
Flix: A Design for Language-Integrated Datalog

MAGNUS MADSEN, Aarhus University, Denmark
ONDŘEJ LHOTÁK, University of Waterloo, Canada

We present a comprehensive overview of the Datalog facilities in the Flix programming language.We show how
programmers can write functions implemented as Datalog programs and we demonstrate how to build modular
and reusable families of Datalog programs using first-class Datalog program values, rho abstraction, parametric
polymorphism, and type classes. We describe several features that improve the ergonomics, flexibility, and
expressive power of Datalog programming in Flix, including the inject and query program constructs, head
and guard expressions, functional predicates, lattice semantics, and more.

We illustrate Datalog programming in Flix with several applications, including implementations of Ullman’s
algorithm to stratify Datalog programs, the Ford-Fulkerson algorithm for maximum flow, and the IFDS and IDE
algorithms for context-sensitive program analysis. The implementations of IFDS and IDE fulfill a long-term
goal: to have fully modular, polymorphic, typed, and declarative formulations of these algorithms that can be
instantiated with any abstract domain.

CCS Concepts: • Software and its engineering→ Language features.

Additional Key Words and Phrases: Datalog, logic programming, language design, Flix programming language

ACM Reference Format:
Magnus Madsen and Ondřej Lhoták. 2025. Flix: A Design for Language-Integrated Datalog. Proc. ACM Program.
Lang. 9, OOPSLA2, Article 348 (October 2025), 29 pages. https://doi.org/10.1145/3763126

1 Introduction
“A programming language that doesn’t affect the way you think about programming,
is not worth knowing.”

— Alan Perlis
Datalog is an elegant and powerful logic programming language that empowers programmers

to write declarative logic constraints on relations and lattices and have them efficiently solved.
Datalog is experiencing a renaissance in research and industry. Research on Datalog is blossoming
in at least four directions: (i) new and emerging Datalog applications [Backes et al. 2019; Grech
et al. 2019; Seo 2018], (ii) extensions to Datalog semantics [Alvaro et al. 2011; Bembenek et al. 2020;
Madsen et al. 2016], (iii) techniques for debugging and provenance [Deutch et al. 2014; Pacak and
Erdweg 2023; Zhao et al. 2020], and (iv) incremental evaluation and performance [Jordan et al.
2019b; Ryzhyk and Budiu 2019; Sahebolamri et al. 2023; Sun et al. 2023; Szabó et al. 2018, 2016].

In this paper, we focus on a fifth direction: bringing Datalog to the masses.We focus on ergonomics
first and foremost. We believe that for Datalog to gain broader adoption, it must be integrated
into general-purpose programming languages so that programmers can use it where it really
shines: to declaratively express and solve fixpoint problems. In this line of work, other notable
systems are Ascent [Sahebolamri et al. 2022], Datafrog [McSherry 2018], Datafun [Arntzenius and
Krishnaswami 2016], and Functional incA [Pacak and Erdweg 2022]. We discuss them in Section 8.

Authors’ Contact Information: Magnus Madsen, magnusm@cs.au.dk, Aarhus University, Aarhus, Denmark; Ondřej Lhoták,
olhotak@uwaterloo.ca, University of Waterloo, Waterloo, Canada.

This work is licensed under a Creative Commons Attribution 4.0 International License.
© 2025 Copyright held by the owner/author(s).
ACM 2475-1421/2025/10-ART348
https://doi.org/10.1145/3763126

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 348. Publication date: October 2025.

https://orcid.org/0000-0002-7510-8724
https://orcid.org/0000-0001-9066-1889
https://doi.org/10.1145/3763126
https://orcid.org/0000-0002-7510-8724
https://orcid.org/0000-0001-9066-1889
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3763126
https://www.acm.org/publications/policies/artifact-review-and-badging-current
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3763126&domain=pdf&date_stamp=2025-10-09

348:2 Magnus Madsen and Ondřej Lhoták

This paper presents a “Grand Tour” of the Datalog facilities in the Flix programming language.
As a programming language systems paper, it aims to explore all practical aspects required to
build a useable programming language with Datalog as a first-class feature. It is the culmination of
several years of design, development, and experience.
While bits and pieces of Flix have been described in the research literature as small calculi and

type systems, in this paper, we take a step back and explain the entire system in one coherent
narrative. In particular, we describe each Datalog program construct and how it increases the
ergonomics, flexibility, or expressive power of Datalog programming in Flix, including:

• (Datalog Program Values) We describe how Flix supports Datalog programs as a first-class
values which can be stored in local variables, passed as function arguments, returned from
functions, composed with other Datalog values, and have their minimal model computed.

• (Inject-Query Constructs) We describe two programming constructs for working with
Datalog program values. The inject construct allows programmers to convert any immutable
data structure (e.g., a List[t] or Set[t]) to a Datalog relation. The query construct, inspired
by Linq’s language-integrated query [Meijer et al. 2006], allows programmers to compose a
sequence of Datalog program values, compute their minimal model, and extract a relation as
a collection of tuples. We illustrate how these constructs give rise to a common programming
pattern, which we dub the inject-program-query pattern.

• (Polymorphism and Type Classes) We show how parametric polymorphism and type
classes enable programmers to write reusable Datalog program values which abstract over
the concrete types of their Datalog terms.

• (Rho Abstraction)We describe a mechanism, called rho abstraction, to construct modular
Datalog program values with local predicate symbols hidden from the outside world.

• (Functional Predicates) We describe a mechanism, called functional predicates, which
enables functions in the functional world to introduce tuples into the Datalog world during
fixpoint computation.

• (Lattice Semantics) We describe how Flix supports not just constraints on relations as in
classical Datalog, but also constraints on lattices. We illustrate how lattices are defined as type
classes and show how the fix construct enables use of lattice values in relations.

• (Provenance)We describe how lattice semantics can be used to compute a limited form of
provenance. In essence, each Datalog rule can be extended to capture information about the
facts that it derives. While this “poor man’s” provenance does not grant access to the full
provenance proof, we argue that it is nevertheless useful.

We also touch on a few other Datalog aspects, including stratified negation [Apt and Bol 1994;
Starup et al. 2023; Zaniolo et al. 1993].
The outcome is a cohesive programming language system that enables the construction of

modular and reusable families of Datalog programswith flexibility across multiple dimensions,
including: composition, encapsulation, polymorphism, and tight integration with type classes.
Most importantly, Datalog is integrated smoothly into the general-purpose programming language,
enabling a mix of programming styles. Lastly, but importantly, the system ensures traditional type
safety and guarantees that every Datalog program constructed at runtime is stratified.

Applications. We present several applications that illustrate Datalog programming in Flix: We
implement Ullman’s algorithm for the stratification of Datalog programs [Ullman 1988], the Ford-
Fulkerson algorithm for maximum flow problems [Cormen et al. 2022], the IFDS and IDE algorithms
for context-sensitive program analysis [Reps et al. 1995; Sagiv et al. 1996], and more. The imple-
mentations of IFDS and IDE fulfill a long-term goal: to have fully modular, polymorphic, typed, and
declarative formulations of these algorithms, which can be instantiated with any abstract domain.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 348. Publication date: October 2025.

Flix: A Design for Language-Integrated Datalog 348:3

Language Design. We explore several programming language design choices made during the
development of Flix. In particular, we consider the trade-offs of using row typing for Datalog values
and expressions. We then discuss the roles of the solve and query constructs and explain why both
are necessary. Next, we explore how Datalog expressions interact with lexical scope. We also briefly
highlight some of the compile-time checks performed by the Flix compiler, including the range
restriction and stratification. Finally, we present alternative design choices that may be of interest
to implementers of similar systems.

Datalog Solver. The Flix Datalog solver is implemented as a just-in-time compiler that translates
Datalog programs into a low-level intermediate representation known as the Relational Algebra
Machine (RAM). The RAM IR is an imperative language equipped with relational algebra operators.
The translation from Datalog to RAM elaborates the semi-naïve evaluation strategy. The RAM IR
is subjected to a series of optimization passes, including the introduction of parallelism, before
being executed by an interpreter. Flix represents relations and lattices using concurrent B+-trees
which support efficient range queries. Although the Flix Datalog engine does not yet match the
performance of the state-of-the-art Soufflé engine [Scholz et al. 2016], it implements many of the
same techniques and its performance and scalability is practical for real-world use.

Teaching. We have been using Flix for teaching in two courses at the undergraduate and graduate
levels at Aarhus University. Specifically, we have used Flix in an extracurricular course on logic
programming for talented 1st year students. This course uses Datalog and Flix to illustrate the
declarative logic programming paradigm. We have also used Flix as part of a 4th year master-level
course on program analysis. Here, we use Flix to implement several program analyses, including
dataflow and points-to analyses. These two courses have offered valuable insight into how beginners
as well as experienced programmers use Flix, which has influenced the design of the language.

Audience and Objective. We intend for this paper to be accessible to a broad audience. The papers
that describe Datalog enriched with lattice semantics [Madsen et al. 2016], first-class Datalog
program values [Madsen and Lhoták 2020], and their stratification [Starup et al. 2023] are all
technical in nature. Their focus is on syntax, semantics, and types. While such foundations are
essential, this paper aims to take a step back, reorient its focus toward the programmer, and put
everything into a larger context. We want to illustrate that a language design that combines
functional programming with Datalog is powerful and elegant.

We remark that everything in the paper has been implemented and that all examples are runnable.
We want to emphasize that Flix is a full-blown programming language with a large standard library,
package manager, and excellent Visual Studio Code and LSP support.
Flix is open source, ready for use, and freely available at:

https://flix.dev/ and https://github.com/flix/flix
A fully functional and reusable artifact is available at: https://doi.org/10.5281/zenodo.15743442

Organization. The paper is organized as follows: Section 2 provides background information on
Datalog and briefly explains the history of the Flix programming language. Section 3, which is the
main body of the paper, describes programming with Datalog in Flix. We discuss all the outlined
features and motivate them with examples. We illustrate how they help bridge the gap between
the functional and the Datalog worlds. We also discuss some programming patterns that we have
discovered. Section 4 discusses several design choices made in Flix. Section 5 presents the Flix
Datalog solver. Section 6 presents several applications illustrating Datalog programming in Flix.
Section 7 briefly discusses our experience with using Flix in teaching two courses. Lastly, Section 8
presents related work and Section 9 concludes.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 348. Publication date: October 2025.

https://flix.dev/
https://github.com/flix/flix
https://doi.org/10.5281/zenodo.15743442

348:4 Magnus Madsen and Ondřej Lhoták

2 Background
We begin with a brief introduction to Datalog and to the history of the Flix programming language.

2.1 A Brief Introduction to Datalog
A Datalog program 𝑃 is a collection of constraints𝐶1, · · · ,𝐶𝑛 . A constraint, also called a Horn clause,
is of the form 𝐴0 ⇐ 𝐵1, · · · , 𝐵𝑛 where 𝐴0 is the head atom and each 𝐵𝑖 is a body atom. A head atom
𝑝 (𝑡1, · · · , 𝑡𝑛) consists of a predicate symbol 𝑝 and a sequence of terms 𝑡1, · · · , 𝑡𝑛 . A body atom is
similar to a head atom, except it can be negated, written with the not keyword before the predicate
symbol. A constraint without a body is called a fact. Conversely, a constraint with a body is called
a rule. A term is a variable 𝑥 or a literal constant 𝑐 .

Every Datalog program has a unique solution called the minimal model. Informally, the minimal
model is the smallest set of facts that can be derived from the constraints of the program. Importantly,
the minimal model is defined independently of how it is computed. This is what makes Datalog
declarative: we can write a Datalog program, and someone else can write a Datalog solver, and we
can independently agree on the result. Here is a small example of a Datalog program:

Edge(1, 2). Edge(2, 3). Edge(3, 4).

