
Optimising AspectJ∗

Pavel Avgustinov1, Aske Simon Christensen2, Laurie Hendren3, Sascha Kuzins1,
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Abstract
AspectJ, an aspect-oriented extension of Java, is becomingincreas-
ingly popular. However, not much work has been directed at opti-
mising compilers for AspectJ. Optimising AOP languages provides
many new and interesting challenges for compiler writers, and this
paper identifies and addresses three such challenges.

First, compilingaround advice efficiently is particularly chal-
lenging. We provide a new code generation strategy foraroundad-
vice, which (unlike previous implementations) both avoidsthe use
of excessive inlining and the use of closures. We show it leads to
more compact code, and can also improve run-time performance.
Second, woven code sometimes includes run-time tests to deter-
mine whether advice should execute. One important case is the
cflow pointcut which uses information about the dynamic calling
context. Previous techniques forcflow were very costly in terms
of both time and space. We present new techniques to minimise
or eliminate the overhead ofcflow using both intra- and inter-
procedural analyses. Third, we have addressed the general prob-
lem of how to structure an optimising compiler so that traditional
analyses can be easily adapted to the AOP setting.

We have implemented all of the techniques in this paper in
abc, our AspectBench Compiler for AspectJ, and we demonstrate
significant speedups with empirical results. Some of our techniques
have already been integrated into the production AspectJ compiler,
ajc 1.2.1.

Categories and Subject Descriptors D.3.4 [Programming Lan-
guages]: Processors—optimization; D.3.4 [Programming Lan-
guages]: Processors—compilers

General Terms Performance, Experimentation, Languages

Keywords AspectJ, optimization, aspect-oriented programming
language, cflow pointcut, around advice
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1. INTRODUCTION
Aspect-oriented programming is a new programming paradigmthat
is rapidly growing in acceptance, in large part due to the popularity
of AspectJ [4], an aspect-oriented extension of Java that iscom-
patible with existing Java programs. Aspect-oriented programming
encompasses many different language features, which can besep-
arated into two categories:static features, essentially a version of
open classes; anddynamicfeatures. While the static features incur
no substantial performance penalty, that is not necessarily the case
for the dynamic features. New optimisation strategies are required
to improve the performance of programs written using the dynamic
features of AspectJ.

1.1 Challenges

The execution model for (the dynamic features of) AspectJ is
that execution of the main program is monitored for certain
programmer-specified events. When these occur, control is passed
to advice, a special kind of method that contains the extra code
to be executed. Advice can be run before or after the event that
triggers it, or it can be executed “around” it (instead of it).

The monitoring of the base program to find points where advice
should apply can be expensive. Of course, the AspectJ language has
been designed so that most of the conditions that cause advice to be
triggered can be determined statically, and so do not induceover-
heads. A nice explanation from the viewpoint of partial evaluation
can be found in [18].

However, some features of AspectJ require the insertion of
dynamic checks in the base programs, resulting in performance
loss. Furthermore, “around” advice, which we describe in more
detail in Section 2, is a powerful language feature that is difficult
to implement efficiently. It has been shown that the combination of
these factors can result in substantial overhead in AspectJprograms
[10]. Here,overheadshould be understood as the additional cost for
matching events to advice, not the execution of advice code itself.
In addition, we must considerspace overhead. This is the size of
the extra code introduced when aspects are applied to a program.

These problems highlight the need for novel aspect-specific
optimisation strategies.

1.2 Theajc Compiler

The reference implementation of AspectJ, originally developed by
the language’s designers, is theajc compiler [4], maintained as part
of the Eclipse project. Theajc compiler has been designed with
compilation speed in mind, and supports incremental compilation.
These design aims reduce the opportunities for optimisation, and
indeedajc performs only a small amount of intraprocedural analy-
sis and no whole-program analysis. This results in substantial over-



head in programs produced byajc when using certain features of
AspectJ [10].

1.3 The AspectBench Compiler (abc)

The observation that aspects can introduce substantial overheads
has prompted us to build a new compiler for the AspectJ language,
the AspectBench Compiler (abc) [1, 5], which is freely available
under the GNU LGPL. Whileabc uses a weaving strategy simi-
lar to ajc in many ways, by contrast its design was motivated by
two goals: to beextensible(so that new features can be added to
the input language) and provide a powerfulanalysis and optimi-
sation framework. This second feature, which aims to reduce the
overheads of AOP, is the main focus of this paper.

To achieve this,abcuses the Soot program analysis and trans-
formation framework [24] as a backend. Soot provides a typed,
three-address intermediate representation (called Jimple) and a li-
brary of standard program analyses. In addition, it is straightfor-
ward to define new analyses in Soot, both intraprocedural andin-
terprocedural. In particular, the Jimple IR is extremely well-suited
to program analysis and transformation.

1.4 Contributions

This paper is the first systematic study of the analysis and opti-
misation of aspect-oriented programs, in particular for the AspectJ
language. We present the following novel contributions:

• A novel implementation strategy for ‘around advice’. Around
advice is executed instead of the event that triggered it. Our im-
plementation strategy avoids the use of closures in all but some
pathological examples, unlike earlier implementations, which
relied heavily on closures, and does not require inlining with
the associated risk of code bloat. Furthermore, our implemen-
tation allows us to optionally run a postpass inliner which can
selectively inline.

• A number of intraprocedural optimisations to reduce the over-
heads of ‘cflow pointcuts’. This feature of AspectJ is used to
intercept method calls in the dynamic scope of others, and its
naive implementation can be very costly.

• An interprocedural analysis to completely eliminate the over-
heads of usingcflow in most cases. This analysis and the asso-
ciated transformations illustrate our final contribution:

• A general technique for leveraging analyses and transforma-
tions for pure Java on AspectJ programs. The technique con-
sists of first compiling the program naively, possibly inserting
too many dynamic checks (for the applicability of advice) into
the base program. We then analyse the resulting intermediate
code, and reconsider the decisions to insert dynamic checks,
based on the analysis results.

All these contributions have been implemented inabc and, at our
suggestion, some have also been adopted byajc. We present exper-
iments to confirm that the above techniques can result in dramatic
improvements in run time as well as code size. While this paper il-
lustrates the techniques in the context of the AspectJ language, they
equally apply to other aspect-oriented programming languages.

1.5 Outline

This paper is structured as follows. We first briefly introduce the
relevant features and terminology of AspectJ in Section 2. Then, we
describe the optimisations used inabc’s implementation ofaround
advice in Section 3. Subsequently, optimisations specific to the
cflow construct of AspectJ are given in Section 4. Section 5 sum-
marises further efficiency improvements achieved byabc. Finally,
we give related work in Section 6 and conclude in Section 7.

2. BACKGROUND AND DEFINITIONS
The execution events in an AspectJ program that can be monitored
and associated with advice code are calledjoin points. A join point
is a span of time in the execution of the program. Example join
points are a call of a method, an execution of a method body, a field
read or an execution of an exception handler. For any particular join
point, the textual part of the program executed during the time span
of that join point is called theshadow of the join point.

AspectJ contains a query language for picking out join points.
Such a query is called apointcut. An advice declaration consists
of an advice kind (before, after, around), a pointcut, and a body
of code, calledadvice. The advice is to be executed before, after,
or instead of any join point which matches the pointcut. Whenever
multiple pieces of advice apply at the same join point, precedence
rules determine the order in which they execute.

A pointcut consists of a number ofpointcut designators con-
nected by boolean connectives. Each pointcut designator iseither
static (defining a set of join point shadows) or dynamic (defining
a run-time condition). Some examples of static pointcuts are call
andexecution, which match all calls to and executions of a method
matching a pattern;within , which matches all join points within
class matching a pattern; andhandler, which matches exception
handlers. Some examples of dynamic pointcuts areargs (a), which
matches when actual arguments of a method have specified run-
time types;if (e), which matches when the arbitrary Java expres-
sione evaluates to true; andcflow (p), which matches when a join
point is within the dynamic scope of a join point matched by point-
cut p. In addition to testing runtime conditions, dynamic pointcut
designators may also bind context values to variables to make them
available to the advice code and to the code inif pointcuts. For in-
stance, theargspointcut designator may bind the actual arguments.

