subset-graph
points-to set ptSG as follows: ptSG(p) = pt(p), ptSG(&a) = {a},
ptSG(∗q) =

⋃
a∈pt(q) pt(a). All three techniques depend only on

the following property of the subset graph.

Proposition 3. For every top-level pointer p, pt(p) is the union of
ptSG(α), where α ranges over all predecessors of p in the subset
graph.

The techniques merge pointers appearing in a common cycle
in the subset graph and pointers having similar ancestors in the
subset graph. The three techniques differ in their precise definition
of similar ancestors and the method used to compute them. HU
finds more pointer equivalences than HVN, but HU takes cubic
time while HVN takes only quadratic time. Therefore, LLVM uses
the more aggressive HU, but precedes it with a pass of HVN to
reduce the size of the input to HU and therefore its cost.

Thanks to the use of SSA form as described in Section 3.2, the
strong update algorithm models top-level pointers flow-insensitively.
Therefore, the strong update analysis can merge top-level pointers
(Step 2 above) in the same way as the flow-insensitive algorithm. It
is only Step 1 that must be adapted to the strong update algorithm,
since the increased precision may cause different pointers to have
equal points-to sets than in a flow-insensitive analysis.

The only change needed is to separate dereference nodes by
program point label (i.e. change nodes of the form ∗q to the form
` : ∗q), since in the strong update algorithm, the result of a load
from ∗q depends on the location ` of the load. The definition of
ptSG is changed to include the label ` as follows: ptSG(` : ∗q) =⋃

a∈pt(q) ptsu[`](a). This updated definition satisfies Proposition 3,
so OVS, HVN, and HU can be safely applied without further
modifications.

4.3.2 HCD
Unlike OVS, HVN, and HU, the HCD technique is intended to
find subset constraint cycles that do not arise until the analysis
begins to solve the constraints. Suppose there is a path ∗p → q →
. . . → r in the subset graph and a store ∗p = r. Before constraint
solving, HCD creates a data structure compactly recording all such
paths. During constraint solving, when some address a is added to
pt(p), the following constraint cycle is created: pt(a) ⊆ pt(q) ⊆
. . . ⊆ pt(r) ⊆ pt(a). When this happens, the top-level pointers
on the path from q to r can be merged. HCD also “merges” the
address node a with the top-level pointers q to r, but we must be
careful in interpreting the meaning of “merging” an address a and
a top-level pointer p. HCD merges only the representation of the
points-to sets pt(p) and pt(a). It does not merge the notion of the

address a; ADDROF constraints involving &a are not changed. If
two addresses a and b are both merged with p, although pt(a) is
known to equal pt(b), the addresses a and b are still distinct, and
membership of a in a given points-to set is still independent of
the membership of b in that points-to set. When merging a top-
level pointer p with an address a, by convention, we can always
choose the top-level pointer p as the representative of the merged
node. This has the advantage that none of the instructions from
Figure 1 involving p need to be rewritten with a, and preserves the
property that all instructions involve only top-level pointers (except
the right-hand side of ADDROF, of course).

The strong update analysis analogue of an HCD path is a path
` : ∗p → q → . . . → r and a store ` : ∗p = r at the
same label `. When a is added to pt(p) during constraint solving,
the following constraint cycle is created: ptsu[`](a) ⊆ pt(q) ⊆
. . . ⊆ pt(r) ⊆ ptsu[`](a). Thus the top-level pointers q to r
can be merged. The flow-insensitive HCD also merges pt(a) with
pt(q); the analogous merge of su[`](a) and pt(q) cannot be done in
the strong update analysis because su[`](a) is not a points-to set.
However, such a merge is also unnecessary because unlike pt(a) in
the flow-insensitive analysis, which is of size Θ(|A|), su[`](a) has
a constant size of only a few bytes.

5. Implementation
We have implemented the strong update algorithm by extending the
existing flow-insensitive subset-based points-to analysis that is in-
cluded in the LLVM compiler infrastructure [24], version 2.6. In
the rest of this paper, we call this base analysis “flow-insensitive”,
even though some flow sensitivity is achieved by analyzing an in-
termediate representation in SSA form as discussed in Section 3.2.
The base analysis is an implementation of the flow-insensitive al-
gorithm of Figure 8 using sparse bit vectors to represent points-to
sets, and with extensions for the constraint optimizations discussed
in the previous section. Thus it was straightforward to extend the
implementation to implement the strong update analysis algorithm,
with only a few issues that we will explain in this section. Our
implementation is publicly available at http://plg.uwaterloo.
ca/~olhotak/su.