Path(x, y) :- Edge(x, y).

Path(x, z) :- Path(x, y), Edge(y, z).

This Datalog program contains three Edge facts and two rules for inferring Path facts. Notably, the
last rule is recursive: the predicate Path depends on itself. The minimal model of the above program
contains nine facts, including the Path(1, 4) fact which captures that there is a path from 1 to 4.
For more information on Datalog, we recommend [Ceri et al. 1989] and [Greco and Molinaro 2016].

2.2 A Brief History of Flix: From Datalog Dialect to Full-Blown Programming Language
Flix was originally introduced as a Datalog dialect which enriched Datalog from constraints on
relations to constraints on lattices. Programmers would write a single Datalog program, which could
refer to lattice operations defined in a small functional language [Madsen et al. 2016]. The original
work used Flix to present concise and declarative versions of the IFDS and IDE algorithms.

Allowing programmers to define their own lattices and monotone functions meant they might
make mistakes breaking the properties needed to ensure the existence of a least fixed-point. To
ensure safety, subsequent work proposed using dynamic symbolic execution and SMT solving to
verify the required lattice and monotonicity properties [Madsen and Lhoták 2018].

A significant step forward was the introduction of first-class constraints where Datalog programs
became first-class values [Madsen and Lhoták 2020]. With this change, the roles of Datalog and
the functional language were reversed: Datalog was now deeply embedded inside the functional
language, not vice versa. Instead of writing a single Datalog program, programmers would now
write a functional program with multiple Datalog fragments [Madsen et al. 2022].

Introducing first-class Datalog constraints presented the challenge that stratification was no
longer a simple syntactic check. To overcome this problem, Flix adopted a lightweight context–
and flow-insensitive whole program analysis to ensure safety [Starup et al. 2023].
While the Datalog aspect of Flix grew, other aspects of the Flix programming language grew

even more. A new strand of research became its polymorphic type and effect system [Lutze et al.
2023; Madsen and van de Pol 2020]. Another strand became its use of type-level Booleans and
Boolean unification [Madsen et al. 2023b] to support relational nullability [Madsen and van de Pol
2021] and restrictable variants [Madsen et al. 2023a].
Today, Flix is a modern, fully-featured programming language with two notable features: A

polymorphic type and effect system and first-class Datalog program values.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 348. Publication date: October 2025.

Flix: A Design for Language-Integrated Datalog 348:5

3 Datalog Programming in Flix
We now present a comprehensive overview of Datalog programming in Flix. We have written a
single self-contained narrative that progresses from simple uses of Datalog to the more complex.

3.1 A Brief Overview of Flix
Flix is a functional, imperative, and logic programming language that supports algebraic data
types, pattern matching, extensible records, higher-order functions, parametric polymorphism,
type classes, higher-kinded types, associated types and effects, user-defined effects and handlers,
structured concurrency with channels and light-weight processes, and has a Hindley-Milner style
polymorphic type and effect system. Flix comes with a package manager with Maven integration
and a fully-featured Visual Studio Code extension. The Flix compiler project, including the standard
library and tests, is approximately 251,000 lines of code.

We remind the reader that Flix is open source, ready for use, and freely available at:
https://flix.dev/ and https://github.com/flix/flix

A fully functional and reusable artifact is available at: https://doi.org/10.5281/zenodo.15743442

3.2 Datalog Programs as First-class Values
In Flix, Datalog programs are first-class values: they can be stored in local variables, passed as
arguments to functions, returned from functions, and stored in data structures. We can compose
two Datalog program values to compute their union. We can compute the minimal model of a
Datalog value which is itself a Datalog value. For example, we can write:

let db = #{

Edge(1, 2). Edge(2, 3). Edge(3, 4).

};

let pr = #{

Path(x, y) :- Edge(x, y).

Path(x, z) :- Path(x, y), Edge(y, z).

};

let mm = solve (db <+> pr)

Here we have three local variables: db, pr, and mm. Each local variable holds a Datalog program value.
The mm variable evaluates to the minimal model of the Datalog expression db <+> pr which is the
union of the two Datalog values db and pr. In general, Datalog values contain both facts and rules,
but no Datalog evaluation happens until solve (or query) is called. Datalog values and expressions
are typed with row types [Madsen and Lhoták 2020].

For example, the type of db is:

∀𝜌.{Edge = (Int32, Int32) | 𝜌}

and the type of pr is:
∀𝛼, 𝜌.{Path = (𝛼, 𝛼), Edge = (𝛼, 𝛼) | 𝜌}

and the type of mm is:

∀𝜌.{Edge = (Int32, Int32), Path = (Int32, Int32) | 𝜌}

The Flix type system ensures that the arity and terms of each predicate symbol are consistent. The
type system is sound, i.e. it satisfies progress and preservation [Madsen and Lhoták 2020].

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 348. Publication date: October 2025.

https://flix.dev/
https://github.com/flix/flix
https://doi.org/10.5281/zenodo.15743442

348:6 Magnus Madsen and Ondřej Lhoták

3.3 Injecting Facts andQuerying the Minimal Model
We now present two programming constructs for getting facts into and out of the Datalog world.
In the original Flix implementation, Datalog facts could only be constructed by capturing variables
from the lexical scope. Worse, facts could not be extracted back into the functional world [Madsen
and Lhoták 2020]. We overcome both issues with the inject and query constructs.

3.3.1 Injecting Facts. Flix, like most functional programming languages, support a rich collection of
immutable data structures such as Lists, Sets, and Maps, but also Options, Results, Validations, Chains,
Nels (non-empty lists), Necs (non-empty chains), and several more. Programming with these data
structures is the bread and butter of functional programming. In contrast, Datalog has a single
data structure: predicates, i.e., named relations. What we need is a mechanism to bridge the gap
between the two worlds. Specifically, we need a feature to associate a collection of tuples with a
predicate symbol and to transform such a collection into an internal representation that is suitable
for Datalog evaluation. In Flix, we overcome both issues with the inject construct.

We can translate a list of tuples:
let edges = (1, 2) :: (2, 3) :: (3, 4) :: Nil

into a Datalog relation, i.e. a set of facts, using inject:
inject edges into Edge/2

which conceptually evaluates to the Datalog program value1:
#{ Edge(1, 2). Edge(2, 3). Edge(3, 4). }

The type of the inject expression is, as one would expect, the row type: {Edge(Int32, Int32) | 𝑟 }.
We can use inject to translate multiple heterogeneous collections into relations:

let nodes = Set#{1, 2, 3, 4};

let edges = (1, 2) :: (2, 3) :: (3, 4) :: Nil;

inject nodes , edges into Node/1, Edge/2

which conceptually evaluates to:
#{ Node (1). Node (2). Node (3). Node (4). Edge(1, 2). Edge(2, 3). Edge(3, 4). }

The general form of inject is:
inject e1 , e2, ... into P1/a1, P2/a2, ...

where 𝑒𝑖 is an expression and 𝑃𝑖/𝑎𝑖 is a predicate symbol with its arity.2 The inject construct works
with any data type that implements the Foldable[t] type class. In particular, it works for List[t],
Set[t] and Map[k, v], and can be extended to any programmer-defined data type.

3.3.2 Querying the Minimal Model. We can construct Datalog program values, but how do we
solve them? Flix supports the query construct to compute the minimal model of a Datalog program
value and to extract a collection of tuples from it. Given the Datalog program values:

let db = #{ Edge(1, 2). Edge(2, 3). Edge(3, 4). };

let pr = #{

Path(x, y) :- Edge(x, y).

Path(x, z) :- Path(x, y), Edge(y, z).

};

1An inject expression does not have to immediately evaluate to a set of Datalog facts. The Flix Datalog solver can defer
this transformation until later, given that the input is immutable. In particular, the Flix implementation is free to choose
how to represent the facts in the Edge relation.
2A list of pairs – e.g. List[(Int32, Int32)] – can be interpreted in two ways: (a) as a unary relation whose elements are
pairs, or (b) as a binary relation. To avoid ambiguity, inject requires the programmer to specify the expected arity.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 348. Publication date: October 2025.

Flix: A Design for Language-Integrated Datalog 348:7

We can write:
query db , pr select (x, y) from Path(x, y)

to compute the minimal model of the composition of the Datalog values db and pr, and to extract all
pairs (𝑥,𝑦) from the Path relation. Here the type of the query expression is Vector[(Int32, Int32)]. In
Flix, Vector[t] is the type of immutable arrays, i.e. a space-efficient data structure with its elements
laid out consecutively in memory.

The query construct is implemented by a call to a full-blown Datalog solver, implemented in Flix,
based on semi-naïve evaluation [Greco and Molinaro 2016]. The Datalog solver is implemented as
a JIT compiler from Datalog program values, with extensions, to the RAM IR [Scholz et al. 2016].
The translation embodies the semi-naïve evaluation strategy. An interpreter, also written in Flix,
evaluates the RAM IR to compute the minimal model, and then the result relation is extracted as a
collection of tuples. In Section 5, we discuss the Flix Datalog solver in greater detail.

Returning to query, its general form is:
query e, ... select (e, ...) from P(e, ...), ... [where e]

If we squint, we can see that query is very similar to a Datalog rule, except the head atom has
no associated predicate symbol. Since the return type is a Vector[t], it is easy to perform various
post-processing steps that are best done outside of Datalog. Here are a few common examples:

query db , pr select (x, y) from Path(x, y) |> Vector.isEmpty

query db , pr select (x, y) from Path(x, y) |> Vector.sort

query db , pr select (x, y) from Path(x, y) |> Vector.toMap

query db , pr select (x, y) from Path(x, y) |> Vector.foreach(println)

Here we take advantage of Flix’s support for pipelines and partial application.3 Using toMap is
common since working with a map is more pleasant than working with a vector of tuples.
We remark that in the context of the Flix type and effect system, inject and query are pure. In
particular, the evaluation of a Datalog value with query is guaranteed to produce a deterministic
unique result: the minimal model. Hence, we can use query to implement pure functions.

3.3.3 Inject-Program-Query. We can use inject and query to write a function that computes the
transitive closure of a graph where the graph is represented as a list of edges:

def closure(edges: List[(Int32 , Int32)]): Vector [(Int32 , Int32)] =

let db = inject edges into Edge /2;

let pr = #{

Path(x, y) :- Edge(x, y).

Path(x, z) :- Path(x, y), Edge(y, z).

};

query db , pr select (x, y) from Path(x, y)

This function illustrates the power of Flix. We have implemented the closure function as a short,
concise, and elegant Datalog program. To the outside, closure is a pure function like any other, but
on the inside, it takes advantage of Datalog where it really shines: to express and solve fixpoint
constraints on relations.Moreover, the closure function is likely shorter and faster than any transitive
closure computation we could have written by hand.

The closure function illustrates a common programming pattern: We write a function that takes
some immutable data structure, injects that data into a collection of Datalog relations, performs
some complex computation in Datalog, and returns the result as an immutable data structure. We
dub this style of programming the inject-program-query pattern.

3The pipeline |> operator is simply function application written in reverse. For example, x |> f is f(x).

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 348. Publication date: October 2025.

348:8 Magnus Madsen and Ondřej Lhoták

3.4 Polymorphism
A limitation of the closure function is that it only works for edges where the vertices are integers.
What if we have a graph where the vertices are strings? Fortunately, Flix supports parametric
polymorphism and type classes, which we can take advantage of. Without any change to the
function body of closure, we can update its signature to:

def closure(edges: List[(t, t)]): Vector [(t, t)] with Order[t]

Two things have changed: (i) we have introduced a polymorphic type parameter t4, and (ii) we
have added a type class constraint on t for the Order type class. We require an Order[t] instance
because the Datalog solver must be able to build search trees on the term constants5. In the original
version of closure, we did not need the Order constraint because Int32 already implements Order. In
Flix, most types implement Order, and programmers can derive or define their own instances.