AspectJ also contains standalone pointcut query constructs. The
declare error and declare warning constructs take a pointcut
consisting of only static pointcut designators along with amessage.
If the pointcut matches any join point shadow, the message is
printed as a compile-time error or warning, respectively.

The process of compiling AspectJ programs is known asweav-
ing. The base program and advice declarations are woven together
into one program which behaves as if the aspects were monitoring
execution of the base program, and invoking the relevant advice.

Weaving is a two-step process. The first step,pointcut match-
ing, checks for each possible join point shadow in the program and
each advice declaration, whether the pointcut could possibly match
a join point at that shadow. If so, it constructs adynamic residue
of the runtime checks to be performed at the shadow to determine
whether the pointcut actually matches.

The second step isadvice weaving. At each join point shadow
where a piece of advice may apply, code is generated to evaluate
the dynamic residue and, if it matches, to bind the context values
and invoke the advice.

3. OPTIMISING AROUND ADVICE
Most advice in AspectJ programs adds some code to a join point,
either before or after it.around advice is unique in that it is
executedinsteadof each join point it applies to. It can, however,
invoke the original join point at any time by using aproceed
statement.

The following caching aspect demonstrates the usefulness
of this interception mechanism. The aspect intercepts calls to a
method namedfooand only executes a call if the result is not in the
cache already:
aspectCache{

pointcut methodsToCache(Object arg) :
call(Object foo(Object)) &&args(arg);



Objectaround(Object arg) : methodsToCache(arg){
if (!cacheContains(arg))

setCache(arg,proceed(arg));

return getCachedValue(arg);
}
booleancacheContains(Object arg){...}
void setCache(Object arg, Object value){...}
Object getCachedValue(Object arg){...}

}

Like all forms of advice,around advice can have arguments.
Each of these arguments has to be bound to an exposed context
value by the pointcut expression: in the above example,args(arg)
binds the argument offoo to arg. A proceedstatement looks like a
method call with the same number of arguments as the advice, and
it executes the original join point with the bound context values
set to the arguments of theproceed call. The proceed call can
thereforechange the values of context values (such as method
arguments).

3.1 Implementation Issues

A number of difficulties arise in the implementation ofaround
advice (and particularly theproceedstatement), which we briefly
outline before giving possible solutions.

The first problem is thataround advice can apply in mul-
tiple places within the base program. For example, considera
piece of around advice with pointcutexecution(void foo(..)) ||
execution(void bar(..)). This will apply to the bodies of methods
fooandbar, and any occurrence ofproceedin the advice body will
pass control back to the method that was matched. Furthermore,
thecontextof the advice applications (the values of locals used in
the advised statements) can certainly differ between applications to
foo andbar. This polymorphic behaviour ofproceed is the main
difficulty in its implementation.

Matters are further complicated by the fact thatproceed can
occur in arbitrary places within the advice body, includinglocal
and anonymous classes. An important implication is thatproceed
statements may be executed after the control flow has left the
advice body. Any context values needed for theproceedcall must
therefore outlive the execution of the advice in this case.

Finally, aspects are not restricted to observing the base program,
and in fact advice can apply to other advice. In particular, apiece of
around advice can apply to the execution of itsownbody, directly
or indirectly. Suchcircular adviceexecution applicationsare very
rare, and usually pathological and a symptom of an error in the
program. It is important to observe that these can occur, however,
as we shall have to treat such applications as special cases.Note
that the application ofaround advice to any other advice other than
itself, or to a statement within its body (but not the whole body) is
not considered circular. These other cases are common, but circular
applications are rare.

3.2 General Implementation

Any piece of advice, regardless of its kind, is turned into a plain
Java method (theadvice method) both byabcandajc. The interest
lies in the translation of theproceedstatement, minding the issues
described above. The polymorphic behaviour ofproceed, coupled
with the need to store execution context, motivates the use of
closuresas a default and straightforward implementation strategy.

As a preparatory step to implementingaround, any shadow that
is advised by somearound advice is lifted into a separate method
(the proceed method) that can be invoked byproceed. Note that
this is necessary as shadows need not be entire method bodies.

3.2.1 Closures

We shall now give a brief description of the closure strategy.
This approach works by defining a suitable interface type (or

class type) for each advice method, as follows:

public interface Around$1{
public ret-typeproceed$1(arg-typearg1, ...);}

Then, all calls toproceedare translated to calls on this closure
interface. Note that the arguments passed toproceedcan be differ-
ent from the arguments that were passed into the advice method.

public classAspectClass{
ret-typeadviceMethod$1(Around$1 closure,

arg-typearg1, ...){ ...
ret-typeresult=closure.proceed$1(arg1”, ...);

... }

...
}

For each advice application, a specialised closure type is defined
that implements the interface and has members for the context
values, and for each advice invocation, an instance of the closure
class is passed to the advice method. This closure must then call
the proceed method.

public classShadowClass{
public void shadowMethod(){

Around$1 closure=new Around$1$Impl();
..initialise members with context values..
AspectClass.aspectOf().adviceMethod$1(closure, ...)

}
}

The major drawback of the closure approach is performance.
Each time advice is triggered, a closure object has to be allocated
on the heap, which can be a significant overhead.

3.2.2 Inlining

In all cases apart from the case of advice applying to itself (ei-
ther the whole advice or a statement within it), it is possible to
avoid closures by duplicating the advice method for each point in
the program where the advice applies. This so called inlining (in
ajc terminology) eliminates the need for polymorphism as thepro-
ceedstatements in this specialised advice method always invoke
the same join point shadow, and the join point context can be trans-
ferred using method arguments.

While inlining may be a good optimisation in certain situations,
the duplication of the advice method for every advice application
can lead to code bloat and thus is unsuitable as the general ap-
proach.

The proceedstatement is implemented inajc using these two
strategies, a generic strategy based on closures and an inlining
strategy that is used in certain cases. We shall now describeabc’s
approach.

3.3 Around weaving in abc

We present a novel approach for weaving around advice. Our ap-
proach is generic: the same strategy can be employed everywhere,
and it does not rely on inlining. The only exception is the patholog-
ical case of circular adviceexecution applications, described previ-
ously. We will return to that case in Section 3.3.4.

When compared to the dual strategy ofajc, abc’s around weaver
never performs significantly worse and in many cases performs
significantly better. Particularly,



• wheneverajc resorts to closure creation,abccan be expected to
produce faster code

• when the advice code is big and applies at many locations,abc
avoidsajc’s code bloat

• with circular adviceexecution applications,abcproduces fewer
closure objects and hence faster code.

We shall now describe our weaving strategy in detail.

3.3.1 The Generic Implementation

Instead of creating a closure class for each join point shadow where
around advice could apply,abc places the proceed code from all
join point shadows of a class in a single static proceed method in
the class. If the shadow exceeds a certain size, it is first extracted
into a dedicated static method which is then called from the proceed
method. This is an optimisation that prevents unreasonablylarge
proceed methods.

Each join point shadow at which around advice applies is re-
placed with a call to the advice body. Into the advice body, wepass
a static class ID to identify the class from which we are calling it,
and a shadow ID to identify the join point shadow within the class.
To implement theproceedcall, the advice body uses the static class
ID (using a switch statement) to select the class from which it was
called, and calls the static proceed method in that class (note that
the ID ’0’ is reserved for calls on a closure interface in casethe
weaver has to fall back on closures). The static proceed method
uses the shadow ID to select the shadow whose proceed code it
must execute. Because we keep the code of each join point shadow
in the class where it originally occurred, there is no need togenerate
accessor methods for private members.

public classAspectClass{
ret-typeadviceMethod$1(Around$1 closure,

int shadowID,int staticClassID,args) {
...
switch (staticClassID){
case0: closure.proceed$1(shadowID,args); break;
case1: ShadowClass.proceed$1(shadowID,args); break;
...dispatch to other classes to which the advice applies...
}

}

public classShadowClass{
public static ret-typeproceed$1(int shadowID,args) {

switch(shadowID){
case0: ... do what the first shadow did...
case1: ... do what the second shadow did...
...handle further cases...
}

}
...