An implementation detail that is important for soundness is
identifying which address-taken variables are completely overwrit-
ten by strong updates (i.e. what the singletons set should be). First,
we strongly update only variables that are the same size as a pointer,
because, for example, a store to an array of multiple pointers would
only update one element of the array, so the analysis should not
strongly update the whole array. Second, we strongly update only
global variables and local variables of procedures that are not re-
cursive (either directly or mutually through other procedures). A
local variable of a recursive procedure can have many instances on
the stack at the same time, and a store only updates one of those
instances, so a strong update would be unsound. Recursive proce-
dures are found by detecting cycles in the call graph built ahead
of time by LLVM, which conservatively assumes that a procedure
pointer could point to any procedure whose address has been taken.
Finally, we never apply strong updates to dynamically allocated
variables, since multiple instances of them can be created by re-
peating the allocation.

To test the correctness of the implementation, we enabled the
LLVM transformations that take advantage of points-to informa-
tion and used the analysis to compile the SPEC CINT 2000 and
SPEC CPU 2006 benchmarks [33] that are written in C. The SPEC
harness validated that all of the compiled benchmarks generated the
correct output. On these benchmarks, with these test inputs, and for
these LLVM transformations using the analysis results, our imple-
mentation of the strong update analysis is sound.



To compare the results of the strong update analysis with fully
flow-sensitive analysis results, we also expressed the flow-sensitive
analysis constraints of Figure 2 in Datalog. We used the LogicBlox
Datalog implementation and applied the manual Datalog optimiza-
tion techniques suggested by Bravenboer and Smaragdakis [3]. We
extracted the input to the Datalog program from the LLVM points-
to analysis to ensure that both analysis implementations were using
the same input constraints. This setup enabled us to compare the
strong update analysis results with fully flow-sensitive results.

6. Empirical Evaluation
We compared the strong update analysis with the original flow-
insensitive points-to analysis by running both of them on the
C benchmarks from the SPECINT 2000 and the SPECCPU 2006
suites [33]. The first column of Table 1 gives the name of the bench-
marks, and the following four columns give various measurements
of the size of each benchmark. Column 2 shows the number of
lines of source code. The next three columns show the number of
top-level pointers, the number of address-taken pointer targets, and
the number of labels in the sparse labelling that was defined in Sec-
tion 3.4. These counts are taken after applying the HVN and HU
constraint simplifications discussed in Section 4.3.

The next three columns show the running times of the flow-
insensitive analysis and the strong update analysis, and the relative
time difference between them. The times shown are means of
ten runs. The time differences have a geometric mean of a 5%
slowdown and range from a speedup of 9% to a slowdown of 22%.
The 9% speedup on 400.perlbench is due to the smaller points-to
sets that need to be propagated as a result of the increased precision
of the strong update analysis. These results confirm that the speed
of the strong update analysis is comparable to that of the flow-
insensitive analysis not only in theory, but also in practice.

For information only, the next two columns show the running
times of two flow-sensitive analysis implementations that are not
directly comparable with LLVM’s built-in flow-insensitive analy-
sis implementation and our strong update adaptation. The FS col-
umn shows the running time of the Datalog/LogicBlox implemen-
tation of the fully flow-sensitive analysis. This analysis runs on the
same input constraints as the analyses in the FI and SU columns,
and therefore produces comparable output (except for the added
precision from flow sensitivity). However, this implementation is
written in Datalog, whereas the LLVM implementation is written
in C. On four of the benchmarks, the fully flow-sensitive analy-
sis did not complete even after running for 48 hours. The HL [17]
column shows the running time of Hardekopf and Lin’s SSO semi-
sparse analysis [17]. Ben Hardekopf provided an implementation
and helped us make it run on the SPEC benchmarks. In theory, the
HL analysis should compute the same output as the FS analysis,
satisfying the constraints from Figure 2. Like the LLVM imple-
mentations of FI and SU, the HL analysis is written in C, but there
are important differences that affect performance and make it im-
possible to directly compare the analysis output:

1. The LLVM implementation contains code that defines the sets
of top-level variables (P) and possible pointer targets (A) and
extracts ADDROF, COPY, STORE, and LOAD constraints out
of the intermediate representation. The same extracted con-
straints are used as input to the FI, SU, and FS implementations.
The HL implementation does not use this constraint generation
code, but implements its own definition of P andA and its own
extraction of an analogous but different set of constraints. Thus
the inputs to the analysis are different, and the intermediate and
final points-to sets are different in cases where top-level vari-
ables and pointer targets are modelled differently in the input
constraints.