3.5 Higher-Kinded Polymorphism
A limitation of the updated closure function is that it requires a list of edges. What if we have a set
of edges? Fortunately, Flix supports higher-kinded polymorphism. Again, without any changes to
the function body of closure, we can update its signature to its final form:

def closure(edges: f[(t, t)]): Vector [(t, t)] with Foldable[f], Order[t]

The closure function now works for any higher-kinded type f[t] which has a Foldable instance.
This includes data types such as List[t], Set[t], and Chain[t], but also all their non-empty variants.

We illustrate the usefulness of parametric and higher-kinded polymorphism in Section 6.2 when
we present the implementation of a fully generic and modular IDE framework [Sagiv et al. 1996].
For IDE, the primary analysis function is parameterized by five type parameters, four relations, six
transfer functions, and twelve type class instances.

3.6 Back to First-Class Constraints
We do not use the inject-program-query programming pattern when we want to construct modular
and reusable Datalog building blocks. For example, we may want to write a polymorphic function
that returns a Datalog program value which captures graph reachability:

def closure (): #{Edge(t, t), Path(t, t) | r} with Order[t] = #{

Path(x, y) :- Edge(x, y).

Path(x, z) :- Path(x, y), Edge(y, z).

}

The return type of the closure function is an open row type and is polymorphic in the term types
of Edge and Path. Note that we must still require an Order[t] instance. We can reuse the closure
program to define a larger program that computes cycles:6

def cycle (): #{Cycle(), Edge(t, t), Path(t, t) | r} with Order[t] =

let pr1 = closure ();

let pr2 = #{ Cycle() :- Path(x, x). };

pr1 <+> pr2

Here pr1 <+> pr2 combines the two Datalog program values which simply means to take their union.
We can reuse cycle in an even bigger Datalog program or we can query it with some facts.

4In Flix, type parameters are introduced implicitly. For example, the signature List.map is declared as def map(f: a -> b).
5A Datalog solver based on hashing could require Hash[t] instead. A Datalog engine based on both could require both.
6Here Cycle() is a nullary predicate, i.e. a single fact that is either absent or present.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 348. Publication date: October 2025.

Flix: A Design for Language-Integrated Datalog 348:9

3.7 Rho Abstraction
We can write a Datalog program value that computes the unreachable vertices in a graph:

def unreachable (): #{ Vertex(t), Origin(t), Edge(t, t), Reachable(t),

Unreachable(t) | r} with Order[t] = #{

Vertex(x) :- Edge(x, _).

Vertex(y) :- Edge(_, y).

Reachable(o) :- Origin(o).

Reachable(y) :- Reachable(x), Edge(x, y).

Unreachable(x) :- Vertex(x), not Reachable(x).

}

The row type of unreachablementions all predicate symbols and their term types used in the Datalog
program value: Vertex(t), Origin(t), Edge(t, t), Reachable(t), and Unreachable(t). This presents two
problems: First, row types can quickly grow large and unwieldy. Second, row types may expose
internal implementation details. To expand on the latter, the predicate symbols Vertex(t) and
Reachable(t) are neither part of the “input” nor the “output”, instead they are an implementation
detail that we would like to encapsulate. From a compositional view, the input to the above program
are the Origin(t) and Edge(t, t) relations, and the output is the Unreachable(t) relation.

What we want is to hide the Vertex(t) and Reachable(t) relations and ensure that they stay local.
We can do that with rho abstraction. We modify the unreachable function to:

def unreachable (): #{ Origin(t), Edge(t, t), Unreachable(t) | r} with Order[t] =

#(Origin , Edge , Unreachable) -> #{ // Rho Abstraction

Vertex(x) :- Edge(x, _).

Vertex(y) :- Edge(_, y).

Reachable(o) :- Origin(o).

Reachable(y) :- Reachable(x), Edge(x, y).

Unreachable(x) :- Vertex(x), not Reachable(x).

}

Now, the row type of unreachable no longer mentions the Vertex(t) and Reachable(t) predicates.
In general, a rho abstraction is of the form:
#(P1 , ..., Pn) -> e

where e should be a Datalog expression. A rho abstraction evaluates e to a Datalog value v and
alpha-renames every predicate symbol in v that is not one of the listed predicate symbols P1, ..., Pn.
In the type system, the row type of a rho abstraction only mentions the predicate symbols listed.
Suppose we compose the Datalog value returned by unreachable with another Datalog value which
defines Vertex as a binary relation. Normally, this would be a type error, since we cannot have
both Vertex/1 and Vertex/2 in the same program. However, with rho abstraction, the original Vertex
predicate symbol has been alpha-renamed to a fresh name and there is no collision.

Alpha-Renaming. The reader may wonder if the alpha-renaming can be done statically, i.e. at
compile-time. This is not the case. Consider the program:

def f(x: t): #{A(Int32)} with Order[t] = #(A) -> #{ A(21). R(x). }

def g(): #{ A(Int32) } = f(123) <+> f("hello")

Suppose we statically rename R to R17. Now the Datalog value returned by g contain two facts
with different term types: R17(123) and R17("hello")! This breaks type safety. Instead, like capture
avoidance in the lambda calculus, we must alpha-rename every time a rho abstraction is evaluated.
In this case, each invocation of f would return a Datalog value with a fresh name for R, hence g

would return a Datalog value with two facts, R17(123) and R18("hello"), where there is no collision.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 348. Publication date: October 2025.

348:10 Magnus Madsen and Ondřej Lhoták

3.8 Expressions in Atoms and Guards
We have seen that the functional language embeds Datalog programs as values, but what about the
other way around? Flix allows expressions to appear in two places in Datalog programs: As terms
in head atoms and as guards in rule bodies.

3.8.1 Expressions in Head Atoms. We can use expressions to compute with integer arithmetic:

Generation("Mitochondrial Eve", 0).

Generation(x, n + 1) :- Parent(x, y), Generation(y, n).

Here, given some Parent relation, we compute the generation of every person going back to Eve.
However, we must be careful: if the Parent relation has a cycle, the Herbrand base becomes infinite,
and the program no longer has a finite model, i.e., evaluation will diverge. Flix programmers may
use any expression as a term in a head atom, but they are responsible for ensuring termination. As
we shall see in Sections 3.11 and 3.12, expressions in head atoms are often used in combination
with lattice semantics.

3.8.2 Expressions as Guards. We can use expressions as guards in rule bodies. For example, we can
write a function to compute the transitive closure of a graph subject to some predicate function:

def closure(edges: List[(t, l, t)], pred: l -> Bool): Vector [(t, t)] with ... =

let db = inject edges into Edge /3;

let pr = #{

Path(x, l, y) :- Edge(x, l, y), if (pred(l)).

Path(x, l, z) :- Path(x, l, y), Edge(y, l, z), if (pred(l)).

};

query db , pr select (x, y) from Path(x, _, y)

The closure function takes a labeled graph of edges and a predicate pred. The predicate determines
whether an edge in the graph is active. For example, suppose the graph represents a road network
labeled with the forecasted weather. We can compute its transitive closure using only non-icy roads
with the expression: closure(g, weather -> weather != Icy).

3.8.3 Purity. Datalog is declarative: the minimal model is specified without reference to any
specific algorithm or evaluation order. However, if we allow arbitrary expressions in Datalog rules,
including expressions with side effects, we would expose the underlying evaluation order of the
Datalog solver. To avoid this, we use the Flix type and effect system to ensure that every head and
guard expression is pure, i.e., they cannot have any side effects.7

3.9 Functional Predicates
We have seen how inject can translate a collection of tuples into a Datalog program value. However,
we have found that for some applications, we need the ability to introduce tuples during the fixpoint
computation. For example, we can define the Fibonacci function:

def fibonacci(e: Int32): Vector [(Int32 , Int32)] =

/* efficiently computes all fibonacci numbers from zero up to e */

which returns all Fibonacci numbers up to the given e. For example, fibonacci(7) returns the vector:

Vector #{(0, 0), (1, 1), (2, 1), (3, 2), (4, 3), (5, 5), (6, 8), (7, 13)}

7The Flix type and effect system is rich enough to capture purity, region-based memory, user-defined effects and handlers,
and the uninterpretable IO effect. However, it does not capture termination. Hence, an expression that diverges could reveal
the internal Datalog evaluation order. It is the programmer’s responsibility to ensure that all expressions terminate.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 348. Publication date: October 2025.

Flix: A Design for Language-Integrated Datalog 348:11

we can then use a functional predicate to write a Datalog rule that calls the fibonacci function and
iterates through all the returned tuples:

R(i, f) :- A(x), let (i, f) = fibonacci(x).

Importantly, each call to fibonacci generates a sequence of tuples which is more efficient than
computing every fibonacci number independently. While this example is contrived, the IFDS and
IDE algorithms rely heavily on this feature.

3.10 Stratified Negation
The expressiveness of Datalog is significantly increased with the addition of negation [Apt and Bol
1994; Bárány et al. 2012]. However, general negation poses semantic problems. Stratified negation
has emerged as a practical and useful form of negation [Zaniolo et al. 1993]. In Flix, as we have
already seen, we can use stratified negation to write a function that computes the set of vertices
that are unreachable from a given origin:

def unreachable(origin: t, edges: List[(t, t)]): Set[t] with Order[t] =

let db = inject edges into Edge /2;

let pr = #{

Vertex(x) :- Edge(x, _).

Vertex(y) :- Edge(_, y).

Reachable(origin).

Reachable(y) :- Reachable(x), Edge(x, y).

Unreachable(x) :- Vertex(x), not Reachable(x).

};

query db , pr select x from Unreachable(x) |> Vector.toSet

We inject the edges into the Edge relation. We then define a Datalog program that computes
the unreachable vertices as follows: First, we compute all vertices in the graph from the edges.
Second, we compute all vertices reachable from the origin. Third and finally, we compute the set of
unreachable vertices using negation. Note that we must compute the set of vertices because, in
the last rule, we must constrain x such that it is positively bound. The Flix compiler enforces this
so-called range restriction at compile-time.

As discussed, unrestricted negation poses semantic issues. For example, the program:

Husband(x) :- Man(x), not Bachelor(x).

Bachelor(x) :- Man(x), not Husband(x).

has no unique minimal model. In a nutshell, the problem is that the Husband relation depends
negatively on itself. More formally, the dependency graph (sometimes called the precedence graph)
contains a cycle with a negative edge. Stratified negation restricts negation to those Datalog
programs where the dependency graph has no negative cycles. This is sometimes colloquially
expressed as “no negation through recursion”. For a specific Datalog program, it is straightforward
to check if it is stratified and to compute its stratification, i.e., an evaluation order where a relation
is fully determined before it is used in a negation.

In Flix, the situation is more complex: Datalog programs are values, constructed and composed
at runtime. How can we know that the Datalog value passed to query is stratified? We can defer
stratification to runtime, but then we would have to accept that evaluation of a Flix program may
crash with a “non-stratified error”. Instead, Flix adopts a lightweight context– and flow-insensitive
whole program analysis enriched with type system information to statically ensure that every
Datalog value constructed at runtime is stratified [Starup et al. 2023]. Thus Datalog programs in
Flix may use negation, and the Flix compiler ensures that no stratification error can occur.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 348. Publication date: October 2025.

348:12 Magnus Madsen and Ondřej Lhoták

3.11 Lattice Semantics
We have seen how to compute graph reachability, but what if we wanted to compute single-source
shortest distances (SSSD), i.e., the distance to every vertex from some origin? Here, constraints on
relations are insufficient; we need constraints on lattices.
To compute SSSDs, we can define a function:8

def sssd(origin: t, edges: Set[(t, Int32 , t)]): Map[t, Int32] with Order[t] =

let db = inject edges into Edge /3;

let pr = #{

Dist(origin; Down (0)).