}

3.3.2 Context and Advice Formals

In addition to calling the right piece of code we must also ensure
that values are passed for free variables used by this code (the
context). We describe the implementation of context passingnext.

Passing context Context from the join point shadow is needed in
two places. First, it is used by the code of the shadow itself.Since
we have moved this code out from the original join point shadow to
the static proceed method, we must pass the required contextinto
this method. Second, the AspectJ pointcut designatorsargs, this,
and target allow values from the context of the join point to be
bound to formal parameters of the advice, and used in the advice

body. Therefore, these values must be passed from the join point
shadow site to the advice method that is called.

The dynamic residue of the pointcut guarding the advice may or
may not match at run time. If the residue does not match, the advice
is not executed, and the static proceed method is called directly
from the shadow, so the context values are passed to it directly. If
the residue does match, the advice body is called from the shadow,
and it may in turn call the static proceed method (if the advice
contains aproceedcall). Therefore, from the shadow, we must pass
to the advice body both the context needed by the advice body itself
and the context needed by the proceed code, so that the advicebody
can pass it to the static proceed method.

One complication is that one advice method can apply to many
different join point shadows with different context values. There-
fore, we add a sufficient number of parameters of each type to the
method implementing the advice to cover the context at all shadows
at which the advice may apply. To keep the number of parameters
reasonably small, we only add parameters of the types Object, int,
float, double and long, since context values of any type can becon-
verted to one of these types to be passed into the method.

A second complication is that the context value to be bound to
an advice parameter may not be known until run time. Considerthe
following pointcut:

void around(Foo x) :args(x,..) || args(..,x) ...

In this case, x may be bound to the first argument of a method (if
it has typeFoo), or the last argument.1 The dynamic residues at the
join point shadow determine which part of the pointcut matches, so
at the shadow, at run time, we know whether the x in the advice
should be bound to the first or last parameter.

A third complication is that the advice may modify the context
that is to be passed to the proceed code for the shadow. Thepro-
ceedexpression in the advice body accepts the same number of ar-
guments as there are parameters to the advice body. In theproceed
call to the original code from the shadow, these arguments replace
the context values that were bound to the corresponding advice pa-
rameters when the advice was invoked. In the above example, if we
call proceed (null) from the advice, the code of the shadow must
be executed with its first or last argument replaced with null, de-
pending on which clause of the pointcut matched at the join point
before the advice was executed. Since this binding is only known
at the dynamic residue and only at run time, we must communicate
it from the residue to the advice method, which then communicates
it to the static proceed method. To do this, at the dynamic residue,
we create a bit vector specifying the bindings, and pass it through
to the relevant methods.

3.3.3 Local and anonymous classes

As we have observed previously,proceedstatements can occur in
local and anonymous classes within advice methods, and thusthe
proceedinvocation can occur after control flow has left the advice
method (and so its context must be stored). Our implementation
strategy conveniently extends to this case, as all the necessary
context is available in the advice method. We simply need to add
new fields to the local or anonymous class to hold the context values
and initialise these fields when the classes are instantiated.

3.3.4 Special Cases

In the previous sections we have described the generic implemen-
tation ofaround advice inabc. As mentioned above, in the patho-
logical case of circular adviceexecution this cannot be used, and

1 ajc as of version 1.2.1 avoids this complication by issuing a compiler
limitation error when encountering multiple binding pointcut primitives for
the same advice formal.



we resort to closures instead. Furthermore, for efficiencyabcalso
chooses to inline advice methods in some cases (when the advice
is small and does not apply numerous times, to avoid code bloat).
Here inlining is not taken in theajc sense, but rather in the usual
sense of substituting the body of the method (in this case, the ad-
vice method) at the point where it is called. We now describe these
two special cases in greater detail.

Circular advice applications The execution of advice is a join
point itself, so advice can apply to the execution of advice (the
entire body of the advice method). These advice-on-advice appli-
cations can be expressed as a directed graph structure. Whenweav-
ing into the execution of a method, the whole body of the method
is moved into the corresponding proceed method. To simplifythe
weaving process, a topological sort is performed on the graph struc-
ture prior to weaving. This ensures that once an around advice
method has been woven into, it itself is not applied to any join point
shadows anymore.

Obviously, a topological sort fails in the presence of cycles
in the graph, and the weaver will encounter situations wherethe
advice method to be woven has already been woven into. This is
the only case where we resort to the creation of closure objects.
The semantics of AspectJ dictate that in a cyclical graph, the order
of the execution of advice methods is determined by the dynamic
residues before any advice is executed. Because those residues
and the resulting execution order can be arbitrarily complex, we
decided that closures offer a clean, general solution.

As observed previously, cycles in the advice-on-advice applica-
tion graph are very rare and usually pathological. It therefore seems
unnecessary to try to avoid closures under these circumstances. We
have, however, strived to minimise the cost of closures; we create
specialised closure classes with fields matching the types of context
values, whereasajc uses an expensive object array to store context
values (requiring boxing of primitive types).

Inlining as an optimisation pass For very small advice, the
most efficient strategy can be to inline the advice directly into
the join point shadow. Inlining can also be beneficial if advice with
Object return type applies to a join point with a simple type. In
this case, the inlining can lead to the subsequent removal ofthe
boxing and unboxing code.

Inlining is implemented inabcas an optimisation pass running
after the around weaver.

The inlining process is implemented as a series of plain Java
optimisations. The advice method is first inlined into the join point
shadow as a normal Java method. A constant propagator and switch
statement folder are then used to remove checks on the staticclass
ID. Finally, the proceed method is inlined also, and its switch
statement removed. Since multiple pieces of advice can apply at
the same shadow, this whole process must be repeated until there
are no calls left to inline. A special boxing remover pass removes
unnecessary boxing and unboxing operations.

3.4 Empirical Results

To compare our strategy toajc’s and to experiment with the dif-
ferent tradeoffs of inlining strategies, we experimented with three
base programs and three aspects. The base programs areants, an
aspect-oriented simulation of an ants colony (following the speci-
fication of the ICFP 2004 programming contest) written by oneof
the authors (OdM) for use in an undergraduate course;sim, a dis-
crete event simulator for certificate revocation simulation [2]; and
weka, part of the weka machine learning library [25]. All bench-
marks were run on a dual AMD Athlon 2000+ with 2GB RAM and
the Sun J2SE 1.4.2 JVM.

Table 1 shows the both the execution time (in seconds) and wo-
ven code size (in bytecode instructions). For each benchmark we

Time (s) Size (instr.)
Benchmark abc abc ajc abc abc ajc

(inline) (inline)
sim-nullptr 21.9 23.9 21.4 7893 10687 10186
sim-nullptr-rec 23.6 20.8124.0 8216 20519 10724
weka-nullptr 19.0 17.8 16.0 103018116364 134290
weka-nullptr-rec 18.9 18.0 45.5 103401188666 130483
ants-delayed 17.5 17.6 18.2 3688 3906 3785
ants-profiler 22.5 19.2 21.2 7202 13333 13401

Table 1. Execution Times and Code Size

give results for:abc, usingabc’s generic around weaver with inlin-
ing disabled;abc (inline), the same asabc, but with the aggressive
postpass inliner enabled; andajc, the result given byajc’s around
weaver (which is either closure-based or inlining, depending on the
benchmark). For each benchmark, we have put the fastest timeand
the smallest code size in bold. Note that in most cases eitherabc
or abc (inline) gives the fastest code and thatabc’s code size is
consistently smallest, sometimes by a significant margin.