2. The LLVM implementation of FI and our adaptation SU use
sparse bit vectors to represent points-to sets. The HL imple-
mentation uses binary decision diagrams (BDDs).

3. The SU implementation is built on top of the LLVM 2.6 version
of the FI analysis. The HL implementation is built on top of
LLVM 2.5.

The final column shows the space usage of the strong update
analysis in terms of the number of tuples 〈`, a, b, p〉 such that
su[`](a) = 〈{b}, p〉. This metric was chosen because it is propor-
tional to the size of the su sets, the only data structure of significant
size added in the transformation of the flow-insensitive analysis to
the strong update analysis. This data structure is an array of maps,
one for each label `. The last column in the table shows the total
number of entries in these maps. Each such entry records three 32-
bit numbers representing a, b, and p. These maps could be imple-
mented using different data structures. Even assuming a 2x space
overhead for the map data structure, for the largest benchmark
(403.gcc), the strong update analysis uses at most 6.1 MB more
memory (268375 entries times 24 bytes) than the flow-insensitive
analysis. The overall memory usage is lowered by the reduction
in points-to set sizes due to the increased precision of the strong
update analysis.

Table 2 compares the strong update analysis with the fully
flow-sensitive analysis. The three columns under Stores – Strong
Updates measure the number of store instructions in the program at
which a strong update can be performed (i.e. the points-to set of the
dereferenced pointer contains only one target, and this target is in
the singletons set). As discussed in Section 3.1, strong updates are
the main benefit of a flow-sensitive analysis compared to a flow-
insensitive analysis. The FS column counts the number of stores
at which the flow-sensitive analysis performs a strong update. In
theory, the strong update analysis can perform a strong update at
some subset of these stores; the size of this subset is shown in
the SU column. In total (excluding the four benchmarks on which
the flow-sensitive analysis does not complete), the strong update
analysis performs 98% of the strong updates that the flow-sensitive
analysis performs.

The right section of the table presents counts of loads in each
benchmark. Load instructions are where any difference between
analyses is observed because they are the only instructions in the
LLVM IR in which address-taken variables are read. Every other in-
struction works directly only with top-level variables; if an address-
taken variable is to be used, it must first be loaded into a top-level
variable using a load instruction. The FS column in the table counts
the number of loads ` : p = ∗q at which the flow-sensitive points-
to set of ∗q is strictly smaller than the flow-insensitive points-to
set of ∗q (i.e. ∪a∈pt(q)pt[`](a) ( ∪a∈pt(q),`′∈Lpt[`′](a)). At these
loads, a smaller (i.e. more precise) set is propagated to p than
would be if the analysis were flow-insensitive. The SU column
presents the analogous counts for the strong update analysis (i.e.
∪a∈pt(q)ptsu[`](a) ( ∪a∈pt(q)pt(a)). In total, of all the loads at
which the fully flow-sensitive propagates more precise sets than a
flow-insensitive analysis would, on 98% of them the strong update
analysis does too.

The benefit that a given client analysis derives from flow sensi-
tivity in the points-to analysis needs to be evaluated separately for
each proposed client. Our study has shown that the strong update
analysis improves points-to precision at 98% of program points at
which a flow sensitive analysis does. Thus we conclude that if a
client analysis benefits from flow sensitivity in the points-to analy-
sis, then it will similarly benefit from the strong update analysis.