Dist(y; add(d1, d2)) :- Dist(x; d1), Edge(x, d2, y).

};

query db , pr select (x , coerce(d)) from Dist(x; d) |> Vector.toMap

The sssd function takes a graph and an origin vertex. Each edge in the graph is labeled with its
distance. The function returns a map with the total distance from the origin to each reachable vertex.
The function is implemented as one fact and one rule that both use lattice semantics. Concretely,
the use of the semicolon ; signifies that Dist is a map lattice.9
The fact Dist(origin; Down(0)) captures that the distance to the origin is at least Down(0). We say

at least because Down(0) is a lower bound on the value Dist(origin). But since we are interested in
smallest distances, we use the Down constructor, which reverses the order on Int32. Hence, the lower
bound is an upper bound. Thus, as one would expect, the distance to the origin is at most zero.

The rule captures that if the distance to x is d1 and there is an edge from x to y with distance d2,
then the distance to y is at least (i.e. at most) the distance d1 + d2. The add function has the type
Down[Int32] -> Int32 -> Down[Int32] and is strict and monotone.

We can understand the program as follows: Initially, the distance to every vertex is conceptually
infinite because the smallest value, i.e., the bottom value, of the type Down[Int32] is Int32.maxValue().
The fixpoint computation iteratively decreases the distance to every reachable vertex by moving
upwards in the Dist map lattice.

To better understand how joins and meets are used in Flix, consider the following example:

Example 3.1 (Joins and Meets). Assume we have the standard Sign lattice with the elements
{⊥,⊤,Neg,Zer, Pos}. Then the Datalog program with lattice semantics:

A(1; Pos). B(1; Neg). C(1; Top).

R(1; x) :- A(1; x). // Intuitively , R(1) is at least A(1).

R(1; x) :- B(1; x). // Intuitively , R(1) is at least B(1).

R(2; x) :- A(1; x), C(1; x). // Intuitively , R(2) is at least A(1) meet C(1).

has a minimal model where the map lattice R has the two mappings: R(1; Top) and R(2; Pos) and is
bottom everywhere else. Specifically, the first two rules force R(1) to be at least Pos and Neg, i.e. we
have to compute their join which is Top. In the last rule, the variable x is bounded by A(1) and C(1),
i.e. it is the meet of Pos and Top which is Pos. Hence R(2) is at least Pos.

In both examples, the programmer must be careful and ensure the lattice components actually
form a lattice. Moreover, every head and guard expression must be strict and monotone. If these
properties are violated, the fixpoint computation may produce wrong results or diverge.
8The coerce function unboxes a singleton enum, i.e. coerce(Down(0)) == 0.
9The choice of the semicolon has been controversial. On the one hand, using semicolons means that the syntax retains
the same aesthetics. On the other hand, it is easy to overlook a semicolon compared to a comma. However, the Flix type
system ensures that both predicate symbols and variables are assigned consistent meaning. Hence, in practice, any confusion
between relations and lattices will likely result in a type error.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 348. Publication date: October 2025.

Flix: A Design for Language-Integrated Datalog 348:13

3.12 Polymorphic Lattice Semantics
We can refactor the previous example to take advantage of polymorphism and type classes:

def sssd(origin: t, edges: Set[(t, l, t)], sum: (l, l) -> l): Map[t, l]

with LowerBound[l], JoinLattice[l], UpperBound[l], MeetLattice[l], ... =

let db = inject edges into Edge /3;

let pr = #{

Dist(origin; UpperBound.maxValue ()).

Dist(y; sum(d1, d2)) :- Dist(x; d1), Edge(x, d2, y).

};

query db , pr select (x , d) from Dist(x; d) |> Vector.toMap

The updated function is identical except for three details: (i) the type parameter t must have type
class instances for the required lattice components, (ii) the add function has been replaced with a
function argument sum to compute the sum of two distances, and (iii) the distance to the origin is
defined as maxValue (i.e. the top element) of the lattice on l. The upshot is that we can reuse the sssd

function with several lattices.

3.13 Lattice Stratification
In Flix, every predicate symbol has either a relational or lattice interpretation. The Flix type system
ensures that the two cannot be confused. Furthermore, every Datalog variable has a relational or
lattice interpretation. The rules for variables are more involved, but the main point is that it would
be unsafe to use a lattice variable where a relational value is expected. Doing so could lead to a
program with overall infinite lattice height. However, in some situations, we want to use a lattice
variable in a relation. Fortunately, this can be made safe with lattice stratification.

For example, we can compute with Kevin Bacon numbers10:
def degreesOfKevinBacon(starsWith: List[(String , String)]): Map[Int32 , Int32] =

let db = inject starsWith into StarsWith /2;

let pr = #{

Degree("Kevin Bacon"; Down (0)).

Degree(x; n + Down (1)) :- Degree(y; n), StarsWith(y, x).

Layer(n; Set#{x}) :- fix Degree(x; n).

Count(n, Set.size(s)) :- fix Layer(n; s).

};

query db , pr select (coerce(n), m) from Count(n, m) |> Vector.toMap

Kevin Bacon has the number zero. If an actor has starred in a movie with Kevin Bacon, their number
is one. If an actor has starred in movie with an actor who has starred in a movie with Bacon, then
their number is at most two, and so on. We want to compute the number of actors with Bacon number
𝑛. We compute the Bacon number of each star in Degree using the Down lattice, as before. We then
compute all actors in layer 𝑛 and finally we compute the size of each layer. Notably, we must have
fully computed Degree before we compute Layer. Similarly, Layer must be fully computed before
we compute Count. The fix construct ensures this stratification and moreover permits the lattice
variable 𝑛 to be used in a relational position in the third rule, and similarly for 𝑠 in the last rule.

3.14 Poor Man’s Provenance with Lattice Semantics
We have seen how to compute graph reachability. We have also seen how to compute single-source
shortest distances. What if we wanted to compute single-source shortest paths? For example, if
we have calculated that the shortest distance between Paris and Berlin is 1,112 km, how can
10https://en.wikipedia.org/wiki/Six_Degrees_of_Kevin_Bacon

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 348. Publication date: October 2025.

https://en.wikipedia.org/wiki/Six_Degrees_of_Kevin_Bacon

348:14 Magnus Madsen and Ondřej Lhoták

we know what roads to follow if we want to drive the route? In Datalog terminology, we are
interested in the provenance [Deutch et al. 2014; Green et al. 2007; Zhao et al. 2020] of the fact
Dist("Paris", "Berlin", 1112), i.e. the proof used to establish this fact.We show how lattice semantics
can sometimes be used as a light-weight or “Poor Man’s” technique to compute provenance.

Returning to the example of shortest paths, we want to define a lattice of paths:
enum Path with ToString {

case Path(List[Int32])

case Bot

}

We define a lattice on Path by defining instances for all the re-
quired type classes, i.e. instances for LowerBound, PartialOrder,
JoinLattice, and so on. We define the bottom element ⊥ as
Bot which conceptually represents a path of infinite length.

We define the least upper bound as:
def leastUpperBound(x: Path , y: Path): Path = match (x, y) {

case (Bot , p) => p

case (p, Bot) => p

case (Path(xs), Path(ys)) => if (length(xs) <= length(ys)) x else y

}

The partial order can be derived from the least upper bound. Note that two lattice elements are
considered equal if their paths have the same length. The other lattice operations are defined
accordingly. Next, we define two helper functions:

def init(y: Int32 , x: Int32): Path = Path(y :: x :: Nil)

which constructs a path of length one and
def cons(z: Int32 , p: Path): Path = match p {

case Bot => Bot

case Path(xs) => Path(z :: xs)

}

which extends an existing path by one vertex. We can now put everything together:
def sssp(src: Int32 , dst: Int32 , edges: List[(Int32 , Int32)]): Option[Path] =

let db = inject edges into Edge /2;

let pr = #{

Reachable(x, y; init(y, x)) :- Edge(x, y).

Reachable(x, z; cons(z, p)) :- Reachable(x, y; p), Edge(y, z).

};

query db , pr select p from Reachable(src , dst; p) |> Vector.head

def main (): Unit \ IO =

let edges = List #{(1, 2), (2, 3), (3, 4), (3, 8), (4, 5), (3, 5)};

println(sssp(1, 5, edges))

This program prints Some(Path(5 :: 3 :: 2 :: 1 :: Nil)) which is the shortest path, in reverse, from
1 to 5. Extending this program to support different distances on each edge is straightforward: We
track the total path length as part of every lattice element.

Minimal Model and Correctness. While the above program works correctly, we must be careful.
We have defined two paths as equivalent if they have the same length. For example, the paths
a :: b :: c :: Nil and a :: b :: d :: Nil are equivalent, even though they do not end with the
same vertex! Specifically, the declarative reading of the constraint:

Reachable(x, z; cons(z, p)) :- Reachable(x, y; p), Edge(y, z).

allows a situation where the path from a to c is e.g., a :: b :: c :: Nil, but we are allowed to
conclude Reachable(a, c, a :: b :: d :: Nil) according to the declarative semantics! The problem is

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 348. Publication date: October 2025.

Flix: A Design for Language-Integrated Datalog 348:15

that the equivalence relation on paths permits minimal models with “wrong” solutions. However, in
practice, the Flix Datalog solver will never conjure lattice elements out of thin air, and hence, in this
case, will compute actual paths in the graph. If there are multiple shortest paths, it is implementation
defined which path is returned. If we are uncomfortable with this gap between theory and practice,
we can define a lattice where we track the lexicographically smallest path leading to each vertex. On
this lattice, the minimal model uniquely determines the shortest path to each (reachable) vertex.

Light-Weight vs. Full Provenance. In the above example, we extended the predicate Reachable from
Reachable(x, y) to Reachable(x, y; p), where p captures the shortest path from x to y. In general,
given a predicate P(...), we can extend it to P(...; l) where l is an element of a lattice used to
track information about the derivation of facts in P. We can capture different kinds of information,
e.g., shortest distances, shortest paths, rules used in the derivation, and so on. Is this the same as
provenance? Yes and no. In full generality, the provenance for a fact P gives us the entire deriviation
tree – that is, a tree where every node represents the derivation of an intermediate fact, the rule
used to derive that fact, and the instantiation of its quantified variables. We cannot readily and
ergonomically encode all that information with lattices. However, full provenance is often far too
much information. For example, for shortest paths, we do not care about the intermediate facts or
which rules were used to derive them. We only want the shortest distance and its path.

3.15 When to use First-Class Datalog Constraints?
An important question is: when should programmers use first-class Datalog constraints? We believe
that Datalog is not a silver bullet. Flix is primarily an effect-oriented functional and imperative
programming language; therefore we recommend that programmers mainly write in the functional
part of the language. On the other hand, many problems inherently involve fixpoint computations
and are natural to express using Datalog.

We propose two criteria which can inform when to use Datalog:
• (Simplicity) Programmers should use Datalog if the problem domain is a natural fit, i.e., if
the problem is simple and elegant to express using Datalog constraints. The most common
use case is for graph queries where functional programming is inelegant or cumbersome.

• (Performance) Programmers should use Datalog if (a) performance is important, and (b) the
evaluation strategies of Datalog are applicable to the problem domain, i.e., the computation
naturally benefits from semi-naïve and parallel evaluation.

3.16 Why not a Library?
A common question is: Why not implement Datalog support as a library in Flix? While almost any
programming language feature can be implemented as library, in the case of Datalog, we would lose:

• the elegance and conciseness of Datalog syntax. Instead, programmers would have to con-
struct Datalog ASTs by hand which is messy and error-prone.

