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Abstract

AspectJ, an aspect-oriented extension of Java, is becanureps-
ingly popular. However, not much work has been directed &t op
mising compilers for AspectJ. Optimising AOP languagevioles
many new and interesting challenges for compiler writems, this
paper identifies and addresses three such challenges.

First, compilingaround advice efficiently is particularly chal-
lenging. We provide a new code generation strategwfoundad-
vice, which (unlike previous implementations) both avdius use
of excessive inlining and the use of closures. We show itdeéad
more compact code, and can also improve run-time perforeaanc
Second, woven code sometimes includes run-time tests &-det
mine whether advice should execute. One important caseeis th
cflow pointcut which uses information about the dynamic calling
context. Previous techniques foflow were very costly in terms

1. INTRODUCTION

Aspect-oriented programming is a new programming paradign
is rapidly growing in acceptance, in large part due to theuteity

of AspectJ [4], an aspect-oriented extension of Java thebris-
patible with existing Java programs. Aspect-oriented mogning
encompasses many different language features, which caepse
arated into two categoriestatic features, essentially a version of
open classes; ardiynamicfeatures. While the static features incur
no substantial performance penalty, that is not necegghslcase
for the dynamic features. New optimisation strategies eggired
to improve the performance of programs written using theadyic
features of AspectJ.

1.1 Challenges
The execution model for (the dynamic features of) Aspect] is

of both time and space. We present new techniques to minimisethat execution of the main program is monitored for certain

or eliminate the overhead afflow using both intra- and inter-
procedural analyses. Third, we have addressed the genelal p
lem of how to structure an optimising compiler so that triadial
analyses can be easily adapted to the AOP setting.

We have implemented all of the techniques in this paper in
abg our AspectBench Compiler for AspectJ, and we demonstrate
significant speedups with empirical results. Some of ouripies
have already been integrated into the production Aspechpiter,
ajc1.2.1.
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programmer-specified events. When these occur, contrelsseu

to advice a special kind of method that contains the extra code
to be executed. Advice can be run before or after the evemt tha
triggers it, or it can be executed “around” it (instead of it)

The monitoring of the base program to find points where advice
should apply can be expensive. Of course, the Aspect] lgsdas
been designed so that most of the conditions that causeeaitMie
triggered can be determined statically, and so do not indvee-
heads. A nice explanation from the viewpoint of partial easion
can be found in [18].

However, some features of Aspect] require the insertion of
dynamic checks in the base programs, resulting in perfocman
loss. Furthermore, “around” advice, which we describe irrano
detail in Section 2, is a powerful language feature that fiscdit
to implement efficiently. It has been shown that the comxmanf
these factors can result in substantial overhead in Aspeagiams
[10]. Here overheadshould be understood as the additional cost for
matching events to advice, not the execution of advice cseéf.i
In addition, we must considespace overheadrhis is the size of
the extra code introduced when aspects are applied to agmnogr

These problems highlight the need for novel aspect-specific
optimisation strategies.

1.2 Theajc Compiler

The reference implementation of AspectJ, originally depet by
the language’s designers, is thie compiler [4], maintained as part
of the Eclipse project. Thajc compiler has been designed with
compilation speed in mind, and supports incremental catipil.
These design aims reduce the opportunities for optimisatiad
indeedajc performs only a small amount of intraprocedural analy-
sis and no whole-program analysis. This results in suliataver-



head in programs produced lyc when using certain features of
AspectJ [10].

1.3 The AspectBench Compiler gbc)

The observation that aspects can introduce substantiahexgs
has prompted us to build a new compiler for the AspectJ laggua
the AspectBench Compilealyg [1, 5], which is freely available
under the GNU LGPL. Whileabc uses a weaving strategy simi-
lar to ajc in many ways, by contrast its design was motivated by
two goals: to beextensiblg(so that new features can be added to
the input language) and provide a poweréualysis and optimi-
sation frameworkThis second feature, which aims to reduce the
overheads of AOP, is the main focus of this paper.

To achieve thisabcuses the Soot program analysis and trans-
formation framework [24] as a backend. Soot provides a typed
three-address intermediate representation (called djnapid a li-
brary of standard program analyses. In addition, it is ghtéor-
ward to define new analyses in Soot, both intraproceduralirand
terprocedural. In particular, the Jimple IR is extremelylvseited
to program analysis and transformation.

1.4 Contributions

This paper is the first systematic study of the analysis and op
misation of aspect-oriented programs, in particular ferAlspectJ
language. We present the following novel contributions:

¢ A novel implementation strategy foatound advice’. Around
advice is executed instead of the event that triggered ititQu
plementation strategy avoids the use of closures in all douies
pathological examples, unlike earlier implementationkjchv
relied heavily on closures, and does not require inlininghwi
the associated risk of code bloat. Furthermore, our impteme
tation allows us to optionally run a postpass inliner whialm c
selectively inline.

e A number of intraprocedural optimisations to reduce the-ove
heads of ¢flow pointcuts’. This feature of AspectJ is used to
intercept method calls in the dynamic scope of others, and it
naive implementation can be very costly.

¢ An interprocedural analysis to completely eliminate therev
heads of usingflow in most cases. This analysis and the asso-
ciated transformations illustrate our final contribution:

e A general technique for leveraging analyses and transforma
tions for pure Java on AspectJ programs. The technique con-
sists of first compiling the program naively, possibly insgy
too many dynamic checks (for the applicability of advicepin
the base program. We then analyse the resulting interneediat
code, and reconsider the decisions to insert dynamic checks
based on the analysis results.

All these contributions have been implementedibt and, at our
suggestion, some have also been adopteajbyVe present exper-
iments to confirm that the above techniques can result in atiam
improvements in run time as well as code size. While this pape
lustrates the techniques in the context of the AspectJ Egguthey
equally apply to other aspect-oriented programming laggsa

1.5 Outline

This paper is structured as follows. We first briefly introelube
relevant features and terminology of AspectJ in Sectiorh2nTwe
describe the optimisations usedacs implementation ofround
advice in Section 3. Subsequently, optimisations speaifithe
cflow construct of AspectJ are given in Section 4. Section 5 sum-
marises further efficiency improvements achievedabg Finally,

we give related work in Section 6 and conclude in Section 7.

2. BACKGROUND AND DEFINITIONS

The execution events in an AspectJ program that can be medito
and associated with advice code are cajtéd points. A join point

is a span of time in the execution of the program. Example join
points are a call of a method, an execution of a method bodgidh fi
read or an execution of an exception handler. For any péatifin
point, the textual part of the program executed during tine $pan

of that join point is called thehadow of the join point.

AspectJ contains a query language for picking out join oint
Such a query is called pointcut. An advice declaration consists
of an advice kind ljefore, after, around), a pointcut, and a body
of code, callechdvice. The advice is to be executed before, after,
or instead of any join point which matches the pointcut. \dven
multiple pieces of advice apply at the same join point, pdecee
rules determine the order in which they execute.

A pointcut consists of a number @bintcut designators con-
nected by boolean connectives. Each pointcut designattithisr
static (defining a set of join point shadows) or dynamic (degin
a run-time condition). Some examples of static pointcuéscatl
andexecution which match all calls to and executions of a method
matching a patternyithin, which matches all join points within
class matching a pattern; am@ndler, which matches exception
handlers. Some examples of dynamic pointcutsaags (a), which
matches when actual arguments of a method have specified run-
time types;if (e), which matches when the arbitrary Java expres-
sione evaluates to true; aneflow (p), which matches when a join
point is within the dynamic scope of a join point matched binpo
cut p. In addition to testing runtime conditions, dynamic poiritc
designators may also bind context values to variables tertram
available to the advice code and to the cod# jointcuts. For in-
stance, thargs pointcut designator may bind the actual arguments.