To compareabc’s generic weaving strategy toajc’s closure-
based and inlining strategies, we applied two versions of thenullptr
aspect [3] to two base programs,simandweka(the first four lines
in Table 1). Thenullptr aspect is a very simplearound aspect
for enforcing coding standards that we found on the web when
searching for examples of aspects. It simply checks for methods
returning and issues error messages in the cases where null is
returned. We used two different versions of the aspect, a recursive
one (the original form) where the advice applies to itself and a
non-recursive version where we explicitly use!within(...) to avoid
matches within the body of the advice. Theajc compiler uses
closure object creation for the first case (because of the recursion)
and inlining for the second case, whereasabc uses its generic
implementation for both cases.

Comparing the execution times for the non-recursive (sim-
nullptr andweka-nullptr) versions to the times for the recursive ver-
sions (sim-nullptr-rec) and (weka-nullptr-rec), we can see that the
execution time and code size forabc is almost the same, whereas
ajc produces much slower code for the recursive versions (6 times
slower forsimand almost 3 times slower forweka). For the the non
recursive cases,abc is slightly slower thanajc.

From these experiments we can see thatabc is fairly insensitive
to whether the advice is recursive or not, butajc pays a huge penalty
when it must switch to an explicit closure strategy.abc’s behaviour
is beneficial since programmers often make their advice recursive
by accident and they need not pay a performance penalty.

There are other situations where theajc weaver uses closures,
which is demonstrated by theants-delayedbenchmark. This bench-
mark uses theDelayOutputaspect which captures calls to output
methods and delays these calls until the end of the base program.
This is accomplished using a local class of typeRunnablein the ad-
vice method that callsproceedin its run() method. Theajc weaver
has to instantiate closure objects in addition to the instances of the
local class. Our weaving strategy avoids this, which explains why
theabcresults are slightly faster.

To demonstrate the adverse effects of a naive inlining strat-
egy, we applied a profiling aspect to our ants base program (ants-
profiler). The profiling aspect contains a relatively big piece of
around advice that is applied to the execution of every method in
the base program. Note thatajc’s inlining strategy can almost dou-
ble the size of the resulting class files due to the duplication of the
advice code for every advice application. Note that this increase in
code size can also be observed withabc’s inlining strategy. How-
ever, with our weaving strategy, inlining is optional and not nec-



essary for good performance. Inajc’s case, the only alternative to
inlining is the use of closures with the dramatic effects on perfor-
mance shown in the table. Furthermore, with our approach we can
selectively inline and we are actively working on mixing different
inlining strategies.

Currently we also have a prototype version of our inliner which
inlines the specialized advice to static methods in a similar manner
to ajc’s inliner, with similar performance and space usage. How-
ever, we believe that we can further improve on both the perfor-
mance and space usage. Instead of putting the specialized static ad-
vice method in the class containing the shadow being advised, we
put the specialized advice method in the class for the aspect. This
has the advantage of avoiding visibility problems since theadvice
code stays in the aspect. Further, by collecting all of the specialized
methods together, and by inlining the specialized proceed bodies
into the specialized advice bodies, we have noticed that there are
often clones produced. Thus, we believe that the space blowup can
be reduced, in some important common cases, by recognizing the
clones and only creating one copy of the specialized static method
for each set of clones. A further optimization is to remove unneeded
fetches of the aspect instance. Once the advice has been expressed
as a specialized static method there is often no need for the aspect
instance, and we are actively working on eliminating redundant and
dead fetches of the aspect instance.

4. OPTIMISING CFLOW
In the previous section we introduced a new strategy for weaving
around advice. When weaving all advice (before, after and around)
the weaver must generate efficient code to handle dynamic point-
cuts, i.e. those pointcuts that need a dynamic test to determine if
they should execute at a join point shadow or not. In this section we
concentrate on the most challenging dynamic pointcut, thecflow
pointcut.

The cflow pointcut picks out join points that fall within the
dynamic scope of certain events. Specifically, for any pointcut p,
cflow(p) applies at a point in the execution of the program ifp
matchessomestate in the call stack at that program point. Ifp
contains variables to be bound, then these are bound to the actual
values found in the match nearest the top of the call stack. For
example, the pointcut

call(∗ foo())&& cflow(call(∗ bar(∗))&& args(x))

matches all calls tofoo that occur within the dynamic scope of a
call to bar, and bindsx to the value of the argument of the last call
to bar.

It is clear that the use ofcflow pointcuts requires, in general,
the insertion of dynamic tests in the program to test the current
state against the conditioncflow(p). The naive implementation of
cflow associates a state with eachcflow pointcut and updates this
state incrementally (this implementation is described in [18]). The
state is a stack of variable bindings that represents an abstraction
of the call stack. Each time a join point that matchesp is entered,
a new item is pushed onto the stack, with all the variables inp
bound to the appropriate values. When this join point is left, the
top of the stack is popped. Finally, to check whethercflow(p)
applies at a program point, it suffices to check whether or notthe
stack is empty; if it is non-empty then the pointcut applies and the
appropriate variable bindings can be found on top of the stack.

The implementation ofcflow (as described above and used
in ajc) is clearly expensive, both because of the need to update
the state (which happens every timep applies) and because of
the dynamic tests inserted (which can, in the worst case, apply
everywhere). Performance experiments confirm that the overhead
introduced is substantial [10].

We introduce a number of optimisations forcflow, all imple-
mented inabc. We first show a number of simple, intraprocedu-
ral optimisations that reduce the overhead substantially.Then, we
show how the overhead can be entirely eliminated in many com-
mon cases by an interprocedural analysis. Finally, we give empir-
ical measurements showing that the optimisations are very effec-
tive.

4.1 Intraprocedural Optimisations

The simplecflow optimisations focus on eliminating the more ob-
vious inefficiencies in updating the state and checking for applica-
bility. They are straightforward but quite effective.

4.1.1 Sharing cflow states

The first optimisation thatabc performs is toshare the state up-
date and query code between related (or identical)cflow pointcuts
whenever possible. Consider the following pointcuts:

call(∗ bar())&& cflow(call(∗ foo(..))&& args(t,∗,∗))
call(∗ bar())&& cflow(call(∗ foo(..))&& args(∗,s,∗))

A naive implementation would keep a stack for eachcflow pointcut,
and update and query them independently. We optimise this by
observing that a singlecflow pointcut can be written that covers the
two existing instances. In this case, it iscflow(call(∗ foo(..) &&
args(l1, l2,∗)) (wherel1 and l2 are fresh variables). Note that this
binds variables used in either one of thecflow pointcuts in the
original program.

The implementation ofcflow in abcattempts tounify each pair
of cflow pointcuts that it finds. Unification of two pointcuts suc-
ceeds if the pointcuts are syntactically equivalent with the excep-
tion of free variables, and returns a pointcut that carries enough
state to cover both pointcuts (as in the above example).

In general, this sharing of state can improve performance sub-
stantially. In fact, cases similar to the above arise frequently due to
inlining of named pointcuts, a strategy used both inajc andabc.
An added benefit is that some method bodies can become smaller
when this is performed (by avoiding duplication of bookkeeping
code). We present empirical measurements of the performance im-
provements in Section 4.3.

4.1.2 Counters for cflow without bound variables

The next optimisation applies to pointcuts of the formcflow(p),
where p does not bind any values. In this case, the state of the
cflow(p) reduces to a stack of empty sets of variable bindings. In
ajc 1.2, this is represented by a stack of arrays of length 0.

We improve on this in the obvious way, by replacing the stack
with an integer counter that is incremented and decrementedwhen
p is entered and left respectively. This avoids repeated allocations
of empty arrays. The case of a parameterlesscflow appears to be
quite common, so this optimisation is widely applicable.