• well-formedness; in particular, programmers might accidentally construct malformed Datalog
programs with unbound variables or other constructs in illegal positions.

• the structural row type system, which ensures that predicate symbols are used with consistent
arity and term types and that relations and lattices are not confused.

• the compile-time checks for the range restriction properties.
• the compile-time checks for stratified negation.
• several IDE features, including support for type-aware autocompletion of predicates and
automatic renaming of variables and predicate symbols.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 348. Publication date: October 2025.

348:16 Magnus Madsen and Ondřej Lhoták

Another way to think of the design choice – “library versus language?” – is the following: If we
were to design a programming language in which we could embed Datalog programs as ergonomically
as in Flix, what language features would be required? Viewed through this lens, we can identify the
following questions and challenges:

• (Representation and Typing) We would need a way to construct data structures that
represent Datalog program values. These should be structurally typed, with a type system
that supports type inference. We can build on Flix’s row typing, but we would also need
first-class labels [Leijen 2004; Paszke and Xie 2023], since the predicate symbols cannot
be known by the library. Depending on how Datalog values are merged, we might also
need row concatenation [Morris and McKinna 2019], which significantly complicates the
implementation of type inference.

• (Syntax) With a specific representation in place, the question becomes how to elegantly ex-
press Datalog facts and rules. A major challenge is that the Horn clause syntax A :- B, C. does
not really match the syntax used by imperative, object-oriented, or functional programming
languages. In Scheme, an S-expression style syntax might be workable; in other languages,
some additional syntactic overhead will almost certainly be required.

• (Variables) Another major question is how to represent variables. To a first approximation,
variables are simply unique symbols with an associated type that must be used consistently.
However, in both Datalog and Flix, Datalog variables are implicitly introduced: a universally
quantified Datalog variable has no binder and no declaration site—it is simply used. How can
a library support that?

• (Static Checks) The hypothetical row type system described above would ensure that
predicate symbols are used with consistent arity and term types. But how can a library
enforce the many other properties guaranteed by Flix, such as the range restriction and
the lattice range restriction? How can it ensure the positively bound restriction – that every
variable occuring in a negative atom also appears in a positive body atom? And what about
stratification – that every Datalog value constructed at runtime has no cycles with a negative
edge in its dependency graph?

We believe that deeply integrating Datalog inside a general-purpose programming language,
such as Flix, is an essential step towards broader adoption of Datalog, since it enables programmers
to use Datalog where it really shines: to declaratively express and solve fixed-point computations
on relations and lattices with all the advantages of a real programming language.

4 Language Design
We now discuss several important design choices made during the development of Flix.

4.1 Typing Discipline
We want type safety to ensure that Datalog programs “cannot go wrong” at runtime. Specifically,
we must ensure that the arity and term types of every predicate in every Datalog value constructed
at runtime are consistent. For example, the same Datalog program value must not contain two
atoms Q(42) and Q(1, 2, 3), where the arity is mismatched. Similarly, it must not contain two atoms
P(123) and P("Hello"), where the term types are mismatched.
During the development of Flix, we experimented with three typing disciplines:
• (Nominal Typing) We require that every predicate symbol is named, i.e., globally declared,
together with its arity and term types. For example, the declaration rel Edge(Int32, Int32)

specifies that the Edge predicate is a relation with two terms that are Int32s. Similarly, the
declaration lat Dist(String, Int32) specifies that the Dist predicate is a lattice where the first

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 348. Publication date: October 2025.

Flix: A Design for Language-Integrated Datalog 348:17

term is a String and the second term is an Int32. Since every predicate is globally declared,
the type of Datalog values and expressions are simply a singleton type Datalog.

• (Structural Typing) We structurally type Datalog values and expressions using row types.
A row type assigns arity and term types to every predicate. For example, the row type
({Edge(Int32, Int32), Path(Int32, Int32)}) specifies that the Edge predicate is a relation with
two terms that are Int32s. This is the type system used in Flix today.

• (Structural Typing with Data Dependencies)We extend the row typing to include data
dependencies. That is, we type Datalog values and expressions using a pair of row types where
the first row is as above and the second row models the dependency graph. For example, the
type: ({Edge(Int32, Int32), Path(Int32, Int32)}, {Path :- Edge}) specifies not only the type of
the Edge and Path predicates, but also that Path (positively) depends on Edge.

Today, Flix uses structural typing. The problem with nominal typing is that it is too limiting in
practice: We cannot reuse the same name, e.g. Edge, with different arities or types at different points
in the program. Moreover, having to globally declare predicate symbols is tedious and goes against
the “Datalog spirit” where there are no declarations. Including data dependencies in the type system
is theoretically appealing: it allows us to ensure stratification through types. However, it suffers
from poor ergonomics. First, dependency graphs can become large, and consequently, the types
can also grow significantly. Second, exposing the dependency graph breaks abstraction: it implies
that changes to the internals of a Datalog program may also change its type.

4.2 Explicit Constructs for Solving andQuerying the Minimal Model
In Flix, solve is an explicit construct. An alternative design choice would be that whenever two
Datalog values are composed, i.e. e1 <+> e2, we immediately compute their fixpoint. That is simpler;
now a Datalog value is always fully evaluated. However, when negation is involved, implicitly
and eagerly computing the minimal model becomes problematic. With negation, the meaning of
(solve (e1 <+> e2)) <+> e3 is not necessarily the same as the meaning of solve (e1 <+> e2 <+> e3),
since facts in e3 may affect rules in e1 and e2 that use negation. As a result, the order of composition
would influence semantics. By making solve an explicit construct, we avoid this issue: Datalog
programs can be freely composed and we only compute their minimal model when query is invoked.

We have established the need for an explicit solve construct, but do we need both query and solve?
Or could they be combined? We argue that we need both, as there are cases where we want to
solve a program once and then query the minimal model multiple times. If query and solve were
combined, then every call to query would redo the fixpoint computation, which is inefficient.

4.3 Implicit Variable Binders and Integration with Lexical Scope
In Datalog, quantified variables are implicitly introduced without explicit binders:

Path(x, z) :- Path(x, y), Edge(y, z). // x, y, and z are universally quantified.

Flix uses the same syntax, but also adds integration with lexical scope:
def reach(o: t): #{ Reachable(t), Edge(t, t)} with Order[t] = #{

Reachable(o). // o is bound by the lexical scope.

Reachable(y) :- Reachable(x), Edge(x, y). // x and y implicitly quantified.

}

We find this to be natural and concise, but it can also lead to bugs:
def reach(o: t): #{ Reachable(t), Edge(t, t)} with Order[t] = #{

Reachable(o).

Reachable(y) :- Reachable(o), Edge(o, y). // Oops -- 'o' is not quantified.

}

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 348. Publication date: October 2025.

348:18 Magnus Madsen and Ondřej Lhoták

A more verbose, but less error-prone syntax would require explicit capture:
def reach(o: t): #{ Reachable(t), Edge(t, t)} with Order[t] = #{

Reachable($o). // We must write $o to capture o from the lexical scope.

Reachable(y) :- Reachable(x), Edge(x, y).

}

An even more explicit syntax would require explicit capture and explicit binders:
def reach(o: t): #{ Reachable(t), Edge(t, t)} with Order[t] = #{

Reachable($o).

forall(x: t, y: t). Reachable(y) :- Reachable(x), Edge(x, y).

}

We think part of the elegance of Datalog is in its beautiful syntax, hence we adopted the light-weight,
if potentially error-prone syntax.

5 The Flix Datalog Solver
We briefly discuss how Datalog is implemented in the Flix compiler and runtime.

5.1 Compiler
Like any compiler, the Flix compiler has two responsibilities: (a) to ensure the input program
is well-formed and (b) to translate the input program to a lower-level format. With respect to
(a), the Flix compiler ensures that (i) every Datalog program expression is well-typed, (ii) every
Datalog program value satisfies a collection of range restrictions, (iii) every Datalog program value
constructed at run-time is stratified, and finally (iv) all required type class instances are present.
We refer to Madsen and Lhoták [2020] for more information on the row type system and to Starup
et al. [2023] for more details on the range restrictions and stratification. With respect to (b), the
Flix compiler lowers all Datalog constructs (e.g. inject and query) and values (i.e. Datalog literals)
to a collection of algebraic data types and function calls. The translation is essentially a desugaring
with elements of closure conversion and lambda lifting.

5.2 Runtime
Datalog evaluation begins with a call to query, which calls the Flix Datalog solver. The solver is
implemented in Flix itself.11 The solver takes a Datalog program represented as an abstract syntax
tree, computes its minimal model, and extracts a specific relation as a collection of tuples.

Compilation to RAM. The Datalog solver is implemented as a just-in-time compiler (JIT) from a
high-level Datalog abstract syntax tree to a low-level intermediate representation (IR) called the
relational algebra machine (RAM) IR. The RAM IR is optimized and then interpreted. The RAM IR
is a low-level imperative language with relational algebra operators. It is inspired by the IR used
in Soufflé [Scholz et al. 2016]. The IR is a statement-based language with local variables that hold
relations (tuples), constructs for querying and updating such variables, and if and while control-
flow constructs. The translation from Datalog abstract syntax trees to the RAM IR elaborates the
semi-naïve evaluation strategy. In particular, every predicate symbol is elaborated into three sets:
full, delta, and new. The use of delta sets gives semi-naïve evaluation its speed. The elaboration
of Datalog into the RAM IR has many implementation benefits: it enables many optimizations as
rewrites, and it makes the interpreter simple.

11This has two practical benefits: First, a Flix program with first-class Datalog constraints is treated as a single program by
the compiler, enabling optimizations such as monomorphization and inlining without being blocked by an FFI boundary.
Second, compilation produces a single self-contained JAR with no external dependencies.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 348. Publication date: October 2025.

Flix: A Design for Language-Integrated Datalog 348:19

Data Representation. The Flix Datalog solver represents relations and lattices using a concurrent
B+ tree inspired by Soufflé [Jordan et al. 2019c]. The B+ tree supports range queries and parallel
insertions using optimistic locking [Nielsen and Tallouzi 2025]. In particular, the B+ tree does not
use Java’s ReentrantLock but rather Java’s StampedLock which reduces contention.

Join Reordering and Index Selection. The Flix Datalog solver uses heuristics to perform automatic
join reordering [Arch et al. 2022]. Specifically, the solver executes the Datalog program on a subset
of the EDB facts to estimate the size of each relation, and then applies Sellinger’s algorithm to
reorder atoms within each rule [Selinger et al. 1979]. After join reordering, the solver performs
mininum index selection using the same algorithm as Soufflé [Subotić et al. 2018]. In particular, the
algorithm ensures that every search can be resolved using a range query on an index– i.e. full table
scans are avoided unless explicitly required by a Datalog rule.

Parallelism. The compilation from the high-level Datalog abstract syntax into the RAM IR
introduces parallel statements. In particular, all rules within the same stratum can be evaluated
in parallel. While parallel insertions into relations and lattices (i.e., the concurrent B+ trees) are
allowed, the key property is that no rule will ever read from a relation (or lattice) that is being
modified concurrently.

In-and-Out of Datalog. An important question is: what is the performance cost of moving data in
and out of Datalog? That is, what is the performance overhead of inject and query? We conducted a
simple experiment where given a List[(a, b)] of 1M edges (𝑥,𝑦), we construct a Set[(b, a)] of the
inverted edges (𝑦, 𝑥) using (a) List.foldLeft and Set.insert, and (b) using a Datalog programwith the
single rule Result(y, x) :- Edge(x, y), and calling inject and query. The Datalog implementation is
approximately 2x–3x slower since it involves (i) copying the list of edges into a B+ tree, (ii) copying
the inverted edges into a B+ tree, and (iii) converting the B+ tree to a Set[(b, a)].