AspectJ also contains standalone pointcut query constrlibe
declare error and declare warning constructs take a pointcut
consisting of only static pointcut designators along withessage.

If the pointcut matches any join point shadow, the message is
printed as a compile-time error or warning, respectively.

The process of compiling AspectJ programs is knowmwees/-
ing. The base program and advice declarations are woven tagethe
into one program which behaves as if the aspects were mgtor
execution of the base program, and invoking the relevaritadv

Weaving is a two-step process. The first stgpntcut match-
ing, checks for each possible join point shadow in the progratin an
each advice declaration, whether the pointcut could phssiatch
a join point at that shadow. If so, it constructsiymamic residue
of the runtime checks to be performed at the shadow to datermi
whether the pointcut actually matches.

The second step &dvice weaving. At each join point shadow
where a piece of advice may apply, code is generated to egalua
the dynamic residue and, if it matches, to bind the contekiesgm
and invoke the advice.

3. OPTIMISING AROUND ADVICE

Most advice in AspectJ programs adds some code to a join,point
either before or after itaround advice is unique in that it is
executednsteadof each join point it applies to. It can, however,
invoke the original join point at any time by using moceed
statement.

The following caching aspect demonstrates the usefulness
of this interception mechanism. The aspect intercepts dalla
method nameébo and only executes a call if the result is not in the
cache already:
aspectCache{

pointcut methodsToCache(Object arg) :
call(Object foo(Object)) &&args(arg);



Objectaround(Object arg) : methodsToCache(akg)
if (lcacheContains(arg))
setCache(argyroceedarg));

return getCachedValue(arg);
booleancacheContains(Object arg)..}

void setCache(Object arg, Object valye).}
Object getCachedValue(Object ar§)..}

Like all forms of advice around advice can have arguments.

3.2.1 Closures

We shall now give a brief description of the closure strategy
This approach works by defining a suitable interface type (or
class type) for each advice method, as follows:

public interface Around$1{
public ret-typeproceed$lqrg-typeargl, ...);}

Then, all calls tgproceedare translated to calls on this closure
interface. Note that the arguments passegrt@eedcan be differ-
ent from the arguments that were passed into the advice ohetho

Each of these arguments has to be bound to an exposed Contexbublic classAspectClasg

value by the pointcut expression: in the above examguigs(arg)
binds the argument dboto arg. A proceedstatement looks like a
method call with the same number of arguments as the advide, a
it executes the original join point with the bound contexiues
set to the arguments of theroceed call. The proceed call can
thereforechangethe values of context values (such as method
arguments).

3.1

A number of difficulties arise in the implementation afound
advice (and particularly thproceedstatement), which we briefly
outline before giving possible solutions.

The first problem is thaaround advice can apply in mul-
tiple places within the base program. For example, consider
piece ofaround advice with pointcutexecutionvoid fod..)) ||
execution(void baxr(..)). This will apply to the bodies of methods
fooandbar, and any occurrence pfoceedin the advice body will
pass control back to the method that was matched. Furthermor
the contextof the advice applications (the values of locals used in
the advised statements) can certainly differ between egijpins to
foo andbar. This polymorphic behaviour gfroceedis the main
difficulty in its implementation.

Matters are further complicated by the fact tipabceed can
occur in arhitrary places within the advice body, includingal
and anonymous classes. An important implication is grateed
statements may be executed after the control flow has left the
advice body. Any context values needed for fineceedcall must
therefore outlive the execution of the advice in this case.

Finally, aspects are not restricted to observing the basgram,
and in fact advice can apply to other advice. In particulpicae of
around advice can apply to the execution of @&nbody, directly
or indirectly. Suchcircular adviceexecution applicatiorere very
rare, and usually pathological and a symptom of an error én th
program. It is important to observe that these can occurghiery
as we shall have to treat such applications as special ddsés.
that the application odround advice to any other advice other than
itself, or to a statement within its body (but not the wholelyois
not considered circular. These other cases are commoniy tuifee
applications are rare.

Implementation Issues

3.2 General Implementation

Any piece of advice, regardless of its kind, is turned intdam
Java method (thadvice methapboth byabcandajc. The interest
lies in the translation of thproceedstatement, minding the issues
described above. The polymorphic behavioupaiceed coupled
with the need to store execution context, motivates the dse o
closuresas a default and straightforward implementation strategy.
As a preparatory step to implementiagpund, any shadow that
is advised by somaround advice is lifted into a separate method
(the proceed methagdthat can be invoked bproceed Note that
this is necessary as shadows need not be entire method bodies

ret-typeadviceMethod$1(Around$1 closure,

arg-typeargl, ..){ ...
ret-typeresult=closure.proceed$1(argl’, ...);

}

For each advice application, a specialised closure typefiset
that implements the interface and has members for the dontex
values, and for each advice invocation, an instance of theuok
class is passed to the advice method. This closure must #ien ¢
the proceed method.

public classShadowClas$
public void shadowMethod(}
Around$1 closure=new Around$1$Impl();
..Initialise members with context values..
AspectClass.aspectOf().adviceMethod$1(closure, ...)

-

The major drawback of the closure approach is performance.
Each time advice is triggered, a closure object has to beaika
on the heap, which can be a significant overhead.

3.2.2 Inlining

In all cases apart from the case of advice applying to itsa# (
ther the whole advice or a statement within it), it is possitd
avoid closures by duplicating the advice method for eachtpai

the program where the advice applies. This so called irditfin

ajc terminology) eliminates the need for polymorphism asgiee
ceedstatements in this specialised advice method always invoke
the same join point shadow, and the join point context camarest
ferred using method arguments.

While inlining may be a good optimisation in certain sitoat,
the duplication of the advice method for every advice ajpion
can lead to code bloat and thus is unsuitable as the general ap
proach.

The proceed statement is implemented ajc using these two
strategies, a generic strategy based on closures and amdnli
strategy that is used in certain cases. We shall now desahite
approach.

3.3 Around weaving in abc

We present a novel approach for weaving around advice. OGur ap
proach is generic: the same strategy can be employed evergwh
and it does not rely on inlining. The only exception is thehpiag-
ical case of circular adviceexecution applications, dbesdrprevi-
ously. We will return to that case in Section 3.3.4.

When compared to the dual strategya@, abcs around weaver
never performs significantly worse and in many cases pegorm
significantly better. Particularly,



e whenevemjc resorts to closure creatioabccan be expectedto  body. Therefore, these values must be passed from the jaim po

produce faster code shadow site to the advice method that is called.
« when the advice code is big and applies at many locatiains, The dynamic residue of the pointcut guarding the advice may o
avoidsajc’s code bloat may not match at run time. If the residue does not match, thiead

is not executed, and the static proceed method is calledtljire
from the shadow, so the context values are passed to it lgiréct
the residue does match, the advice body is called from thdosha

¢ with circular adviceexecution applicatiorayc produces fewer
closure objects and hence faster code.