4.1.3 Reuse of counters/stacks

The final simplecflow optimisation is the caching ofcflow state
objects (stacks or counters). The state of a given pointcutcflow(p)
is thread-local, as it is an abstraction of the call stack. Multiple
copies are therefore kept, one for each thread, and any operation
on cflow state (updating or checking) involves retrieving the copy
valid for the current thread (in the worst case, a hash table lookup).

In general, multiple operations on the samecflow state can
occur within the body of the same method. In fact, updates to
the state of acflow are always paired (the state is updated when
entering and leaving a join point), so in most cases the stateis
retrieved at least twice in any method in which it is needed atall.



We can therefore improve on the original implementation by
retrieving the appropriate state object only when it is firstused in a
given method, and storing it for future uses in the same method.

4.2 Interprocedural Optimisations

The optimisations that we have described above reduce the over-
head associated withcflow, but this can still be substantial. Since
thecflow construct depends on dynamic properties of the program
in general, it is impossible to eliminate such overhead entirely.
However, many uses ofcflow can be statically determined, at least
at some program points. To take a simple concrete example, the
pointcutcflow(call(∗ foo())) matches all points in the execution of
the program within the dynamic scope of a call tofoo. It is possi-
ble to determine statically that some program points canneverbe
in the dynamic scope offoo, and that some program pointsalways
execute in its scope. At each such program point thecflow pointcut
is statically known to be true or false, so the dynamic check can be
eliminated. In addition, eliminating such dynamic matching code
can allow the compiler to eliminate some of the state-updating code
for thiscflow (if its effects can no longer be observed after dynamic
checks are removed).

Our empirical results in Section 4.3 show thatcflow pointcuts
can indeed be statically determined in almost all cases we have
encountered to date. We will now describe the analysis used in abc
to achieve this.

The idea for this analysis was introduced in [20] for a simple
procedural language. The analysis has been adapted to the much
wider context of AspectJ and implemented withinabc. It requires
an interprocedural analysis, but has two substantial advantages:

• It eliminates the overhead forcflow completely in many com-
mon cases, and

• in those cases, it allowscflow to be used in constructs that
require static pointcuts (such asdeclare warning).

4.2.1 Analysis in abc

One of the design goals ofabc was to make it possible to anal-
yse the code being woven, and use the analysis results to optimise
the weaving process to produce more efficient code. In particular,
we wanted to be able to leverage the many analyses existing for
Java code, without having to rewrite all of them to be specificto
AspectJ. This is, in fact, not merely a matter of convenience: it is
very hard to work out (for example) the control flow prior to the
weaving of advice, because an analysis would have to take into
account complex advice precedence rules, 11 different joinpoint
types, the option to change the arguments of a call viaproceed, and
so on. It follows that in general, an interprocedural flow analysis be-
fore weaving needs to contain all of the complexities of the point-
cut matching and advice weaving in an AspectJ compiler. Indeed,
others who have studied the static analysis of aspect-oriented pro-
grams [19,26] (for the purpose of property checking), were forced
to make strong restrictions in their implementation to circumvent
these complexities when doing a direct analysis prior to weaving.
Our aim, however, is to cover the full AspectJ language.

For these reasons,abc includes a hook to perform analyses on
the Jimple code produced immediatelyafter weaving, optimise the
naive weaving instructions originally produced by the matcher, and
then repeat the weaving process on the original code using the
optimised weaving instructions. Because the woven code being
analysed has no AspectJ-specific constructs, it is possibleto apply
standard analyses already in Soot. Of course, we also implement
analyses and optimisations specific to AspectJ, but these are greatly
simplified by being able to use the results of Java analyses.

The structure of theabc backend which makes these analyses
and optimisations possible is shown in Figure 1. In normal opera-
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Figure 1. Reweaving in theabcbackend

tion, the phases are executed from top to bottom: matcher, weaver,
bytecode generator (depicted in the middle column of the figure).
We now discuss each of these components in more detail.

Thematchertakes as input information about all the pointcuts
and advice from the frontend, as well as the Jimple intermediate
representation of the bytecode. The matcher produces a set of
weaving instructions which specify where in the code they should
be woven. A weaving instruction thus consists of a position in
the code (which may be a single statement or a whole region
of code), a piece of advice (which is represented as a regular
method), and a representation of theresidue. Often that residue
is alwaysmatchor nevermatch— which means no runtime test
needs to be generated. Occasionally the residue representsa truly
dynamic test, for example a boolean expression forif pointcuts, a
type instance test forargs, or a test on the relevant stack forcflow.

Theweaverexecutes these instructions, producing woven Jim-
ple, where the dynamic tests and calls to the advice methods are
inserted into the existing Jimple. The woven Jimple code thus cor-
responds to pure Java, with no aspect-oriented constructs at all. The
standardcode generatorof Soot [24] can therefore translate wo-
ven Jimple to bytecode. As part of this code generation pass,we
also perform simple intraprocedural optimisations (such as com-
mon subexpression elimination and constant propagation) to clean
up the results of weaving.

Let us now consider how this architecture, where the matcher
and weaver have been separated, facilitates analyses and optimisa-
tion: in Figure 1, this is illustrated by the boxes in the right-hand
column. Because woven jimple has no aspect-oriented features, we
can leverage standard Java analyses on woven Jimple, for instance
the construction of a call graph: there is no need to adapt stan-
dard analyses for AspectJ. As mentioned earlier, this is very impor-
tant, because it is (for example) extremely hard to work out control
flow in the presence of advice prior to the weaving process. The
result of such analyses is then fed into an optimiser that operates
on the weaving instructions. Typically the optimiser turnsdynamic
residues (which would result in runtime tests when woven) into the
static residuesalwaysmatchor nevermatch. The weaver can then
be invoked again, producing better woven code, where certain dy-
namic tests that always succeed or always fail no longer appear.
Note that this mechanism requires saving a copy of the original
Jimple code prior to the original weaving pass, whichabcdoes.

So far, we have implemented an interproceduralcflow analysis
and a thisJoinPoint escape analysis, but the approach is general;



other analyses (and corresponding optimisations) can be added to
the boxes labelled Analyser and Optimiser in Figure 1.

It is possible that an analysis will produce more precise results
if executed not on the naively woven Jimple, but on Jimple woven
using optimised weaving instructions produced by an earlier pass of
the analysis. Therefore,abcallows the Weaver-Analyser-Optimiser
feedback loop to be repeated if desired.

4.2.2 Call Graph

Estimating which shadows may or must be in thecflow of other
shadows requires a call graph approximating which methods may
be called from which call sites. We base our analyses on a con-
servative call graph: every method invocation possible at run-time
must be included in the call graph. Call graph construction for
object-oriented languages like Java has been the subject ofa sig-
nificant amount of research (e.g.[6,9,22,23]). Rather than reinvent
the wheel, we construct call graphs using Paddle, a successor of
Spark [13, 14], the points-to analysis and call graph construction
framework available in Soot [24].

In Java, most method calls are virtual, meaning that the method
invoked depends on the run-time type of the receiver object.The
treatment of virtual calls is one of the key features distinguishing
different call graph construction algorithms. The Paddle framework
allows us to experiment with call graphs constructed using algo-
rithms ranging from CHA [9], which conservatively assumes that
receivers could have any type admitted by their declared type, to us-
ing a subset-based points-to analysis to compute possible run-time
receiver types. We used the latter option in what follows: itturns
out that the extra time spent to create a precise call graph signif-
icantly reduces the time for the interproceduralcflow analysis we
describe below.