We argue that this example is not an argument against using Datalog. Rather, the example shows
that we should not use Datalog for mundane list or set computations where Datalog evaluation
strategies, i.e., semi-naïve and parallel evaluation, cannot offer any benefit. Moreover, the example
is degenerate because we would expect most Datalog computations to involve (i) a small input
(e.g., the edges of a graph), (ii) a large computation (e.g., the transitive closure of the graph), and
(iii) a small output (e.g., the existence of specific paths in the transitive closure). In such Datalog
programs, where actual fixpoint computation is required, the overhead of moving data “in-and-out”
of Datalog would be minimal.

Performance. Flix has always put ergonomics first and performance second, whereas many other
Datalog solvers have made the opposite choice. The performance of the Flix Datalog solver is
useable but not yet at the level of state-of-the-art Datalog solvers such as LogicBlox [Aref et al. 2015],
Soufflé [Scholz et al. 2016] and GDlog [Sun et al. 2023]. In two simple reachability benchmarks, one
using 1M pages from the Danish Wikipedia and the other using 1M edges from the Californian
road network, Flix is approximately 8x to 13x slower than the Soufflé interpreter [Hu et al. 2021].

6 Applications
We now present several applications written in Flix. The point is not to show that one can write
large Datalog programs or large functional programs — that is already known. The point is to show
that the combination of Datalog and functional programming is elegant and effective and that the
features outlined earlier are useful and practical. Table 1 shows an overview of the applications and
the features they use. All applications are available in the artifact; we only discuss a subset here.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 348. Publication date: October 2025.

348:20 Magnus Madsen and Ondřej Lhoták

Fir
st-
Cl
ass

Da
tal
og

In
jec
t &

Qu
ery

Po
lym

or
ph
ism

Rh
o A

bst
rac

tio
n

He
ad

/ G
ua
rd
Ex
pr
s

Fu
n.
Pr
ed
ica
tes

Str
ati
fie
d N

eg
ati
on

La
tti
ce
Se
ma

nti
cs

Class Hierarchy ✓ ✓ ✓

Delivery Date ✓ ✓ ✓ ✓

Ford-Fulkerson ✓ ✓ ✓ ✓ ✓

Graph Library † ✓ ✓ ✓ ✓ ✓ ✓

IFDS Framework ✓ ✓ ✓ ✓ ✓

IDE Framework ✓ ✓ ✓ ✓ ✓ ✓

Ullman’s Algorithm ✓ ✓ ✓ ✓

Table 1. Applications and the features they use. † from [Starup et al. 2023].

6.1 Ullman’s Algorithm
We begin with a Datalog-related application: How can we compute whether a Datalog program is
stratified? And if so, its strata? Ullman’s algorithm is a simple and elegant solution that follows
directly from the definition of stratification. We implement it using lattice semantics:

def ullman(p: Datalog): Option[Map[PredicateSymbol , Int32]] =

let numberOfPredicates = /* compute the number of predicates */;

let (pos , neg) = /* compute positive and negative edges */;

let db = inject pos , neg into PositiveEdge /2, NegativeEdge /2;

let pr = #{

Stratum(pd; 0) :- PositiveEdge(pd, _).

Stratum(pd; 0) :- PositiveEdge(_, pd).

Stratum(pd; 0) :- NegativeEdge(pd, _).

Stratum(pd; 0) :- NegativeEdge(_, pd).

Stratum(ph; max(pbs , phs)) :-

PositiveEdge(ph, pb), Stratum(pb; pbs), Stratum(ph; phs).

Stratum(ph; max(pbs + 1, phs)) :-

NegativeEdge(ph, pb),

Stratum(pb; pbs),

Stratum(ph; phs),

if pbs < numberOfPredicates.

};

let m = query db, pr select (pd, s) from Stratum(pd; s) |> Vector.toMap;

let stratified = Map.forAll ((_, s) -> s < numberOfPredicates , m);

if (stratified) Some(m) else None

We rely on the same property as Ullman to ensure termination: If we ever encounter a stratum
higher than the number of predicates, there must be a negative cycle. If so, we return None. Otherwise,
we return Some(m), where m maps each predicate symbol to its stratum. We have implemented the
last stratification check using Map.forAll, but we could also have implemented it inside Datalog.

6.2 The IFDS and IDE Frameworks
The Interprocedural Finite Distributive Subset (IFDS) algorithm [Reps et al. 1995] efficiently solves
a class of context-sensitive interprocedural dataflow analysis problems by casting such problems
in terms of finding reachable nodes in a graph. A declarative implementation of the algorithm,
such as in the form of a Datalog program, elegantly shows the essence of the algorithm and the
underlying graph, which would be obscured in an imperative implementation by tricky worklists
and associated invariants.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 348. Publication date: October 2025.

Flix: A Design for Language-Integrated Datalog 348:21

6.2.1 IFDS Background. Finite distributive subset analyses are those whose abstract domain is the
powerset of some finite set 𝐷 and whose transfer functions distribute over set union. For example,
𝐷 could be the set of variables in the program under analysis.

Equivalently, finite distributive subset analyses are those whose transfer functions can be repre-
sented by bipartite graphs like the example in Figure 1(a). The graph contains an edge from a node 𝑎
in the upper part to a node 𝑏 in the lower part whenever 𝑏 ∈ 𝑓 ({𝑎}). The special node 0 represents
the empty set; there is an edge from 0 to 𝑏 whenever 𝑏 ∈ 𝑓 ({}). By distributivity, the function 𝑓 can
be read off from the graph. For example, 𝑓 ({𝑎, 𝑏, 𝑐}) = 𝑓 ({}) ∪ 𝑓 ({𝑎}) ∪ 𝑓 ({𝑏}) ∪ 𝑓 ({𝑐}), where
the values of 𝑓 on the empty set and on singleton sets are given directly by the edges in the graph.

0 𝑎 𝑏 𝑐 𝑑

0 𝑎 𝑏 𝑐 𝑑

𝑔 = 𝜆𝑆.(𝑆 \ {𝑎}) ∪ {𝑏, 𝑐}
(a)

0 𝑎 𝑏 𝑐 𝑑

0 𝑎 𝑏 𝑐 𝑑

𝑓 = 𝜆𝑆.(𝑆 \ {𝑑}) ∪ {𝑏}
(b)

0 𝑎 𝑏 𝑐 𝑑

0 𝑎 𝑏 𝑐 𝑑

𝑓 ◦ 𝑔 = 𝜆𝑆.(𝑆 \ {𝑎, 𝑑}) ∪ {𝑏, 𝑐}
(c)

Fig. 1. Example graph representations of IFDS transfer functions. This example is from Naeem et al. [2010].

This graph representation of transfer functions enables efficient implementations of function
composition and pointwise union of functions (i.e. 𝑓 ∪ 𝑔 = 𝜆𝑆.𝑓 (𝑆) ∪ 𝑔(𝑆)), the two key operations
in a context-sensitive dataflow analysis. Function composition is implemented as the relational
product of the edges of two graphs, as shown in Figure 1. Union of functions is implemented by
taking the union of the edges in the graphs representing the functions.

The input to the IFDS algorithm is an exploded supergraph, which combines the structure of the
interprocedural control flow graph of the program under analysis and the graphs representing
the transfer functions. The goal of the analysis is to compute the set of supergraph nodes that are
reachable from the program start node using paths with a specific property called realizability.

6.2.2 Application of Flix Functional Predicates. While the key ideas of IFDS can be simply and
elegantly expressed in plain Datalog for illustrative purposes, such an implementation is not
practical if it requires the entire exploded supergraph to be provided as an explicit input relation.
In practice, that supergraph can be much larger than the set of its realizably reachable nodes,
so it can be more costly to explicitly construct that input supergraph than to then run the IFDS
algorithm itself. A practical implementation needs to compute parts of the exploded supergraph
implicitly on demand, as the IFDS computation demands sets of edges from specific nodes. Instead
of representing each transfer function as an explicit bipartite graph, we need to implement it
implicitly as a function that, given a node of that graph, computes the set of other adjacent nodes.

A Flix program can incorporate such an implicitly defined relation into an otherwise declarative
expression of the fixed-point problem using the functional predicates that were explained in
Section 3.9. For example, the rule that handles dataflow within a procedure from program point 𝑛
to a successor program point𝑚 is written as follows:

PathEdge(d1 , m, d3) :- CFG(n, m), PathEdge(d1, n, d2), let d3 = eshIntra1(n, d2).

For each supergraph node (𝑛,𝑑2) to which there already exists a realizable path from (𝑠𝑝 , 𝑑1), where
𝑠𝑝 is the start node of the procedure that contains program point 𝑛, the rule calls the function
eshIntra1 to compute the set of supergraph nodes (𝑚,𝑑3) to which there are edges in the exploded
supergraph from (𝑛,𝑑2). The head of the rule records that each such supergraph node (𝑚,𝑑3) is
also realizably reachable from (𝑠𝑝 , 𝑑1).

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 348. Publication date: October 2025.

348:22 Magnus Madsen and Ondřej Lhoták

6.2.3 Synergy Between Datalog Relations and Functional Computation. In the case of interprocedural
edges from a call site to a called procedure, the IFDS algorithm needs to follow them in both
directions, sometimes from caller to callee, and at other times from callee to caller; thus it needs not
only the transfer function but also its inverse. An imperative implementation would implement the
inverse using an auxiliary table tracking the nodes that the transfer function was called with and
the nodes that it returned, along with a worklist to ensure that additions to the table are propagated
to all parts of the algorithm that depend on the inverse transfer function. In Flix, this is handled with
just a relation that tabulates the calls to the transfer function. Parts of the algorithm that depend on
the forward or inverse transfer function are written as rules that depend on this relation, and the
Datalog fixed-point semantics ensures that they are all correctly re-evaluated for each new dataflow
fact that is tabulated. The Flix rule that tabulates calls to the call-site-to-procedure-start-node
transfer function is written as follows:

EshCallStart(call , d2, target , d3) :-

PathEdge(_d1 , call , d2),

CallGraph(call , target),

let d3 = eshCallStart1(call , d2, target).

The PathEdge and CallGraph atoms identify the nodes for which the transfer function needs to be
evaluated. The rule records those evaluations in the EshCallStart relation. Other rules that depend
on the transfer function, either in the forward or inverse direction, are written to just depend on
the EshCallStart relation.

6.2.4 Polymorphism for Modularity and Reuse. Using the polymorphism that was explained in
Section 3.4, the Flix implementation of IFDS is implemented independently of the types of procedures
p, program locations n, and elements of the dataflow analysis domain d. Using the functional nature
of Flix, the transfer functions of a specific dataflow analysis can be instantiated to a specific program
under analysis and passed as first-class function arguments to the Flix IFDS implementation. Thus,
the Flix IFDS implementation is fully modular and generic in not only the dataflow analysis problem
being solved and the program under analysis, but even the data types used to represent the analysis
domain and the intermediate representation in which that program is written.

6.2.5 IDE Background. The Interprocedural Distributive Environment (IDE) algorithm [Sagiv et al.
1996] extends the ideas of IFDS to dataflow analyses that operate on environments, mappings from
𝐷 to 𝐿, where 𝐿 is some lattice of values, rather than on just subsets of a set 𝐷 . For example, the
algorithm can perform constant propagation if 𝐷 is defined as the set of variables and 𝐿 as the
constant propagation lattice. The algorithmworks by labeling each edge of the exploded supergraph
with a representation of a microfunction, a function from 𝐿 to 𝐿. Any distributive transfer function
over environments, (𝐷 → 𝐿) → (𝐷 → 𝐿), can be represented as a bipartite graph over two
copies of 𝐷 whose edges are labelled with such microfunctions 𝐿 → 𝐿. Unlike the IFDS algorithm,
which computes only a set of realizably reachable exploded supergraph nodes, the IDE algorithm
additionally computes, for each such reachable node, the merge over paths of the composition of
the microfunctions found on each realizable path to the supergraph node.