We shall now describe our weaving strategy in detail. and it may in turn call the static proceed method (if the aglvic
contains groceedcall). Therefore, from the shadow, we must pass

3.3.1 The Generic Implementation to the advice body both the context needed by the advice bsely i
Instead of creating a closure class for each join point shadeere ~ @nd the context needed by the proceed code, so that the &eye
around advice could applgbc places the proceed code from all ~ €an pass it to the static proceed method.
join point shadows of a class in a single static proceed naeiho __One complication is that one advice method can apply to many
the class. If the shadow exceeds a certain size, it is firsaetet different join point shadows with different context valu@$ere-
into a dedicated static method which is then called from toeged ~ fore, we add a sufficient number of parameters of each typleeto t
method. This is an optimisation that prevents unreasoniaitye method implementing the advice to cover the context at alfietvs
proceed methods. at which the advice may apply. To keep the number of parasieter

Each join point shadow at which around advice applies is re- réasonably small, we only add parameters of the types Qliect
placed with a call to the advice body. Into the advice bodypees ~ float, double and long, since context values of any type carohe

a static class ID to identify the class from which we are oglit, verted to one of these types to be passed into the method.

and a shadow ID to identify the join point shadow within thassl. A sz_econd complication is that the context vaIu_e to be bound to
To implement theproceedcall, the advice body uses the static class 2N advice parameter may not be known until run time. Consiuer

ID (using a switch statement) to select the class from whigras following pointcut:

called, and calls the static proceed method in that clag® that void around(Foo x) :args(x,..) || args(...x) ...

the ID "0’ is reserved for calls on a closure interface in ctse

weaver has to fall back on closures). The static proceedadeth In this case, x may be bound to the first argument of a method (if
uses the shadow ID to select the shadow whose proceed code ift has typeFoo), or the last argumeritThe dynamic residues at the
must execute. Because we keep the code of each join pointwhad join point shadow determine which part of the pointcut metgtso

in the class where it originally occurred, there is no neegkterate  at the shadow, at run time, we know whether the x in the advice

accessor methods for private members. should be bound to the first or last parameter.
A third complication is that the advice may modify the coritex
public classAspectClasg that is to be passed to the proceed code for the shadowpibhe
ret-typeadviceMethod$1(Around$1 closure, ceedexpression in the advice body accepts the same number of ar-
int shadowlID,int staticClassIDargs) { guments as there are parameters to the advice body. prdkeed
call to the original code from the shadow, these argumemiace
switch (staticClassID) the context values that were bound to the correspondingagé-
case0: C|osure.proceed$l(shadow|m'gs); break; rameters when the advice was invoked. In the above exampile, i
casel: ShadowClass.proceed$1(shadowdRys); break; call proceed (null) from the advice, the code of the shadow must
...dispatch to other classes to which the advice applies... be executed with its first or last argument replaced with, rdek
pending on which clause of the pointcut matched at the jointpo
} before the advice was executed. Since this binding is onbyvkn
at the dynamic residue and only at run time, we must commteica
public classShadowClas$ it from the re_sidue to the advice method, _which then com[naueic
public static ret-typeproceed$liot shadowlID args) { it to the statlclproceed methoq. To do t.hIS., at the dynamm;hues
switch(shadowID){ we create a hit vector specifying the bindings, and passoduth
case0: ... do what the first shadow did... to the relevant methods.
casel: ... do what the second shadow did...
__handle further cases... 3.3.3 Local and anonymous classes
} As we have observed previousfysoceedstatements can occur in
} local and anonymous classes within advice methods, andlieus
proceedinvocation can occur after control flow has left the advice
} method (and so its context must be stored). Our implementati
strategy conveniently extends to this case, as all the sages
3.3.2 Context and Advice Formals context is available in the advice method. We simply needitb a

new fields to the local or anonymous class to hold the contdues

In addition to calling the right piece of code we must alsoueas and initialise these fields when the classes are instadtiate

that values are passed for free variables used by this cbée (t

context). We describe the implementation of context passend. 3.3.4 Special Cases

Passing context ~ Context from the join point shadow is needed in  In the previous sections we have described the generic ingie

two places. First, it is used by the code of the shadow itSatfce tation ofaround advice inabc. As mentioned above, in the patho-
we have moved this code out from the original join point shatm logical case of circular adviceexecution this cannot belused
the static proceed method, we must pass the required cantext

this method. Second, the AspectJ pointcut designas, this, Lajc as of version 1.2.1 avoids this complication by issuing a iten

andtarget allow values from the context of the join point to be limitation error when encountering multiple binding paiut primitives for
bound to formal parameters of the advice, and used in theadvi the same advice formal.



we resort to closures instead. Furthermore, for efficiaatmyalso
chooses to inline advice methods in some cases (when theeadvi
is small and does not apply numerous times, to avoid codd)bloa
Hereinlining is not taken in thajc sense, but rather in the usual
sense of substituting the body of the method (in this caseath
vice method) at the point where it is called. We now desclilesé
two special cases in greater detail.

Circular advice applications The execution of advice is a join
point itself, so advice can apply to the execution of advite (
entire body of the advice method). These advice-on-advigdi-a
cations can be expressed as a directed graph structure. Wéaen
ing into the execution of a method, the whole body of the matho
is moved into the corresponding proceed method. To simghiéy
weaving process, a topological sort is performed on thetgsapic-
ture prior to weaving. This ensures that once an around advic
method has been woven into, ititself is not applied to any pmint
shadows anymore.

Obviously, a topological sort fails in the presence of cgcle
in the graph, and the weaver will encounter situations whieee

Time (S) Size (instr.)
Benchmark abc abc ajq abc abc ajq

(inline) (inline)
sim-nullptr 219 239214 7893 10687 1018¢

sim-nullptr-rec | 23.6 20.8124.00 8216 20519 10724
weka-nullptr 19.0 17.8 16.0] 103018116364 13429
weka-nullptr-rec| 18.9 18.0 45.5| 103401188666 13048
ants-delayed 175 17.6 18.2 3688 3906 3784

WO =

ants-profiler 225 19.2 21.2] 7202 13333 13401

Table 1. Execution Times and Code Size

give results forabc usingabcs generic around weaver with inlin-
ing disabledabc (inline), the same aabc but with the aggressive
postpass inliner enabled; aagt, the result given byjc’'s around
weaver (which is either closure-based or inlining, depegdin the
benchmark). For each benchmark, we have put the fastesatithe
the smallest code size in bold. Note that in most cases either

advice method to be woven has already been woven into. This is or abc (inline) gives the fastest code and tlaics code size is

the only case where we resort to the creation of closure thjec
The semantics of AspectJ dictate that in a cyclical graphptider

of the execution of advice methods is determined by the djymam
residues before any advice is executed. Because thosaigssid
and the resulting execution order can be arbitrarily complee
decided that closures offer a clean, general solution.

As observed previously, cycles in the advice-on-advicdiegp
tion graph are very rare and usually pathological. It tremefeems
unnecessary to try to avoid closures under these circunesakiVe
have, however, strived to minimise the cost of closures; reate
specialised closure classes with fields matching the typesmext
values, whereasjc uses an expensive object array to store context
values (requiring boxing of primitive types).

Inlining as an optimisation pass For very small advice, the
most efficient strategy can be to inline the advice directlo i
the join point shadow. Inlining can also be beneficial if @gwivith
Object return type applies to a join point with a simple type. In
this case, the inlining can lead to the subsequent removtieof
boxing and unboxing code.

Inlining is implemented irbcas an optimisation pass running
after the around weaver.

The inlining process is implemented as a series of plain Java
optimisations. The advice method is first inlined into thia jooint
shadow as a normal Java method. A constant propagator atuthswi
statement folder are then used to remove checks on the ddic
ID. Finally, the proceed method is inlined also, and its swit
statement removed. Since multiple pieces of advice carnyaupl
the same shadow, this whole process must be repeated w@mél th
are no calls left to inline. A special boxing remover passaoeas
unnecessary boxing and unboxing operations.

3.4 Empirical Results

To compare our strategy @jc's and to experiment with the dif-
ferent tradeoffs of inlining strategies, we experimentethwhree
base programs and three aspects. The base prograrastgran
aspect-oriented simulation of an ants colony (following #peci-
fication of the ICFP 2004 programming contest) written by ohe
the authors (OdM) for use in an undergraduate colsisr;a dis-
crete event simulator for certificate revocation simulati@]; and
weka part of the weka machine learning library [25]. All bench-
marks were run on a dual AMD Athlon 2000+ with 2GB RAM and
the Sun J2SE 1.4.2 JVM.

Table 1 shows the both the execution time (in seconds) and wo-
ven code size (in bytecode instructions). For each bendhmar

consistently smallest, sometimes by a significant margin.