Some applications of call graphs, such as devirtualisation, only
require call edges for explicit invoke instructions present in the
code. However, because methods invoked implicitly by the VM
are defined to be in thecflow of their calling context, our call
graph must include these implicit calls. In particular, we include
implicit calls to static initialisers [17, section 2.17.4], calls through
thePrivilegedAction interface, and implicit constructor calls
by the Class.newInstance method. For the latter, the user
provides a list of all classes that may be instantiated usingreflec-
tion. To ensure that this list (and our call graph) is complete, we
insert code into methods not reachable in the call graph to abort
execution and alert us to the error. Paddle handles these tricky but
important details for us; we do not need to consider them explicitly
in our cflow analysis.

One type of implicit method invocation which we specifically
exclude from the call graph used forcflow analysis is the invocation
of the run method of newly created threads. Inabc, we strive to
be consistent with the AspectJ language as specified by theajc
implementation. Inajc, cflow stacks are maintained separately for
each thread, so the code executed by a thread is not considered to be
in thecflowof the code that created the thread. Paddle anotates each
call graph edge with a kind, which we use to detect and remove
edges of this unwanted kind.

4.2.3 Interprocedural cflow analysis

Desired optimisation The customary implementation of acflow
pointcut expressioncflow(p) incurs overhead at two kinds of shad-
ows. First, at each shadow matchingp, acflow stack is pushed and
popped to indicate when we are in the dynamic scope of thecflow.
We denote these shadows with the termupdate shadow. Second, at
each shadow where thecflow pointcut could possibly match, we in-
sert a dynamic residue to test whether thecflow stack is non-empty.
We denote these shadows with the termquery shadow.

We wish to perform two kinds of optimisation. First, if we can
determinecflow stack emptiness at a query shadow statically, we
can remove the dynamic residue at the query shadow, and possibly
other code that becomes unreachable. Second, if we can provethat
acflow stack update operation will not be observed by a stack query
within the dynamic scope of an update shadow, we can remove the
stack update operations at the update shadow.

Analysis information required For eachcflow stack st in the
program, we define two kinds of sets of instructions to be com-
puted,mustCflow(st), and, for each update shadowshupdatingst,
mayCflow(sh). mayCflow(sh) contains every instructioni in the
program such that wheni is executed, we may be in the dynamic
scope ofsh. That is,i may execute after the push operation ofshhas
been performed, but before the corresponding pop operationhas
been performed.mustCflow(st) contains every instructioni such
that wheneveri is executed, we must be in the dynamic scope of
some update shadowshupdatingst.

Whenever a query shadow (on stackst) is not inmayCflow(sh)
for any update shadowsh (on the same stackst), we replace the
dynamic test with a constant false pointcut expression.2 Any query
shadow inmustCflow(st) is replaced with a constant true pointcut
expression.

In addition, we calculate a subsetnecessaryShadows(st) of up-
date shadows whose effect may be observed at a query shadow.
Each update shadowsh ∈ necessaryShadows(st) satisfies two
conditions. First, some query shadowqsh that has not been re-
solved statically may occur in the dynamic scope ofsh (i.e.
qsh∈mayCflow(sh)). Second,shmay occur outside the dynamic
scope of all update shadows ofst (i.e. sh6∈ mustCflow(st)). This
second condition enables us to mark as unnecessary those update
shadows at which the stack is always already non-empty.

The optimisations become more complicated when thecflow
binds arguments because, in this case, each query shadow notonly
tests whether the stack is non-empty, but also observes the entry
at the top of the stack. We can still resolve statically thosequery
shadows not inmayCflow (sh), since we know that the stack would
always be empty when they are executed. However, at the query
shadows where we know the stack is non-empty, we must keep the
dynamic residues which read the entry from the stack. In addition,
we can no longer remove update shadows just because they are
in the mustCflow of the relevant stack, because we also need the
correct entry to be pushed onto the stack in addition to the stack
being non-empty.

Computing analysis information The exact extent of acflow
shadow depends on subtle details of advice precedence and the
distinction betweencflow and cflowbelow, and the weaver must
respect these details when weaving thecflow stack update oper-
ations. Because we perform the analysis on the woven code, we
need not consider these details; we simply consider eachcflow
shadow to start immediately after the point where the weaverwove
thecflow push instruction, and end immediately before the corre-
spondingcflow pop instruction. We need to unambiguously classify
every instruction in the method as being either within or outside the
cflow shadow. This requires that there be no jumps into or out of
the shadow, which would bypass the push or pop instruction.

Due to details of the weaving process, this requirement is always
satisfied, except in the case when the argumentp of the cflow
expressioncflow(p) is not entirely static, and requires a dynamic
residue. In this case, the weaver generates the dynamic testat the
update shadow. If the pointcutp does not match, we do not enter

2 Thecflow expression may be part of a more complicated pointcut expres-
sion. Constant folding of pointcut expressions is done in a separate phase
prior to weaving.



the dynamic scope of thecflow, so a conditional jump skips the
stack update operations. Therefore, whenp is not entirely static,
the instructions between the push and pop may execute withinor
outside the dynamic scope of thecflow. Therefore, none of these
instructions is a member ofmustCflow(st).

Algorithm 1 is used to computemayCflow(sh). It begins with
the statements in the intra-procedural shadow ofsh. Then, it adds
the statements of all methods that may be called from a statement
already in the set, until a fixed point is reached.

Algorithm 1 computemayCflow(sh)

mayCflow← {i | i is in intraprocedural shadow ofsh}
repeat

for all methodsm | ∃i ∈mayCflow . i may callmdo
mayCflow ←mayCflow ∪ set of statements inm

end for
until mayCflow does not change

We have implemented all of the inter-proceduralcflow analyses
using Jedd [15], an extension of Java for expressing analyses using
binary decision diagrams (BDDs), which it abstracts as relations.
We chose to implement the analyses in Jedd for two reasons. First,
they can be expressed in Jedd concisely and clearly. As an example,
Figure 2 shows the Jedd implementation of Algorithm 1. Notice
that the implementation closely mirrors the algorithm. Second,
although the sets computed in the analyses may become quite large,
they are likely to share many similarities. BDDs make is possible
to represent these large sets compactly.

<stmt> mayCflow(Shadow sh) {
<stmt> mayCflow = stmtsWithin(sh);
<stmt> old;
do {

old = mayCflow;
<method> targets =

mayCflow{stmt} <> callTargets{stmt};
mayCflow |=

targets{method} <> stmtsIn{method};
} while( mayCflow != old );
return mayCflow;

}

Figure 2. Jedd code implementing Algorithm 1

The setmustCflow(st) is computed using Algorithm 2. It first
accumulates the set shadowStmts of all statements within any up-
date shadow having no dynamic residue. Every such statementis
necessarily in thecflow. The algorithm then starts with all state-
ments in the program, and removes statements that can be reached
from the entry points of the call graph without passing through a
statement that is necessarily in thecflow. The statements to be re-
moved are computed by starting with the entry points, and adding
statements of methods called from the set computed so far, but ex-
cluding statements in shadowStmts, until a fixed-point is reached.

Computation of necessaryShadows(st) is shown in Algo-
rithm 3. We begin with all the query shadows, and remove those
known statically to be false. Unless thecflow binds arguments, we
can also remove those known statically to be true. This leaves us
with the query shadows that will be tested dynamically. The neces-
sary shadows are now those update shadows in whosemayCflow
any dynamic query shadow appears. Unless thecflow binds argu-
ments, we can also remove those update shadows which are already
in themustCflow of another update shadow.

4.3 Empirical Results

Thecflow optimisations we present in this paper have been empir-
ically validated in two different AspectJ compilers. First, we have

Algorithm 2 computemustCflow(st)

shadowStmts←{sh | shupdatesst and has no dynamic residue}
mustCflow← set of all statements
targets← set of entry points of call graph
repeat

targetStmts←
{i | ∃m∈ targets. i is a statement inm}\shadowStmts

mustCflow ←mustCflow \ targetStmts
targets←{m | ∃i ∈ targetStmts. i may callm}

until mustCflow does not change

Algorithm 3 computenecessaryShadows(st)

queries← set of all query shadows onst ∩⋃
{mayCflow(sh) | shupdatesst}

if cflow does not bind argumentsthen
queries← queries\mustCflow(st)

end if
necessaryShadows←{sh | ∃i ∈ queries. i ∈mayCflow(sh)}
if cflow does not bind argumentsthen

necessaryShadows←
necessaryShadows\mustCflow(st)

end if

implemented all the optimisations in ourabccompiler. Second, we
suggested them to theajc team, and they have implemented coun-
ters (Section 4.1.2) and sharing (Section 4.1.1) inajc 1.2.1.