Analysis Time (s) Space
Benchmark kSLOC |P| |A| |L| FI SU slowdown FS HL [17] SU
164.gzip 8.6 1740 971 2818 0.13 0.14 3% 7 0.50 1347
175.vpr 17.8 7241 2896 7025 0.51 0.54 6% 46 1.02 7552
176.gcc 230.5 104663 24518 117121 41.86 45.79 9% — 97.72 142152
181.mcf 2.5 1092 262 821 0.08 0.08 6% 3 0.42 1745
186.crafty 21.2 4145 2345 10671 0.40 0.41 2% 45 0.76 1037
197.parser 11.4 6741 2442 8509 0.76 0.92 21% 1206 2.39 9262
253.perlbmk 87.1 45803 11544 49584 13.75 16.74 22% — 52.88 37284
254.gap 71.5 53285 11560 45431 8.81 9.47 8% 7029 11.47 55112
255.vortex 67.3 34531 14305 30759 4.39 4.52 3% 1665 7.68 17802
256.bzip2 4.7 951 577 1590 0.08 0.09 1% 3 0.46 325
300.twolf 20.5 13423 3255 11650 1.20 1.25 4% 100 1.88 12004
400.perlbench 169.9 89661 21441 93792 66.99 60.71 -9% — 306.70 70229
401.bzip2 8.3 3265 915 3243 0.28 0.30 9% 10 0.67 4161
403.gcc 521.1 240239 55012 272420 190.17 213.01 12% — 3526.02 268375
429.mcf 2.7 1096 260 823 0.08 0.09 12% 2 0.44 1744
433.milc 15.0 5269 2343 5954 0.43 0.45 5% 30 1.04 4260
445.gobmk 197.2 54022 43881 41769 23.42 23.33 0% 7223 41.80 12391
456.hmmer 36.0 20240 4982 17186 2.10 2.22 6% 229 3.11 19713
458.sjeng 13.9 2591 1551 6544 0.26 0.27 2% 20 0.62 1687
462.libquantum 4.4 1742 912 1652 0.14 0.14 4% 5 0.49 534
464.h264ref 51.6 26884 6817 22951 3.35 3.41 2% 547 3.28 18685
470.lbm 1.2 337 150 322 0.05 0.05 -4% 2 0.42 228
482.sphinx3 25.1 12410 4013 10332 1.01 1.06 5% 115 2.51 11778

Table 1. Benchmark characteristics, analysis running times and space requirements of strong update and flow-insensitive analysis

Stores Loads
Total Strong Updates Total More Precise

Benchmark SU FS % SU FS %
164.gzip 246 235 235 100% 564 12 12 100%
175.vpr 916 802 802 100% 3757 16 16 100%
176.gcc 26776 23061 — — 88050 690 — —
181.mcf 304 204 207 99% 780 3 3 100%
186.crafty 509 405 423 96% 1493 13 13 100%
197.parser 2024 1355 1584 86% 5147 6 6 100%
253.perlbmk 14926 9175 — — 41091 54 — —
254.gap 12182 10060 10067 100% 39089 358 361 99%
255.vortex 4511 3786 3942 96% 17815 48 48 100%
256.bzip2 30 29 29 100% 270 0 0 100%
300.twolf 1829 1446 1446 100% 9718 0 0 100%
400.perlbench 25196 16899 — — 79543 105 — —
401.bzip2 316 220 237 93% 2139 22 22 100%
403.gcc 62134 40215 — — 204112 149 — —
429.mcf 300 199 202 99% 784 3 3 100%
433.milc 944 893 893 100% 2360 0 0 100%
445.gobmk 2206 1931 1955 99% 7043 3 4 75%
456.hmmer 2880 2216 2267 98% 13925 142 152 93%
458.sjeng 120 114 115 99% 677 0 0 100%
462.libquantum 171 140 147 95% 736 0 0 100%
464.h264ref 2143 1778 1844 96% 18944 354 363 98%
470.lbm 53 45 45 100% 134 0 0 100%
482.sphinx3 1906 1542 1549 100% 7471 17 17 100%

Table 2. Comparison of strong update and flow-sensitive analysis



7. Related Work
The study of flow-sensitive pointer analyses has a long history.
Choi et al. [6] presented an early flow-sensitive alias pair analysis as
an instantiation of the standard dataflow analysis framework [23].
The analysis was applied on a Sparse Evaluation Graph [5]; that
is, a control flow graph with irrelevant nodes removed. In order to
improve efficiency further, Choi et al. [7] devised one of the first
extensions of SSA form [9] to represent indirect writes through
pointers. Their Factored SSA (FSSA) form allowed “preserving”
definitions, analogous to weak updates that may or may not over-
write the value of a variable.