To compareabCs generic weaving strategy tajc’'s closure-
based and inlining strategies, we applied two versionsexfititiptr
aspect [3] to two base progranmsm andweka(the first four lines
in Table 1). Thenullptr aspect is a very simplaround aspect
for enforcing coding standards that we found on the web when
searching for examples of aspects. It simply checks for aukth
returning and issues error messages in the cases wheresnull i
returned. We used two different versions of the aspect, @rsae
one (the original form) where the advice applies to itselfl @n
non-recursive version where we explicitly usethin(...) to avoid
matches within the body of the advice. Thg compiler uses
closure object creation for the first case (because of thesmn)
and inlining for the second case, wheressc uses its generic
implementation for both cases.

Comparing the execution times for the non-recursisem¢
nullptr andweka-nullpt) versions to the times for the recursive ver-
sions 6im-nullptr-red and (veka-nullptr-reg, we can see that the
execution time and code size fabcis almost the same, whereas
ajc produces much slower code for the recursive versions (6time
slower forsimand almost 3 times slower farekg. For the the non
recursive casescis slightly slower tharajc.

From these experiments we can see #imtis fairly insensitive
to whether the advice is recursive or not, bjgtpays a huge penalty
when it must switch to an explicit closure strateglycs behaviour
is beneficial since programmers often make their advicerse@
by accident and they need not pay a performance penalty.

There are other situations where thje weaver uses closures,
which is demonstrated by tlts-delayedbenchmark. This bench-
mark uses th®elayOutputaspect which captures calls to output
methods and delays these calls until the end of the basegmnogr
This is accomplished using a local class of tenablén the ad-
vice method that callproceedin its run() method. Thejc weaver
has to instantiate closure objects in addition to the ircstarf the
local class. Our weaving strategy avoids this, which exyglavhy
theabcresults are slightly faster.

To demonstrate the adverse effects of a naive inlining -strat
egy, we applied a profiling aspect to our ants base progeans
profiler). The profiling aspect contains a relatively big piece of
around advice that is applied to the execution of every ntetho
the base program. Note that's inlining strategy can almost dou-
ble the size of the resulting class files due to the duplicatitthe
advice code for every advice application. Note that thisdase in
code size can also be observed vatics inlining strategy. How-
ever, with our weaving strategy, inlining is optional and nec-



essary for good performance. &jc's case, the only alternative to
inlining is the use of closures with the dramatic effects erfqr-
mance shown in the table. Furthermore, with our approachanme c
selectively inline and we are actively working on mixingfdient
inlining strategies.

Currently we also have a prototype version of our inlinerchhi
inlines the specialized advice to static methods in a similanner
to ajc’s inliner, with similar performance and space usage. How-
ever, we believe that we can further improve on both the perfo
mance and space usage. Instead of putting the specialatédzst-
vice method in the class containing the shadow being adviged
put the specialized advice method in the class for the aspbig
has the advantage of avoiding visibility problems sinceatieice
code stays in the aspect. Further, by collecting all of tleeshized
methods together, and by inlining the specialized processliels
into the specialized advice bodies, we have noticed thae thee
often clones produced. Thus, we believe that the space plcan
be reduced, in some important common cases, by recognizéng t
clones and only creating one copy of the specialized statitod
for each set of clones. A further optimization is to removeesded
fetches of the aspect instance. Once the advice has beesssagr
as a specialized static method there is often no need forstheca
instance, and we are actively working on eliminating redumcnd
dead fetches of the aspect instance.

4. OPTIMISING CFLOW

In the previous section we introduced a new strategy for wgav
around advice. When weaving all advice (before, after andrat)
the weaver must generate efficient code to handle dynamit-poi
cuts, i.e. those pointcuts that need a dynamic test to daterih
they should execute at a join point shadow or not. In thisceete
concentrate on the most challenging dynamic pointcut cflmv
pointcut.

The cflow pointcut picks out join points that fall within the
dynamic scope of certain events. Specifically, for any moinp,
cflow(p) applies at a point in the execution of the progranpif
matchessomestate in the call stack at that program point.plf
contains variables to be bound, then these are bound to thal ac
values found in the match nearest the top of the call stack. Fo
example, the pointcut

call(x foo()) && cflow(call(x bar(x)) && args(x))

matches all calls tdoo that occur within the dynamic scope of a
call to bar, and bindsx to the value of the argument of the last call
to bar.

It is clear that the use afflow pointcuts requires, in general,
the insertion of dynamic tests in the program to test theecurr
state against the conditiaflow(p). The naive implementation of
cflow associates a state with eacfow pointcut and updates this
state incrementally (this implementation is describedlBl). The
state is a stack of variable bindings that represents amagtish
of the call stack. Each time a join point that matclpeis entered,

a new item is pushed onto the stack, with all the variableg in
bound to the appropriate values. When this join point is ke
top of the stack is popped. Finally, to check whetleiow(p)
applies at a program point, it suffices to check whether ortmot
stack is empty; if it is non-empty then the pointcut applied the
appropriate variable bindings can be found on top of thekstac

The implementation otflow (as described above and used

in ajc) is clearly expensive, both because of the need to update

the state (which happens every tinpeapplies) and because of
the dynamic tests inserted (which can, in the worst caseyapp
everywhere). Performance experiments confirm that theheaet
introduced is substantial [10].

We introduce a number of optimisations foifow, all imple-
mented inabc We first show a number of simple, intraprocedu-
ral optimisations that reduce the overhead substantiglign, we
show how the overhead can be entirely eliminated in many com-
mon cases by an interprocedural analysis. Finally, we gnpie
ical measurements showing that the optimisations are \éeg-e
tive.

4.1 Intraprocedural Optimisations

The simplecflow optimisations focus on eliminating the more ob-
vious inefficiencies in updating the state and checking fmliaa-
bility. They are straightforward but quite effective.

4.1.1 Sharing cflow states

The first optimisation thaabc performs is tosharethe state up-
date and query code between related (or identicfidw pointcuts
whenever possible. Consider the following pointcuts:

call(x bar()) && cflow(call(x foo(..)) && args(t, *, *))
call(x bar()) && cflow(call(x foo(..)) && args(x, s, *))

A naive implementation would keep a stack for eaftbw pointcut,

and update and query them independently. We optimise this by
observing that a singleflow pointcut can be written that covers the
two existing instances. In this case, itaBow(call(x foo(..) &&
args(l1,12,%)) (wherel; andl, are fresh variables). Note that this
binds variables used in either one of tbow pointcuts in the
original program.

The implementation offlow in abcattempts tainify each pair
of cflow pointcuts that it finds. Unification of two pointcuts suc-
ceeds if the pointcuts are syntactically equivalent with éxcep-
tion of free variables, and returns a pointcut that carriesugh
state to cover both pointcuts (as in the above example).

In general, this sharing of state can improve performanbe su
stantially. In fact, cases similar to the above arise fratjyelue to
inlining of named pointcuts, a strategy used bottajo and abc
An added benefit is that some method bodies can become smaller
when this is performed (by avoiding duplication of bookkiegp
code). We present empirical measurements of the perforriamc
provements in Section 4.3.

4.1.2 Counters for cflow without bound variables

The next optimisation applies to pointcuts of the focftow(p),
where p does not bind any values. In this case, the state of the
cflow(p) reduces to a stack of empty sets of variable bindings. In
ajc 1.2, this is represented by a stack of arrays of length 0.

We improve on this in the obvious way, by replacing the stack
with an integer counter that is incremented and decrememitet
p is entered and left respectively. This avoids repeatecaions
of empty arrays. The case of a parameterlgfksy appears to be
quite common, so this optimisation is widely applicable.