4.3.1 Benchmarks

We tested thecflow optimisations on benchmarks from a wide
range of sources. We list the benchmarks and their sizes (non-
comment SLOC) in the first column of Table 2. Figure is a
demo from the AspectJ documentation. Quicksort is the exam-
ple from [20] with modifications suggested by Gregor Kiczales.
Sablecc is a compiler written using the SableCC compiler genera-
tor, with an aspect applied to count memory allocations in each of
its phases. The base programs ants, certrevsim(sim) and weka were
introduced in Section 3.4. Law of Demeter [16] is a style-checking
aspect that we have applied to two code bases: Certrevsim and
weka. Cona [21] is a framework for specifying and checking pre-
and post-conditions using aspects. We applied it to the stack exam-
ple mentioned in the paper, and to the simulator.

4.3.2 Intraprocedural optimisations

No opt. Intra-proc
Benchmark SLOC Stacks Stacks Counters
figure 94 5 0 1
quicksort 72 2 0 1
sablecc 31233 2 0 2
ants 939 1 1 0
LoD-sim 1586 13 0 1
LoD-weka 3912 13 0 1
Cona-stack 291 10 0 1
Cona-sim 1942 46 0 8

Table 2. Static intra-procedural optimisation counts

In Table 2, we present the static effects of our intra-procedural
optimisations implemented inabc. The column labelled “No opt.
Stacks” shows the number of different stacks before our optimi-
sations; the “Intra-proc” column shows the number of stacksand
counters after intra-procedural optimisations have been applied. In



abc ajc
Benchmark no-opt sharing sharing+ sharing+ +inter-proc 1.2 1.2.1

counters counters+ (no-opt) (sharing+
reuse counters)

figure 1072.2 238.3 90.3 20.3 1.96 450.5 167.7
quicksort 122.3 75.1 27.9 27.4 27.3 123.5 28.9
sablecc 29.0 29.1 22.8 22.5 20.4 29.7 24.2
ants 18.7 18.8 18.7 17.9 13.1 33.0 32.9
LoD-sim 1723.9 46.6 32.8 26.2 23.7 4776.2 35.3
LoD-weka 1348.7 142.5 91.9 75.2 66.3 2349.2 113.5
Cona-stack 592.8 80.1 41.2 27.4 23.1 1107.4 56.0
Cona-sim 75.8 75.3 73.8 72.0 73.6 76.8 69.0

Table 3. Benchmark running times (seconds)

most cases, sharing reduces the number ofcflow stacks (or coun-
ters) significantly, often down to one. In all benchmarks except ants,
all cflow stacks are replaced with counters. A counter cannot be
used for ants because thecflow pointcut binds a value.

We present the benchmark running times in Table 3. The mid-
dle section lists the running times of benchmarks compiled us-
ing abcwith cflow optimisations disabled (no-opt), with the intra-
procedural optimisations: sharing (Section 4.1.1), counters (Sec-
tion 4.1.2) and reuse (Section 4.1.3). The rightmost section lists
running times when the benchmarks are compiled withajc ver-
sions 1.2 and 1.2.1. Between these two releases, two of the intra-
procedural optimisations presented in this paper, sharing(Sec-
tion 4.1.1) and counters (Section 4.1.2), were added toajc in re-
sponse to our suggestions.

Using theabccompiler, the speedups due to our intra-procedural
optimisations are very significant (up to 54-fold) not only for small
benchmarks (e.g.figure, quicksort), but also for large benchmarks
which usecflow (e.g. the LoD benchmarks). We observe similar
speedups with theajc compiler between version 1.2 and 1.2.1, in
which intra-proceduralcflow optimisations were added.

4.3.3 Interprocedural optimisations

Static results of our inter-proceduralcflow analysis are shown in
Table 4. The “query shadows” column shows, for eachcflow point-
cut designator (corresponding to a stack or counter), the total num-
ber of query shadows and, of those, how many the analysis deter-
mined to be unreachable, how many are determined to never or
always match, and how many cannot be determined statically and
therefore still require a dynamic test. The “update shadows” col-
umn shows the total number of update shadows and the number
that the analysis determines to be necessary, and must remain as
dynamic updates even after the analysis.

With the exception of onecflow pointcut designator in sablecc,
the analysis was able to statically determine the outcome ofall
cflow queries, and therefore entirely remove the dynamic updates
and queries of thecflow stacks or counters. The imprecision in the
sablecc case is due to query shadows in a static initialiser;to deal
with this case, we are developing a simple analysis to reducethe
number of spurious static initialiser edges in our call graph.

Even though thecflow pointcut in ants binds an argument, we
can eliminate it because it is never queried. This is becausethe
pointcut is being used as an assertion to find an error condition. By
determining that thecflow never matches, we have statically veri-
fied the assertion. The success of the static analysis inspired us to
begin experimenting with AspectJ extensions to allow “dynamic”
pointcuts such ascflow in “static” declare error constructs. This
provides a way for a programmer to specify properties of the pro-
gram to be checked. When the analysis cannot prove the properties
at compile time, a warning is issued and a run-time check inserted.

Benchmark Query shadows Update shs.
Total Unreach. Never Always DynamicTotal Dynamic

figure 6 0 2 4 0 6 0
quicksort 6 0 2 4 0 3 0
sablecc 985 388 299 298 0698 0

985 388 332 260 5 1 1
ants 84 0 84 0 0 1 0
LoD-sim 1313 798 515 0 0 41 0
LoD-weka 7031 3501 3530 0 0 41 0
Cona-stack 16 0 14 2 0 27 0
Cona-sim 2 0 2 0 0 2 0

3 3 0 0 0 18 0
4 3 1 0 0 31 0
0 0 0 0 0 2 0
7 5 2 0 0 20 0
0 0 0 0 0 6 0
4 0 4 0 0 5 0
0 0 0 0 0 3 0

Table 4. Static inter-procedural optimisation counts

We were pleasantly surprised that the inter-procedural analysis
was so effective in resolvingcflow statically. To ensure that these
analysis results are indeed correct, we ran all the benchmarks with
a special dynamic residue woven in to check that the static analysis
results always agreed with the run-time behaviour.

The performance improvements due to the removal of update
shadows, query shadows, and the code of unreachable advice are
shown in the “abc inter-proc” column of Table 3. On benchmarks
making significant use ofcflow, both small (e.g.figure) and large
(e.g.LoD), these optimisations provide large speedups, even on top
of the already large speedups from the intra-procedural optimisa-
tions and the use of cheapcflow counters. Furthermore, when the
cflow binds an argument, the cheap counters cannot be used, so
the inter-procedural optimisations enable the removal of expensive
cflow stacks, resulting in a 1.4-fold speedup in ants.

Recall our earlier decision to use a subset-based points-toanal-
ysis to compute possible run-time receiver types in the callgraph
construction. If instead we use a less precise call graph, the im-
precision also affects the results of ourcflow analysis. In particu-
lar, in the sablecc benchmark, the number of update shadows opti-
mised stays the same, but the number of query shadows optimised
changes. For the stack where there are 5 unoptimised querieswith
the precise call graph, this number grows to 361 with CHA. Fur-
thermore, as we remarked earlier, the extra time spent to create a
precise call graph significantly reduces the time for thecflow anal-
ysis. Our implementations are however not yet tuned for compile-



time performance, so we defer a detailed study of these issues to
further work.