Chow et al. [8] proposed a different extension of SSA form for
handling pointers, Hashed SSA (HSSA) form. This intermediate
representation added two new kinds of nodes. A χ node was placed
after every store to indicate that address-taken variables may or may
not have been updated (similar to a preserving definition). A µ node
was used to indicate a possible use of an address-taken variable by
a load.

Emami et al. [11] defined a points-to analysis that was not only
flow-sensitive but also context-sensitive. Each points-to relation-
ship was annotated as either possible or definite to enable strong
updates. Like earlier analyses, the analysis was implemented as a
dataflow analysis on the control flow graph.

Wilson and Lam [37] presented a context-sensitive pointer
analysis based on partial transfer functions (PTF) summarizing
the effects of procedures. Each PTF was constructed using a
flow-sensitive analysis, which was efficient because it was intra-
procedural. The PTFs were then combined to obtain context-
sensitive interprocedural results. They presented experimental re-
sults on programs of up to 5 kLOC. This work sparked a line of sim-
ilar points-to analyses that were flow-sensitive intra-procedurally
and generated procedure summaries that could be instantiated at
call sites [29, 35, 36]. However, these analyses performed strong
updates only on top-level variables.

Hasti and Horwitz [18] proposed a technique that iteratively
builds SSA form for variables with known aliasing, then performs
alias analysis to increase the set of variables for which aliasing
is known. It remains an open question whether the fixed point of
this technique matches the results of a fully flow-sensitive alias
analysis.

Hind and Pioli [20, 21] performed an empirical study of the ben-
efits of flow sensitivity in alias analysis as well as of techniques to
improve its performance. They found that flow sensitivity improves
precision for a small subset of pointers.

Goyal [13] derived a flow-sensitive points-to analysis algorithm
that uses a fine-grained worklist to run in asymptotically cubic time
and cubic space in the worst case. The worst-case cubic bounds are
likely to be achieved on typical programs because the algorithm
explicitly generates a full points-to graph for each program point,
and points-to graphs are typically quadratic in size. In contrast, the
strong update algorithm is similar in both structure and empirical
behaviour to flow-insensitive analysis, which has been shown to
run in quadratic time in practice [30]. We are not aware of any
implementation or empirical evaluation of Goyal’s algorithm, but
Staiger-Stöhr [31, 32] designed and implemented a similar algo-
rithm with the same asymptotic complexity.

Zhu and Calman [38] took initial steps towards using Bi-
nary Decision Diagrams (BDDs) [4] to efficiently represent flow-
sensitive points-to sets.

Tok et al. [34] presented a technique to speed up flow-sensitive
dataflow analysis on a control flow graph using computed def-use
chains for address-taken variables. As the analysis discovers new
def-use chains, the chains are used to reorder the instructions in the
worklist to reduce the analysis time.

Hardekopf and Lin [17] presented a semi-sparse algorithm to
improve the running time of a fully flow-sensitive subset-based
points-to analysis. The analysis was sparse in that it did not pro-
cess control flow graph nodes as a whole, but instead followed
def-use chains to directly find the stores that produce the values
for each load. Because def-use chains for address-taken variables
are not known until the analysis completes, the analysis was semi-
sparse in that it was sparse only on top-level variables. The analysis
used BDDs to keep the memory requirements of full flow sensi-
tivity manageable. It was the first fully flow-sensitive subset-based
points-to analysis that scaled to benchmarks of hundreds of kLOC.

8. Conclusion
We have presented a subset-based points-to analysis algorithm
that combines the key advantages of flow-insensitive and flow-
sensitive analyses. Like a flow-sensitive analysis, the algorithm
enables strong updates, which are the main precision benefit of
flow sensitivity. Like a flow-insensitive analysis, the strong update
algorithm requires, in the worst case, quadratic space and cubic
time. We have shown that its running time in practice is compara-
ble to that of the flow-insensitive analysis. We have also shown that
the strong update analysis performs 98% of the strong updates of a
fully flow-sensitive analysis, and propagates more precise points-to
sets at 98% of the loads at which a fully flow-sensitive analysis
does. These benefits of the algorithm stem from the notion that it is
the precise points-to sets that enable strong updates (and therefore
further precision), yet it is also these sets that can be manipulated
efficiently. Thus the strong update algorithm focuses attention on
these sets to gain the precision benefits of flow sensitivity and the
efficiency benefits of flow insensitivity.
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