4.1.3 Reuse of counters/stacks

The final simplecflow optimisation is the caching afflow state
objects (stacks or counters). The state of a given poimfbai( p)

is thread-local, as it is an abstraction of the call stackltidle
copies are therefore kept, one for each thread, and anytapera
on cflow state (updating or checking) involves retrieving the copy
valid for the current thread (in the worst case, a hash taiolkeup).

In general, multiple operations on the sawcfiow state can
occur within the body of the same method. In fact, updates to
the state of aflow are always paired (the state is updated when
entering and leaving a join point), so in most cases the ssate
retrieved at least twice in any method in which it is needeallat



We can therefore improve on the original implementation by
retrieving the appropriate state object only when it is fistd in a
given method, and storing it for future uses in the same naktho

4.2 Interprocedural Optimisations

The optimisations that we have described above reduce tre ov
head associated wittflow, but this can still be substantial. Since
thecflow construct depends on dynamic properties of the program
in general, it is impossible to eliminate such overheadrelyti
However, many uses aflow can be statically determined, at least
at some program points. To take a simple concrete exampe, th
pointcutcflow(call(x foo())) matches all points in the execution of
the program within the dynamic scope of a calfféo. It is possi-

ble to determine statically that some program points meverbe

in the dynamic scope dbo, and that some program poirdatwvays
execute in its scope. At each such program pointfteev pointcut

is statically known to be true or false, so the dynamic checklze
eliminated. In addition, eliminating such dynamic matchoode
can allow the compiler to eliminate some of the state-updatode

for this cflow (if its effects can no longer be observed after dynamic
checks are removed).

Our empirical results in Section 4.3 show tldiow pointcuts
can indeed be statically determined in almost all cases we ha
encountered to date. We will now describe the analysis usald
to achieve this.

The idea for this analysis was introduced in [20] for a simple
procedural language. The analysis has been adapted to ttte mu
wider context of AspectJ and implemented withibc. It requires
an interprocedural analysis, but has two substantial adgas:

o |t eliminates the overhead faflow completely in many com-
mon cases, and

¢ in those cases, it allowsflow to be used in constructs that
require static pointcuts (such declare warning).

4.2.1 Analysisin abc

One of the design goals @fbc was to make it possible to anal-
yse the code being woven, and use the analysis results toisgti
the weaving process to produce more efficient code. In pdatic
we wanted to be able to leverage the many analyses existing fo
Java code, without having to rewrite all of them to be spetific
Aspectd. This is, in fact, not merely a matter of convenieiitcis
very hard to work out (for example) the control flow prior teth
weaving of advice, because an analysis would have to take int
account complex advice precedence rules, 11 differentgoint
types, the option to change the arguments of a cajproaeed and
soon. It follows thatin general, an interprocedural flowlgsia be-
fore weaving needs to contain all of the complexities of thimp

cut matching and advice weaving in an AspectJ compiler.ddde
others who have studied the static analysis of aspectiedguro-
grams [19, 26] (for the purpose of property checking), weredd

to make strong restrictions in their implementation to winvent
these complexities when doing a direct analysis prior towvga
Our aim, however, is to cover the full AspectJ language.

For these reasonapcincludes a hook to perform analyses on
the Jimple code produced immediatelfer weaving, optimise the
naive weaving instructions originally produced by the rhatcand
then repeat the weaving process on the original code usiag th
optimised weaving instructions. Because the woven codegbei
analysed has no AspectJ-specific constructs, it is possitdpply
standard analyses already in Soot. Of course, we also ingpiem
analyses and optimisations specific to AspectJ, but thesgraatly
simplified by being able to use the results of Java analyses.

The structure of thebc backend which makes these analyses
and optimisations possible is shown in Figure 1. In norma&rap

e
Aspectinfo
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Figure 1. Reweaving in th@bcbackend

tion, the phases are executed from top to bottom: matcheweve
bytecode generator (depicted in the middle column of thedigu
We now discuss each of these components in more detail.

The matchertakes as input information about all the pointcuts
and advice from the frontend, as well as the Jimple interatedi
representation of the bytecode. The matcher produces afset o
weaving instructions which specify where in the code theyuth
be woven. A weaving instruction thus consists of a position i
the code (which may be a single statement or a whole region
of code), a piece of advice (which is represented as a regular
method), and a representation of tesidue Often that residue
is alwaysmatchor nevermatch— which means no runtime test
needs to be generated. Occasionally the residue represémniy
dynamic test, for example a boolean expressioriffpointcuts, a
type instance test fargs, or a test on the relevant stack fftow.

The weaverexecutes these instructions, producing woven Jim-
ple, where the dynamic tests and calls to the advice methads a
inserted into the existing Jimple. The woven Jimple cods thar-
responds to pure Java, with no aspect-oriented constriaiis Bhe
standardcode generatoof Soot [24] can therefore translate wo-
ven Jimple to bytecode. As part of this code generation pass,
also perform simple intraprocedural optimisations (susicem-
mon subexpression elimination and constant propagatioalean
up the results of weaving.

Let us now consider how this architecture, where the matcher
and weaver have been separated, facilitates analyses tintisap
tion: in Figure 1, this is illustrated by the boxes in the tigland
column. Because woven jimple has no aspect-oriented fsatue
can leverage standard Java analyses on woven Jimple, fanaes
the construction of a call graph: there is no need to adapt sta
dard analyses for AspectJ. As mentioned earlier, this i inepor-
tant, because it is (for example) extremely hard to work outrol
flow in the presence of advice prior to the weaving procesg Th
result of such analyses is then fed into an optimiser thatates
on the weaving instructions. Typically the optimiser tudymamic
residues (which would result in runtime tests when wovetg the
static residuesilwaysmatchor nevermatchThe weaver can then
be invoked again, producing better woven code, where cedgi
namic tests that always succeed or always fail no longerappe
Note that this mechanism requires saving a copy of the aigin
Jimple code prior to the original weaving pass, whadit does.

So far, we have implemented an interprocedoflgw analysis
and a thisJoinPoint escape analysis, but the approach &ajen



other analyses (and corresponding optimisations) can thedatd
the boxes labelled Analyser and Optimiser in Figure 1.

It is possible that an analysis will produce more preciseltes
if executed not on the naively woven Jimple, but on Jimple avov
using optimised weaving instructions produced by an egréiss of
the analysis. Thereforapcallows the Weaver-Analyser-Optimiser
feedback loop to be repeated if desired.

4.2.2 Call Graph

Estimating which shadows may or must be in tilow of other
shadows requires a call graph approximating which methaas m
be called from which call sites. We base our analyses on a con-
servative call graph: every method invocation possiblaiaitime
must be included in the call graph. Call graph construction f
object-oriented languages like Java has been the subjecsiof
nificant amount of researck.Q.[6,9, 22,23]). Rather than reinvent
the wheel, we construct call graphs using Paddle, a suacefso
Spark [13, 14], the points-to analysis and call graph cocstn
framework available in Soot [24].

In Java, most method calls are virtual, meaning that the odeth
invoked depends on the run-time type of the receiver objeue.
treatment of virtual calls is one of the key features distisging
different call graph construction algorithms. The Paddiefework
allows us to experiment with call graphs constructed usigg-a
rithms ranging from CHA [9], which conservatively assumlestt
receivers could have any type admitted by their declareel typus-
ing a subset-based points-to analysis to compute possibtéme
receiver types. We used the latter option in what followsuihs
out that the extra time spent to create a precise call graptifsi
icantly reduces the time for the interprocedurfibw analysis we
describe below.

Some applications of call graphs, such as devirtualisatinty
require call edges for explicit invoke instructions presenthe
code. However, because methods invoked implicitly by the VM
are defined to be in theflow of their calling context, our call
graph must include these implicit calls. In particular, welude
implicit calls to static initialisers [17, section 2.17,.4hlls through
thePrivilegedAction interface, and implicit constructor calls
by the Class.newlnstance method. For the latter, the user
provides a list of all classes that may be instantiated usgfigc-
tion. To ensure that this list (and our call graph) is comglete
insert code into methods not reachable in the call graph ¢totab
execution and alert us to the error. Paddle handles thesg trut
important details for us; we do not need to consider themiatl
in our cflow analysis.