5. OTHER OPTIMISATIONS
In addition toaround andcflow optimisations detailed in the pre-
vious two sections,abcalso implements numerous other small op-
timisations which can also improve the performance of the woven
code. Other optimisations fall into three categories: (1) optimising
reflective access to join points; (2) reducing the amount of box-
ing/unboxing; and (3) cleaning up the woven code using standard
Soot optimisations. We discuss each of these categories in more
detail below.

5.1 Optimising Reflective Access to Joinpoints

AspectJ supports reflective access to information about join points
via thisJoinPoint. The information available consists of static infor-
mation, such as the kind of the join point and the source location,
and dynamic information such as the current values ofargs, target
and this. For each join point shadow, the static part is computed
once, and stored in a static final field, when the class containing
the shadows is first initialised. Thus, it has quite low overhead. On
the other hand, the dynamic part is much more expensive sincethe
information is specific the particular execution of a join point, and
thus a join point object is created each time the join point executes.

Since it is very common for advice to only access the static part
of thethisJoinPointobject, the AspectJ language has a special vari-
able thisJoinPointStaticPartwhich provides only the static infor-
mation and programmers are encouraged to use this variationwhen
they only need the static information.

Of course, it would also be nice if the compiler could automat-
ically detect those cases when only the static part is neededand
thus free the programmer from explicitly having to usethisJoint-
PointStaticPart. Indeed,ajc already implements the lazy creation
of the dynamic part andabc implements a similar strategy. In par-
ticular, abc performs a simple, conservative intraprocedural anal-
ysis to determine whether the dynamic part is needed, and if not,
it replaces the use ofthisJoinPointby thisJoinPointStaticPart. In
cases where we do need to keep the dynamic version, it is initialised
lazily. In particular it is not constructed prior to the dynamic point-
cut matching, as such construction might turn out to be in vain if
the pointcut fails to match.

We have plans to further improve upon our optimisations. Cur-
rently there is only one type of join point object, so one mustcreate
the whole object, even if only one part of the dynamic contextis
needed. We would like to be able to specialise the join point objects
based on which parts are used. Secondly, we would like to examine
the impact of interprocedural analyses to more accurately deter-
mine when the dynamic part is used and which parts are needed.

5.2 Reducing boxing/unboxing

At various points in an AspectJ implementation, context informa-
tion must be passed, andajc often does so by passing Object arrays,
and using boxing and unboxing as appropriate to retrieve therele-
vant context information.abc, by contrast, exercises a lot of care to
avoid unnecessary heap allocations and boxing operations.

A particular example concerns the context passing foraround
advice, and this was discussed in detail in Section 3.3.2. An-
other example occurs with the parameters of intertype constructors
(where an aspect injects a new constructor into an existing class).
ajc wraps all such arguments into a single Object array, butabc
avoids boxing arguments of primitive types, at the expense of a
slightly more complex code generator. As a final example, prim-
itively typed values are sometimes boxed for passing to advice
methods to allow the same advice method to be used polymorphi-

cally. After inlining, the boxing and unboxing operations can often
be removed from each join point shadow.

5.3 Standard Soot Optimisations

Unlike ajc, which does not contain an optimising backend, inabc
we can take full advantage of Soot to apply standard compilerop-
timisations after all weaving has taken place. This is beneficial be-
cause we can produce woven code which introduces spurious in-
structions such asnops, copy statements or redundant branches, and
let the standard Soot analyses eliminate those extra instructions.

One example of how this simplifies our compiler is that we
introduce extranop instructions to cleanly represent the beginning
and ending of join point shadows. This technique works well since
thenopswe introduce have no control flow entering them or leaving
them and they serve as clean places on which to define exception
ranges. Thus our weaver does not need to worry about patching
up control flow and exception ranges as we weave. This allows
the weaver to be quite compositional and extensible. After all
weaving is complete the nops are removed using the standard Soot
nop eliminator which automatically fixes up the control flow and
exception ranges.

One surprising result we found was that weaving aspects can
generate a large number of new local variables and performing
Soot’s register-allocation-type packing of these variables at the
Jimple level resulted in significant speedups on some popular JITs.

Finally, we also apply standard Soot optimisations during spe-
cialised passes like the around inliner. These are used to remove
useless parameters, remove unused methods, simplify switches and
eliminate useless casts.

6. RELATED WORK
This work is the first general study of analysis and optimisation
strategies for aspect-oriented languages in general, and for AspectJ
in particular. As a consequence, the amount of related work is rather
sparse. There are however a number of other industrial strength
implementations of aspect-orientation, and we discuss these here.

The ajc Compiler The reference implementation of AspectJ (and
in fact the only other implementation of the language) is theajc
compiler. The weaving strategies ofajc andabcare similar, except
for the optimisations described in this paper. Following the early
success of our optimisations inabc, two of them (cflow counters
and sharing ofcflow stacks) have been incorporated intoajc 1.2.1.
Further details on the implementation of weaving inajc (similar to
weaving inabcexcept for the optimisations described here) can be
found in [11].

Other AOP Systems There are a number of other systems besides
AspectJ that support the use of aspects. Perhaps the most successful
of these is AspectWerkz [8]; its features are in fact very similar to
those of AspectJ.3 Aspects are however deployed using annotations
or scripts, rather than in an extension of the Java language.Unlike
AspectJ, AspectWerkz supports dynamic weaving: enabling new
aspects at runtime, and also disabling them:

The AspectWerkz system may however also be used in off-line
mode, in the same way asajc or abc. Because of its focus on run-
time weaving, AspectWerkz employs an event-based implementa-
tion of join points, where advice can register as a listener.In pre-
liminary experiments, we have found this strategy leads to aslow-
down of a factor of 9 or more compared toajc or abc. Because of
this huge gap and the different aims of dynamic weaving, we fo-
cused on the most popular static weaving system, which isajc. The

3 Indeed, since January 2005, theajc and AspectWerkz projects have
merged — the discussion here refers to AspectWerkz 1.0.



other leading AOP system is JBoss [12], and this employs a simi-
lar implementation strategy to AspectWerkz. It is evident that both
these systems could benefit by the optimisations presented here,
when used in off-line mode. For weaving at runtime, it would ap-
pear that our intraprocedural optimisations may be helpful. The
same applies to efforts to support aspects in a modified JVM, as
in [7].

7. CONCLUSIONS
The field of optimising compilers for AOP languages is just start-
ing, but we believe that this area will provide many interesting
problems and challenges that can be met with both existing and
new compiler optimisation technology.

In this paper we have presented three main contributions to the
field in the context of a new optimising compiler for AspectJ,abc.
We have designed and implemented a new strategy for weaving
around advice which aims to avoid both the code size explosion
of a pure inlining approach and the time and space overhead ofan
explicit closure-based approach. Our experimental results demon-
strate that this technique works very well, it is much more efficient
than the closure-based approach, and produces much less code than
the inlining-based approach.

Our second major contribution was to show how to reduce or
eliminate the large overheads associated withcflow. We gave some
intra-procedural techniques that are both relatively simple and very
effective at reducing large overheads for the common case. These
optimisations have already been adopted by the implementors of
the ajc compiler. We then showed that we can go even further by
applying inter-procedural analyses that can statically approximate
dynamiccflow properties. Our experimental results show that in
many cases we can completely eliminate thecflow overhead.

Finally, the implementation strategies presented here show-
case a novel methodology for defining new program analyses and
efficiency-improving program transformations for aspect-oriented
languages. In particular, the interproceduralcflow analysis shows
thatreweavingis a useful technique. In reweaving, aspects are wo-
ven first naively into the base program, the resulting program is
analysed and the results of the analysis are used to guide subse-
quent weaving phases (so that better code can be produced). In
general, reweaving can be iterated multiple times. Theabc com-
piler was designed specifically to support reweaving and thus can
serve as a workbench for developing new optimising transforma-
tions of AspectJ.
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