6.2.6 Application of Lattices. We have implemented the IDE algorithm in Flix as an extension of the
IFDS implementation, making use of the lattice semantics that were explained in Section 3.11. The
IDE algorithm is defined not only over the lattice 𝐿, but over a second lattice 𝐹 of representations
of microfunctions. To be efficient, the algorithm requires an IDE instantiation to define a data
structure to compactly represent such a microfunction and efficient implementations of function
application and function composition on that representation.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 348. Publication date: October 2025.

Flix: A Design for Language-Integrated Datalog 348:23

6.2.7 Typeclasses for Instantiating Lattice Operations. Like the IFDS implementation, the Flix IDE
implementation is fully modular and generic in the analysis domain, transfer functions, intermediate
representation, and program under analysis. It takes an input of the following type:

type alias IDE[p, n, d, f, l] = {

zero = d,

main = p,

cfg = List[(n, n)],

startNodes = List[(p, n)],

endNodes = List[(p, n)],

callGraph = List[(n, p)],

eshIntra = (n, d) -> Vector [(d, f)],

eshCallStart = (n, d, p) -> Vector [(d, f)],

eshEndReturn = (p, d, n) -> Vector [(d, f)],

id = f,

apply = (f, l) -> l,

compose = (f, f) -> f

}

It also requires type class instantiations to ensure that the types f and l are lattices. To instantiate
the generic implementation, a user provides a type p of procedures, a type n of program points,
a type d of elements of the set 𝐷 , a type f of representations of microfunctions, and a type l of
elements of the dataflow lattice 𝐿. The user provides the interprocedural control flow graph using
the parameters main, cfg, startNodes, endNodes, and callGraph. The user provides transfer functions
implicitly using the Flix functions eshIntra (intraprocedural), eshCallStart (for call edges), and
eshEndReturn (for return edges). Notice that each of these functions returns not only a set of adjacent
supergraph nodes d, but also a representation f of the microfunction that labels each exploded
supergraph edge. Finally, the user provides an identity microfunction id and implementations of
application (apply) and composition (compose) on the data structure that represents microfunctions.

7 Teaching Logic Programming and Program Analysis with Flix
We have been using Flix in two courses at Aarhus University. In total, we have taught about a
hundred and fifty students over a five year period. We briefly share some of our experiences.
We teach a 1st year extracurricular undergraduate course on logic programming. The course

is an elective and intended for talented students. The learning objectives are to (a) introduce
the declarative logic programming paradigm, (b) illustrate how it can be used to solve small
programming problems, and (c) introduce the idea of fixed points. Another course objective is to
show the students that there is more to programming than what they are taught in the Introduction
to Programming course, which is object-oriented. In the course, the students are given several
programming assignments. For example, the students are asked to compute aunts and uncles given
a parent-of relation. To our delight, we find that students are quick to learn Datalog.
We also teach a 4th year graduate course on program analysis. The learning objectives of this

course are vast. The ones that pertain to this paper are (a) to understand partial orders, lattices,
monotone functions, and fixed point theory, (b) to express points-to analyses as Datalog programs,
and (c) to express dataflow analyses as Datalog programs enriched with lattice semantics. In the
course, the students are asked to implement a context-insensitive points-to analysis for a Java-like
language and to implement an intra-procedural sign analysis.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 348. Publication date: October 2025.

348:24 Magnus Madsen and Ondřej Lhoták

In comparison to DLV [Leone et al. 2006], which was used in previous iterations of the courses,
we find that students benefit from (a) the quick and easy installation of Flix, (b) the Flix type system,
which prevents simple mistakes, and (c) the IDE support offered by the Flix Visual Studio Code
extension. For the 1st year students, we find that the most common mistakes are related to arity
mismatches and confusion about term types, both errors caught by Flix. For the 4th year students,
we find that two common mistakes are (i) use of non-monotone functions and (ii) incorrect use of
negation, both errors which are not caught by Flix. Otherwise, the students comfortably use most
features presented in this paper, including first-class Datalog values, the inject-program-query
pattern, and lattice semantics.

8 Related Work
Datalog has experienced a resurgence of research interest in the last decade.We present related work
along six axes: foundational research, Datalog applications, Datalog and functional programming,
Datalog extensions, debugging and provenance, and finally performance and incremental evaluation.

Foundational Research on Datalog. Datalog emerged out of research on databases, knowledge
systems, and logic programming in the 1970s and 1980s [Minker 1988]. A major development was
stratified negation [Minker 1988]. Another was the discovery of the magic set transformation [Ban-
cilhon et al. 1985]. Research on Datalog later evolved into Answer-Set Programming (ASP) [Brewka
et al. 2011]. The last decade has seen a resurgence of interest in Datalog from researchers and
industry [De Moor et al. 2012; Huang et al. 2011]. An accessible, if somewhat dated, introduction to
Datalog is given by Ceri et al. [1989]. A textbook treatment is given by Greco and Molinaro [2016].

Datalog Applications. Datalog has been used in a variety of applications [Huang et al. 2011], but
perhaps one of the most successful applications has been program analysis. Datalog has been used
for large scale points-to analysis of Java [Bravenboer and Smaragdakis 2009; Smaragdakis and
Bravenboer 2011;Whaley and Lam 2004], especially for context-sensitive analysis [Smaragdakis et al.
2011]. Datalog has also been used for static analysis of smart contracts [Dietrich et al. 2015; Grech
et al. 2019, 2020]. Other applications include bioinformatics [Seo 2018], big-data analytics [Halperin
et al. 2014; Seo et al. 2013; Shkapsky et al. 2016], and networking and distributed systems [Backes
et al. 2019; Conway et al. 2012; Loo et al. 2009].

Embedding Datalog. In addition to Flix, we know of several efforts to integrate Datalog into
general-purpose programming languages: Ascent [Sahebolamri et al. 2023, 2022], Datafrog [Mc-
Sherry 2018], Datafun [Arntzenius and Krishnaswami 2019, 2016], and Functional incA [Pacak
and Erdweg 2022]. While Flix can be seen as a meta-programming language for Datalog or as a
deeply embedded domain specific language (eDSL), both Datafun and Functional incA aim to blur
the distinction between Datalog and the functional world. Specifically, Datafun is a functional
programming language with a type system that tracks monotonicity [Arntzenius and Krishnaswami
2016]. The type system ensures that evaluation of Datafun programs terminates. Datafun supports
an adapted form of semi-naïve evaluation [Arntzenius and Krishnaswami 2019]. Functional incA is
also a functional language but with the goal of compilation to plain old Datalog such that existing
solvers can be used. Datafrog is a light-weight Datalog engine written in Rust [McSherry 2018].
Ascent is a Datalog system implemented in Rust [Sahebolamri et al. 2023, 2022]. Ascent allows
Datalog programs, expressed as Rust macros, to interact with Rust code. Like Flix, Ascent also
leverages type classes (traits) to integrate with user-defined lattices. Flix — unlike Datafun and
Functional IncA, but like Ascent and Datafrog — embraces Datalog: First-class Datalog program
values look and work like ordinary Datalog programs and they are solvable by standard Datalog
techniques. We believe that the declarative nature of logic rules is an advantage.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 348. Publication date: October 2025.

Flix: A Design for Language-Integrated Datalog 348:25

Datalog Extensions. Formulog is a Datalog dialect extended with support for SMT theories [Bem-
benek et al. 2020]. Formulog allows programmers to construct logic terms, as part of rule evaluation,
which are then passed to an SMT-solver during query evaluation. Formulog, like the original Flix,
allow Datalog rules to interact with a small ML-like functional programming language. Dedalus is
a Datalog dialect extended with time for use in distributed systems [Alvaro et al. 2011]. In Dedalus,
every fact is associated with a specific time stamp. A deductive rule infers new facts in the same
time instant as its body predicates. An inductive rule infers new facts in the next time instant as its
body predicates. Finally, a persistence rule propagates facts from one time instant to the next. We
believe that since Flix retains the Datalogness of Datalog, it should be conceptually straightforward
to extend Flix in the direction of Formulog, Dedalus, and other similar extensions.

Debugging and Provenance. A large body of work has studied how to compute provenance
information for Datalog, i.e. the ability to answer the question: “how was this fact derived?” [Deutch
et al. 2014; Green et al. 2007; Köhler et al. 2012; Zhao et al. 2020]. Two common challenges are: (i) how
to efficiently store provenance information such that provenance queries can later be answered, and
(ii) how to present provenance information to programmers such that it is understandable. While
provenance can precisely answer why a fact was derived, it cannot tell us why a fact is absent. In
recent work, Pacak and Erdweg [2023] has gone in a new direction and proposed a debugger for
Datalog which allows the programmer to insert breakpoints and to “step-through” how a Datalog
rule is evaluated. We have shown how to use lattice semantics as a “poor man’s” provenance.

Performance and Incremental Evaluation. The research literature on efficient evaluation of Datalog
is extensive. Over the last decades, impressive progress has been made and state-of-the-art Datalog
solvers now scale to billions of facts running on machines with dozens of cores and terabytes of
memory. An important strand of research has focused on data structure selection, index selection,
and join ordering [Abeysinghe et al. 2024; Jordan et al. 2019a,b; Sahebolamri et al. 2023; Subotić
et al. 2018; Veldhuizen 2014]. Another strand has focused on incremental evaluation, i.e. how to
recompute the minimal model of a Datalog program when its input is slightly changed [Pacak et al.
2022; Ryzhyk and Budiu 2019; Szabó et al. 2018, 2021, 2016]. A more recent strand has focused on
compilation of Datalog to GPUs [Martínez-Angeles et al. 2014; Shovon et al. 2022; Sun et al. 2023].

9 Conclusion
We have presented a “Grand Tour” of the Datalog facilities in the Flix programming language.
We have illustrated how programmers can write functions implemented using Datalog and we
have shown how to build modular and reusable families of Datalog programs using first-class
Datalog values, rho abstraction, parametric polymorphism, and type classes. We have described
the inject and query programming constructs, which allows programmers to move data between
the functional and Datalog worlds. We have described a collection of features that significantly
increase the flexibility and expressive power of Datalog, including head and guard expressions,
functional predicates, lattice semantics, and more.
We have presented several applications that use these features, including implementations of

Ullman’s algorithm to stratify Datalog programs and the IFDS and IDE algorithms for context-
sensitive program analysis, and more. The implementations of IFDS and IDE fulfill a long-term
goal: to have fully modular, polymorphic, typed, and declarative formulations of these algorithms
that can be instantiated with any abstract domain.
We believe that embedding Datalog inside a general-purpose programming language, such as

Flix, is an important step toward bringing the power of logic programming to the masses.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 348. Publication date: October 2025.

348:26 Magnus Madsen and Ondřej Lhoták

10 Data-Availability Statement
Flix is open source, ready for use, and freely available at:

https://flix.dev/ and https://github.com/flix/flix

A fully functional and reusable artifact is available [Madsen and Lhoták 2025].