One type of implicit method invocation which we specifically
exclude from the call graph used fcftow analysis is the invocation
of therun method of newly created threads. dbc we strive to
be consistent with the AspectJ language as specified bwjthe
implementation. Irajc, cflow stacks are maintained separately for
each thread, so the code executed by a thread is not cordsiddre

We wish to perform two kinds of optimisation. First, if we can
determinecflow stack emptiness at a query shadow statically, we
can remove the dynamic residue at the query shadow, andpossi
other code that becomes unreachable. Second, if we can thatve
acflow stack update operation will not be observed by a stack query
within the dynamic scope of an update shadow, we can remeve th
stack update operations at the update shadow.

Analysis information required For eachcflow stackst in the
program, we define two kinds of sets of instructions to be com-
puted,mustCflow(st), and, for each update shadetvupdatingst,
mayCflow(sh). mayCflow(sh) contains every instructionin the
program such that wheinis executed, we may be in the dynamic
scope okh That is,i may execute after the push operatiorsibhas
been performed, but before the corresponding pop operagsn
been performedmnustCflow(st) contains every instructionsuch
that whenever is executed, we must be in the dynamic scope of
some update shadoshupdatingst.

Whenever a query shadow (on statkis not inmayCflow(sh)
for any update shadowh (on the same stacgt), we replace the
dynamic test with a constant false pointcut expresdidmy query
shadow inrmustCflow(st) is replaced with a constant true pointcut
expression.

In addition, we calculate a subsetcessaryShadow(st) of up-
date shadows whose effect may be observed at a query shadow.
Each update shadowh € necessaryShadow(st) satisfies two
conditions. First, some query shadaygh that has not been re-
solved statically may occur in the dynamic scope stf (i.e.
gshe mayCflow(sh)). Secondshmay occur outside the dynamic
scope of all update shadows sff(i.e. sh¢ mustCflow(st)). This
second condition enables us to mark as unnecessary thoateupd
shadows at which the stack is always already non-empty.

The optimisations become more complicated whenditawv
binds arguments because, in this case, each query shadaniyot
tests whether the stack is non-empty, but also observesnting e
at the top of the stack. We can still resolve statically thgsery
shadows not imayCflow (sh), since we know that the stack would
always be empty when they are executed. However, at the query
shadows where we know the stack is non-empty, we must keep the
dynamic residues which read the entry from the stack. Inteofli
we can no longer remove update shadows just because they are
in the mustCflow of the relevant stack, because we also need the
correct entry to be pushed onto the stack in addition to thekst
being non-empty.

Computing analysis information The exact extent of &flow
shadow depends on subtle details of advice precedence and th
distinction betweercflow and cflowbelow, and the weaver must
respect these details when weaving tfilow stack update oper-
ations. Because we perform the analysis on the woven code, we
need not consider these details; we simply consider efliokv
shadow to start immediately after the point where the weaose

in thecflow of the code that created the thread. Paddle anotates eacrhe cflow push instruction, and end immediately before the corre-

call graph edge with a kind, which we use to detect and remove
edges of this unwanted kind.

423

Desired optimisation The customary implementation ofcilow
pointcut expressionflow(p) incurs overhead at two kinds of shad-
ows. First, at each shadow matchipgacflow stack is pushed and
popped to indicate when we are in the dynamic scope offibev.
We denote these shadows with the tenpdate shadowSecond, at
each shadow where tlodfow pointcut could possibly match, we in-
sert a dynamic residue to test whetherdHew stack is non-empty.
We denote these shadows with the temaery shadow

Interprocedural cflow analysis

spondingcflow pop instruction. We need to unambiguously classify
every instruction in the method as being either within osa@ié the
cflow shadow. This requires that there be no jumps into or out of
the shadow, which would bypass the push or pop instruction.

Due to details of the weaving process, this requirementiays
satisfied, except in the case when the argumetf the cflow
expressiorcflow(p) is not entirely static, and requires a dynamic
residue. In this case, the weaver generates the dynamiattest
update shadow. If the pointcgtdoes not match, we do not enter

2Thecflow expression may be part of a more complicated pointcut expres
sion. Constant folding of pointcut expressions is done ieagate phase
prior to weaving.



the dynamic scope of theflow, so a conditional jump skips the
stack update operations. Therefore, wheis not entirely static,
the instructions between the push and pop may execute within
outside the dynamic scope of tklow. Therefore, none of these
instructions is a member ofiustCflow(st).

Algorithm 1 is used to computemayCflow(sh). It begins with
the statements in the intra-procedural shadowlofThen, it adds
the statements of all methods that may be called from a séatem
already in the set, until a fixed point is reached.

Algorithm 1 computemayCflow(sh)

mayCflow — {i | i is in intraprocedural shadow sh}
repeat
for all methodsm | 3i € mayCflow . i may callmdo
mayCflow «— mayCflow U set of statements im
end for
until mayCflow does not change

We have implemented all of the inter-procedwthbw analyses
using Jedd [15], an extension of Java for expressing armlysag
binary decision diagrams (BDDs), which it abstracts asticia.
We chose to implement the analyses in Jedd for two reasanss, Fi
they can be expressed in Jedd concisely and clearly. As ampea
Figure 2 shows the Jedd implementation of Algorithm 1. Nmtic
that the implementation closely mirrors the algorithm. @et;
although the sets computed in the analyses may become aygjeg |
they are likely to share many similarities. BDDs make is jies
to represent these large sets compactly.

<stmt> mayCflow(Shadow sh) {
<stmt> mayCflow = stmtsWithin(sh);
<stmt> old,
do {
old = mayCflow;
<method> targets =
mayCflow{stmt} <> callTargets{stmt};
mayCflow |=
targets{method} <> stmtsin{method};
} while( mayCflow != old );
return mayCflow;

}

Figure 2. Jedd code implementing Algorithm 1

The setmustCflow(st) is computed using Algorithm 2. It first
accumulates the set shadowStmts of all statements witlyiugn
date shadow having no dynamic residue. Every such statesent
necessarily in theflow. The algorithm then starts with all state-
ments in the program, and removes statements that can beckac
from the entry points of the call graph without passing tigfoa
statement that is necessarily in ttflow. The statements to be re-
moved are computed by starting with the entry points, andihgdd
statements of methods called from the set computed so fagxbu
cluding statements in shadowStmts, until a fixed-pointashed.

Computation of necessaryShadow(st) is shown in Algo-

rithm 3. We begin with all the query shadows, and remove those

known statically to be false. Unless thffow binds arguments, we
can also remove those known statically to be true. This kage
with the query shadows that will be tested dynamically. Theas-
sary shadows are now those update shadows in wimas€flow
any dynamic query shadow appears. Unlesscfl@v binds argu-
ments, we can also remove those update shadows which aadyalre
in the mustCflow of another update shadow.

4.3 Empirical Results

The cflow optimisations we present in this paper have been empir-

ically validated in two different AspectJ compilers. Fjrate have

Algorithm 2 computemustCflow(st)

shadowStmts- { sh | shupdatesst and has no dynamic residue
mustCflow — set of all statements
targets— set of entry points of call graph
repeat
targetStmts—
{i | Ime targets i is a statement im} \ shadowStmts
mustCflow «— mustCflow \ targetStmts
targets— {m| Ji € targetStmtsi may callm}
until mustCflow does not change

Algorithm 3 computenecessaryShadowst)

queries— set of all query shadows @t N
U{mayCflow(sh) | shupdatesst}

if cflow does not bind argumentken

queries— queries, mustCflow(st)
end if
necessaryShadows- {sh| 3i € queries. i € mayCflow(sh)}
if cflow does not bind argumentken

necessaryShadows-

necessaryShadowsmustCflow(st)

end if

implemented all the optimisations in oalbccompiler. Second, we
suggested them to tragc team, and they have implemented coun-
ters (Section 4.1.2) and sharing (Section 4.1.8ja1.2.1.

4.3.1 Benchmarks

We tested thecflow optimisations on benchmarks from a wide
range of sources. We list the benchmarks and their sizes (non
comment SLOC) in the first column of Table 2. Figure is a
demo from the Aspect] documentation. Quicksort is the exam-
ple from [20] with modifications suggested by Gregor Kiczale
Sablecc is a compiler written using the SableCC compileeen
tor, with an aspect applied to count memory allocations hezf

its phases. The base programs ants, certrevsim(sim) arelwezie
introduced in Section 3.4. Law of Demeter [16] is a styleattiieg
aspect that we have applied to two code bases: Certrevsim and
weka. Cona [21] is a framework for specifying and checking-pr
and post-conditions using aspects. We applied it to thé sbeam-

ple mentioned in the paper, and to the simulator.

4.3.2 Intraprocedural optimisations

No opt. Intra-proc
Benchmark SLOC| Stacks | Stacks Counters
figure 94 5 0 1
quicksort 72 2 0 1
sablecc 31233 2 0 2
ants 939 1 1 0
LoD-sim 1586 13 0 1
LoD-weka 3912 13 0 1
Cona-stack 291 10 0 1
Cona-sim 1942 46 0 8

Table 2. Static intra-procedural optimisation counts

In Table 2, we present the static effects of our intra-pracaid
optimisations implemented iabc The column labelled “No opt.
Stacks” shows the number of different stacks before oumapti
sations; the “Intra-proc” column shows the number of staahkd
counters after intra-procedural optimisations have beptied. In



abc ajc

Benchmark|| no-opt | sharing sharing+  sharing} +inter-proc 1.2 121
counters  counters+ (no-opt)  (sharing+

reuse counters)

figure 1072.2| 238.3 90.3 20.3 1.96 450.5 167.7
quicksort 122.3 75.1 27.9 27.4 27.3 123.5 28.9
sablecc 29.0 29.1 22.8 22.5 20.4 29.7 24.2
ants 18.7 18.8 18.7 17.9 13.1 33.0 32.9
LoD-sim 1723.9 46.6 32.8 26.2 23.7 || 4776.2 35.3
LoD-weka || 1348.7| 1425 91.9 75.2 66.3 2349.2 1135
Cona-stack|| 592.8 80.1 41.2 27.4 23.1 1107.4 56.0
Cona-sim 75.8 75.3 73.8 72.0 73.6 76.8 69.0

Table 3. Benchmark running times (seconds)

most cases, sharing reduces the numbaesflofv stacks (or coun-
ters) significantly, often down to one. In all benchmarkssgt@nts,

all cflow stacks are replaced with counters. A counter cannot be
used for ants because tbgow pointcut binds a value.

We present the benchmark running times in Table 3. The mid-
dle section lists the running times of benchmarks compiled u
ing abcwith cflow optimisations disabled (no-opt), with the intra-
procedural optimisations: sharing (Section 4.1.1), cetsn{Sec-
tion 4.1.2) and reuse (Section 4.1.3). The rightmost sedisbs
running times when the benchmarks are compiled \&ithver-
sions 1.2 and 1.2.1. Between these two releases, two of titze in
procedural optimisations presented in this paper, shaf8eg-
tion 4.1.1) and counters (Section 4.1.2), were addeajdadn re-
sponse to our suggestions.

Using theabccompiler, the speedups due to our intra-procedural
optimisations are very significant (up to 54-fold) not ordy $mall
benchmarksd.g.figure, quicksort), but also for large benchmarks
which usecflow (e.g.the LoD benchmarks). We observe similar
speedups with thajc compiler between version 1.2 and 1.2.1, in
which intra-proceduratflow optimisations were added.

4.3.3 Interprocedural optimisations

Static results of our inter-procedureflow analysis are shown in
Table 4. The “query shadows” column shows, for eefbbw point-

cut designator (corresponding to a stack or counter), tfa¢nom-

ber of query shadows and, of those, how many the analysis-dete

Benchmark Query shadows Update shs.
Total Unreach. Never Always Dynaniigotal Dynamid

figure 6 0 2 4 g 6 0
quicksort 6 0 2 4 g 3 0
sablecc 985 388 299 298 0698 0
985 388 332 260 b 1 1

ants 84 0 84 0 a 1 0
LoD-sim [1313 798 515 0 D 41 0
LoD-weka [ 7031 3501 3530 0 0 41 0
Cona-stack 16 0 14 2 q 27 0
Cona-sim 2 0 2 0 g 2 0
3 3 0 0 g 18 0

4 3 1 0 g 31 0

0 0 0 0 q 2 0

7 5 2 0 g 20 0

0 0 0 0 g 6 0

4 0 4 0 g 5 0

0 0 0 0 g 3 0

Table 4. Static inter-procedural optimisation counts

We were pleasantly surprised that the inter-procedurdysisa
was so effective in resolvingflow statically. To ensure that these
analysis results are indeed correct, we ran all the bendtawath

mined to be unreachable, how many are determined to never ora special dynamic residue woven in to check that the statilysis

always match, and how many cannot be determined staticadly a
therefore still require a dynamic test. The “update shatast

results always agreed with the run-time behaviour.
The performance improvements due to the removal of update

umn shows the total number of update shadows and the numbershadows, query shadows, and the code of unreachable adeice a

that the analysis determines to be necessary, and mustrremai
dynamic updates even after the analysis.

With the exception of oneflow pointcut designator in sablecc,
the analysis was able to statically determine the outcomallof

shown in the abcinter-proc” column of Table 3. On benchmarks
making significant use afflow, both small é.g.figure) and large
(e.g.LoD), these optimisations provide large speedups, eveopn t
of the already large speedups from the intra-procedurainigs-

cflow queries, and therefore entirely remove the dynamic updates tions and the use of cheaflow counters. Furthermore, when the

and queries of theflow stacks or counters. The imprecision in the
sablecc case is due to query shadows in a static initiaiseteal
with this case, we are developing a simple analysis to rethee
number of spurious static initialiser edges in our call grap

Even though theflow pointcut in ants binds an argument, we
can eliminate it because it is never queried. This is bectuse
pointcut is being used as an assertion to find an error condily
determining that theflow never matches, we have statically veri-
fied the assertion. The success of the static analysis @tsps to
begin experimenting with AspectJ extensions to allow “dyied
pointcuts such asflow in “static” declare error constructs. This
provides a way for a programmer to specify properties of ttoe p
gram to be checked. When the analysis cannot prove the pieper
at compile time, a warning is issued and a run-time checktede

cflow binds an argument, the cheap counters cannot be used, so
the inter-procedural optimisations enable the removakp&asive
cflow stacks, resulting in a 1.4-fold speedup in ants.

Recall our earlier decision to use a subset-based poirgsab
ysis to compute possible run-time receiver types in thegralph
construction. If instead we use a less precise call graghjrth
precision also affects the results of arffow analysis. In particu-
lar, in the sablecc benchmark, the number of update shadgtivs o
mised stays the same, but the number of query shadows optimis
changes. For the stack where there are 5 unoptimised quétres
the precise call graph, this number grows to 361 with CHA- Fur
thermore, as we remarked earlier, the extra time spent tiecee
precise call graph significantly reduces the time fordfiew anal-
ysis. Our implementations are however not yet tuned for élemp



time performance, so we defer a detailed study of theseddsue
further work.

5. OTHER OPTIMISATIONS

In addition toaround andcflow optimisations detailed in the pre-
vious two sectionsabcalso implements numerous other small op-
timisations which can also improve the performance of theemo
code. Other optimisations fall into three categories: (it)mising
reflective access to join points; (2) reducing the amountad-b
ing/unboxing; and (3) cleaning up the woven code using stahd
Soot optimisations. We discuss each of these categorieie m
detail below.

5.1 Optimising Reflective Access to Joinpoints

AspectJ supports reflective access to information abontgoints
via thisJoinPoint The information available consists of static infor-
mation, such as the kind of the join point and the source iocat
and dynamic information such as the current valuearg§ target
andthis. For each join point shadow, the static part is computed
once, and stored in a static final field, when the class cantain
the shadows is first initialised. Thus, it has quite low oeadh On
the other hand, the dynamic part is much more expensive giece
information is specific the particular execution of a joirimipand
thus a join point object is created each time the join poietexes.

Since it is very common for advice to only access the statit pa
of thethisJoinPointobject, the AspectJ language has a special vari-
able thisJoinPointStaticPartvhich provides only the static infor-
mation and programmers are encouraged to use this variatien
they only need the static information.

Of course, it would also be nice if the compiler could automat
ically detect those cases when only the static part is neaddd
thus free the programmer from explicitly having to dbesJoint-
PointStaticPart Indeed,ajc already implements the lazy creation
of the dynamic part andbcimplements a similar strategy. In par-
ticular, abc performs a simple, conservative intraprocedural anal-
ysis to determine whether the dynamic part is needed, anat,f n
it replaces the use dhisJoinPointby thisJoinPointStaticPartin
cases where we do need to keep the dynamic version, it igliséd
lazily. In particular it is not constructed prior to the dynia point-
cut matching, as such construction might turn out to be in V@i
the pointcut fails to match.

We have plans to further improve upon our optimisations-Cur
rently there is only one type of join point object, so one nusate
the whole object, even if only one part of the dynamic context
needed. We would like to be able to specialise the join pdifgais
based on which parts are used. Secondly, we would like to iexeam
the impact of interprocedural analyses to more accuratetgre
mine when the dynamic part is used and which parts are needed.

5.2 Reducing boxing/unboxing

At various points in an AspectJ implementation, contexoiinfa-
tion must be passed, aagt often does so by passing Object arrays,
and using boxing and unboxing as appropriate to retrieveeise
vant context informatiorabg by contrast, exercises a lot of care to
avoid unnecessary heap allocations and boxing operations.

A particular example concerns the context passingafound
advice, and this was discussed in detail in Section 3.3.2. An
other example occurs with the parameters of intertype cactstrs
(where an aspect injects a new constructor into an existagsk
ajc wraps all such arguments into a single Object array,aing
avoids boxing arguments of primitive types, at the experfsa o
slightly more complex code generator. As a final examplanypri
itively typed values are sometimes boxed for passing tocadvi
methods to allow the same advice method to be used polymorphi

cally. After inlining, the boxing and unboxing operatioremoften
be removed from each join point shadow.

5.3 Standard Soot Optimisations

Unlike ajc, which does not contain an optimising backendal

we can take full advantage of Soot to apply standard compper
timisations after all weaving has taken place. This is beizfbe-
cause we can produce woven code which introduces spurieus in
structions such asops copy statements or redundant branches, and
let the standard Soot analyses eliminate those extra atisns.

One example of how this simplifies our compiler is that we
introduce extranopinstructions to cleanly represent the beginning
and ending of join point shadows. This technique works waties
thenopswe introduce have no control flow entering them or leaving
them and they serve as clean places on which to define exaeptio
ranges. Thus our weaver does not need to worry about patching
up control flow and exception ranges as we weave. This allows
the weaver to be quite compositional and extensible. After a
weaving is complete the nops are removed using the standatd S
nop eliminator which automatically fixes up the control flonda
exception ranges.

One surprising result we found was that weaving aspects can
generate a large number of new local variables and perfgrmin
Soot’s register-allocation-type packing of these vagabht the
Jimple level resulted in significant speedups on some poplla.

Finally, we also apply standard Soot optimisations duripg-s
cialised passes like the around inliner. These are usedmove
useless parameters, remove unused methods, simplifjhesitad
eliminate useless casts.

6. RELATED WORK

This work is the first general study of analysis and optinidsat
strategies for aspect-oriented languages in general carfsspect]
in particular. As a consequence, the amount of related veadkher
sparse. There are however a number of other industrial gitren
implementations of aspect-orientation, and we discussethere.

Theajc Compiler The reference implementation of AspectJ (and
in fact the only other implementation of the language) is dje
compiler. The weaving strategies &t andabcare similar, except
for the optimisations described in this paper. Following #arly
success of our optimisations abc, two of them ¢flow counters
and sharing otflow stacks) have been incorporated iafo 1.2.1.
Further details on the implementation of weavin@ja (similar to
weaving inabcexcept for the optimisations described here) can be
found in [11].

Other AOP Systems There are a number of other systems besides
AspectJ that support the use of aspects. Perhaps the mosssiid

of these is AspectWerkz [8]; its features are in fact veryilsirmo
those of Aspectd Aspects are however deployed using annotations
or scripts, rather than in an extension of the Java languaigiée
Aspect], AspectWerkz supports dynamic weaving: enablewg n
aspects at runtime, and also disabling them:

The AspectWerkz system may however also be used in off-line
mode, in the same way agc or abc Because of its focus on run-
time weaving, AspectWerkz employs an event-based implémen
tion of join points, where advice can register as a listeimepre-
liminary experiments, we have found this strategy leadssinwa-
down of a factor of 9 or more compareddfe or abc. Because of
this huge gap and the different aims of dynamic weaving, we fo
cused on the most popular static weaving system, whiaftid he

SIndeed, since January 2005, tlagc and AspectWerkz projects have
merged — the discussion here refers to AspectWerkz 1.0.



other leading AOP system is JBoss [12], and this employs & sim
lar implementation strategy to AspectWerkz. It is eviddwttooth
these systems could benefit by the optimisations preserges] h
when used in off-line mode. For weaving at runtime, it woytd a
pear that our intraprocedural optimisations may be helpfale
same applies to efforts to support aspects in a modified J\8M, a
in [7].

7. CONCLUSIONS

The field of optimising compilers for AOP languages is jusirst
ing, but we believe that this area will provide many inteirest
problems and challenges that can be met with both existing an
new compiler optimisation technology.

In this paper we have presented three main contributioniseto t
field in the context of a new optimising compiler for Aspeetic

We have designed and implemented a new strategy for weaving

around advice which aims to avoid both the code size explosion
of a pure inlining approach and the time and space overhead of
explicit closure-based approach. Our experimental resldmon-
strate that this technique works very well, it is much mofeieit
than the closure-based approach, and produces much lestheod
the inlining-based approach.

Our second major contribution was to show how to reduce or
eliminate the large overheads associated wfiitw. We gave some
intra-procedural techniques that are both relatively snapd very
effective at reducing large overheads for the common casesa
optimisations have already been adopted by the implemgiwafor
the ajc compiler. We then showed that we can go even further by
applying inter-procedural analyses that can staticalfyr@gamate
dynamiccflow properties. Our experimental results show that in
many cases we can completely eliminatedfiew overhead.

Finally, the implementation strategies presented herevsho
case a novel methodology for defining new program analyseés an
efficiency-improving program transformations for aspedéented
languages. In particular, the interprocedurfibw analysis shows
thatreweavings a useful technique. In reweaving, aspects are wo-
ven first naively into the base program, the resulting pnogis.
analysed and the results of the analysis are used to guide-sub
quent weaving phases (so that better code can be produced). |
general, reweaving can be iterated multiple times. @becom-
piler was designed specifically to support reweaving and tan
serve as a workbench for developing new optimising transéer
tions of AspectJ.
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