References
Supun Abeysinghe, Anxhelo Xhebraj, and Tiark Rompf. 2024. Flan: An Expressive and Efficient Datalog Compiler for

Program Analysis. Proceedings of the ACM on Programming Languages 8, POPL (2024). doi:10.1145/3632928
Peter Alvaro, William R. Marczak, Neil Conway, Joseph M. Hellerstein, David Maier, and Russell Sears. 2011. Dedalus:

Datalog in Time and Space. Springer Berlin Heidelberg. doi:10.1007/978-3-642-24206-9_16
Krzysztof R. Apt and Roland N. Bol. 1994. Logic programming and negation: A survey. The Journal of Logic Programming

19–20 (1994). doi:10.1016/0743-1066(94)90024-8
Samuel Arch, Xiaowen Hu, David Zhao, Pavle Subotić, and Bernhard Scholz. 2022. Building a join optimizer for soufflé. In

International Symposium on Logic-Based Program Synthesis and Transformation.
Molham Aref, Balder ten Cate, Todd J. Green, Benny Kimelfeld, Dan Olteanu, Emir Pasalic, Todd L. Veldhuizen, and

Geoffrey Washburn. 2015. Design and Implementation of the LogicBlox System. In Proceedings of the 2015 ACM SIGMOD
International Conference on Management of Data. doi:10.1145/2723372.2742796

Michael Arntzenius and Neel Krishnaswami. 2019. Seminaïve evaluation for a higher-order functional language. Proceedings
of the ACM on Programming Languages 4, POPL (2019). doi:10.1145/3371090

Michael Arntzenius and Neelakantan R. Krishnaswami. 2016. Datafun: a functional Datalog. In Proceedings of the 21st ACM
SIGPLAN International Conference on Functional Programming. doi:10.1145/2951913.2951948

John Backes, Sam Bayless, Byron Cook, Catherine Dodge, Andrew Gacek, Alan J. Hu, Temesghen Kahsai, Bill Kocik, Evgenii
Kotelnikov, Jure Kukovec, Sean McLaughlin, Jason Reed, Neha Rungta, John Sizemore, Mark Stalzer, Preethi Srinivasan,
Pavle Subotić, Carsten Varming, and Blake Whaley. 2019. Reachability Analysis for AWS-Based Networks. Springer
International Publishing. doi:10.1007/978-3-030-25543-5_14

Francois Bancilhon, David Maier, Yehoshua Sagiv, and Jeffrey D Ullman. 1985. Magic sets and other strange ways to
implement logic programs (extended abstract). In Proceedings of the fifth ACM SIGACT-SIGMOD symposium on Principles
of database systems. doi:10.1145/6012.15399

Aaron Bembenek, Michael Greenberg, and Stephen Chong. 2020. Formulog: Datalog for SMT-based static analysis. Proceed-
ings of the ACM on Programming Languages 4, OOPSLA (2020). doi:10.1145/3428209

Martin Bravenboer and Yannis Smaragdakis. 2009. Strictly declarative specification of sophisticated points-to analyses. In
Proceedings of the 24th ACM SIGPLAN conference on Object oriented programming systems languages and applications.
doi:10.1145/1640089.1640108

Gerhard Brewka, Thomas Eiter, and Mirosław Truszczyński. 2011. Answer set programming at a glance. Commun. ACM 54,
12 (2011). doi:10.1145/2043174.2043195

Vince Bárány, Balder ten Cate, and Martin Otto. 2012. Queries with guarded negation. Proceedings of the VLDB Endowment
5, 11 (2012). doi:10.14778/2350229.2350250

S. Ceri, G. Gottlob, and L. Tanca. 1989. What you always wanted to know about Datalog (and never dared to ask). IEEE
Transactions on Knowledge and Data Engineering 1, 1 (1989). doi:10.1109/69.43410

Neil Conway, William R. Marczak, Peter Alvaro, Joseph M. Hellerstein, and David Maier. 2012. Logic and lattices for
distributed programming. In Proceedings of the Third ACM Symposium on Cloud Computing. doi:10.1145/2391229.2391230

Thomas H Cormen, Charles E Leiserson, Ronald L Rivest, and Clifford Stein. 2022. Introduction to algorithms. MIT press.
Oege De Moor, Georg Gottlob, Tim Furche, and Andrew Sellers. 2012. Datalog Reloaded: First International Workshop, Datalog

2010, Oxford, UK, March 16-19, 2010. Revised Selected Papers. Vol. 6702. Springer.
Daniel Deutch, TovaMilo, Sudeepa Roy, and Val Tannen. 2014. Circuits for Datalog Provenance. doi:10.5441/002/ICDT.2014.22
Jens Dietrich, Nicholas Hollingum, and Bernhard Scholz. 2015. Giga-scale exhaustive points-to analysis for Java in under

a minute. In Proceedings of the 2015 ACM SIGPLAN International Conference on Object-Oriented Programming, Systems,
Languages, and Applications. doi:10.1145/2814270.2814307

Neville Grech, Lexi Brent, Bernhard Scholz, and Yannis Smaragdakis. 2019. Gigahorse: Thorough, Declarative Decompilation
of Smart Contracts. In 2019 IEEE/ACM 41st International Conference on Software Engineering (ICSE). doi:10.1109/icse.2019.
00120

Neville Grech, Michael Kong, Anton Jurisevic, Lexi Brent, Bernhard Scholz, and Yannis Smaragdakis. 2020. MadMax:
analyzing the out-of-gas world of smart contracts. Commun. ACM 63, 10 (2020). doi:10.1145/3416262

Sergio Greco and Cristian Molinaro. 2016. Datalog and logic databases. Springer Nature.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 348. Publication date: October 2025.

https://flix.dev/
https://github.com/flix/flix
https://doi.org/10.1145/3632928
https://doi.org/10.1007/978-3-642-24206-9_16
https://doi.org/10.1016/0743-1066(94)90024-8
https://doi.org/10.1145/2723372.2742796
https://doi.org/10.1145/3371090
https://doi.org/10.1145/2951913.2951948
https://doi.org/10.1007/978-3-030-25543-5_14
https://doi.org/10.1145/6012.15399
https://doi.org/10.1145/3428209
https://doi.org/10.1145/1640089.1640108
https://doi.org/10.1145/2043174.2043195
https://doi.org/10.14778/2350229.2350250
https://doi.org/10.1109/69.43410
https://doi.org/10.1145/2391229.2391230
https://doi.org/10.5441/002/ICDT.2014.22
https://doi.org/10.1145/2814270.2814307
https://doi.org/10.1109/icse.2019.00120
https://doi.org/10.1109/icse.2019.00120
https://doi.org/10.1145/3416262

Flix: A Design for Language-Integrated Datalog 348:27

Todd J. Green, Grigoris Karvounarakis, and Val Tannen. 2007. Provenance semirings. In Proceedings of the twenty-sixth ACM
SIGMOD-SIGACT-SIGART symposium on Principles of database systems. doi:10.1145/1265530.1265535

Daniel Halperin, Victor Teixeira de Almeida, Lee Lee Choo, Shumo Chu, Paraschos Koutris, Dominik Moritz, Jennifer
Ortiz, Vaspol Ruamviboonsuk, Jingjing Wang, Andrew Whitaker, Shengliang Xu, Magdalena Balazinska, Bill Howe, and
Dan Suciu. 2014. Demonstration of the Myria big data management service. In Proceedings of the 2014 ACM SIGMOD
International Conference on Management of Data. doi:10.1145/2588555.2594530

Xiaowen Hu, David Zhao, Herbert Jordan, and Bernhard Scholz. 2021. Artifact for Paper: An Efficient Interpreter for Datalog
by De-specializing Relations. doi:10.1145/3410297

Shan Shan Huang, Todd Jeffrey Green, and Boon Thau Loo. 2011. Datalog and emerging applications: an interactive tutorial.
In Proceedings of the 2011 ACM SIGMOD International Conference on Management of data. doi:10.1145/1989323.1989456

Herbert Jordan, Pavle Subotić, David Zhao, and Bernhard Scholz. 2019a. Brie: A Specialized Trie for Concurrent Datalog. In
Proceedings of the 10th International Workshop on Programming Models and Applications for Multicores and Manycores.
doi:10.1145/3303084.3309490

Herbert Jordan, Pavle Subotić, David Zhao, and Bernhard Scholz. 2019b. A specialized B-tree for concurrent datalog evaluation.
In Proceedings of the 24th Symposium on Principles and Practice of Parallel Programming. doi:10.1145/3293883.3295719

Herbert Jordan, Pavle Subotić, David Zhao, and Bernhard Scholz. 2019c. A specialized B-tree for concurrent datalog evaluation.
In Proceedings of the 24th Symposium on Principles and Practice of Parallel Programming. doi:10.1145/3293883.3295719

Sven Köhler, Bertram Ludäscher, and Yannis Smaragdakis. 2012. Declarative Datalog Debugging for Mere Mortals. Springer
Berlin Heidelberg. doi:10.1007/978-3-642-32925-8_12

Daan Leijen. 2004. First-class labels for extensible rows. (2004).
Nicola Leone, Gerald Pfeifer, Wolfgang Faber, Thomas Eiter, Georg Gottlob, Simona Perri, and Francesco Scarcello. 2006.

The DLV system for knowledge representation and reasoning. ACM Transactions on Computational Logic 7, 3 (2006).
doi:10.1145/1149114.1149117

Boon Thau Loo, Tyson Condie, Minos Garofalakis, David E. Gay, JosephM. Hellerstein, PetrosManiatis, Raghu Ramakrishnan,
Timothy Roscoe, and Ion Stoica. 2009. Declarative networking. Commun. ACM 52, 11 (2009). doi:10.1145/1592761.1592785

Matthew Lutze, Magnus Madsen, Philipp Schuster, and Jonathan Immanuel Brachthäuser. 2023. With or Without You:
Programming with Effect Exclusion. Proceedings of the ACM on Programming Languages 7, ICFP (2023). doi:10.1145/
3607846

Magnus Madsen and Ondřej Lhoták. 2018. Safe and sound program analysis with Flix. In Proceedings of the 27th ACM
SIGSOFT International Symposium on Software Testing and Analysis. doi:10.1145/3213846.3213847

Magnus Madsen and Ondřej Lhoták. 2020. Fixpoints for the masses: programming with first-class Datalog constraints.
Proceedings of the ACM on Programming Languages 4, OOPSLA (2020). doi:10.1145/3428193

Magnus Madsen and Ondřej Lhoták. 2025. Flix: A Design for Language-Integrated Datalog (artifact). doi:10.5281/zenodo.
15743443

Magnus Madsen, Jonathan Lindegaard Starup, and Ondřej Lhoták. 2022. Flix: A meta programming language for datalog. In
Datalog 2.0 2022: 4th International Workshop on the Resurgence of Datalog in Academia and Industry.

Magnus Madsen, Jonathan Lindegaard Starup, and Matthew Lutze. 2023a. Restrictable Variants: A Simple and Practical
Alternative to Extensible Variants. doi:10.4230/LIPICS.ECOOP.2023.17

Magnus Madsen and Jaco van de Pol. 2020. Polymorphic types and effects with Boolean unification. Proceedings of the ACM
on Programming Languages 4, OOPSLA (2020). doi:10.1145/3428222

Magnus Madsen and Jaco van de Pol. 2021. Relational nullable types with Boolean unification. Proceedings of the ACM on
Programming Languages 5, OOPSLA (2021). doi:10.1145/3485487

Magnus Madsen, Jaco van de Pol, and Troels Henriksen. 2023b. Fast and Efficient Boolean Unification for Hindley-Milner-
Style Type and Effect Systems. Proceedings of the ACM on Programming Languages 7, OOPSLA2 (2023). doi:10.1145/3622816

Magnus Madsen, Ming-Ho Yee, and Ondřej Lhoták. 2016. From Datalog to flix: a declarative language for fixed points
on lattices. In Proceedings of the 37th ACM SIGPLAN Conference on Programming Language Design and Implementation.
doi:10.1145/2908080.2908096

Carlos Alberto Martínez-Angeles, Inês Dutra, Vítor Santos Costa, and Jorge Buenabad-Chávez. 2014. A Datalog Engine for
GPUs. Springer International Publishing. doi:10.1007/978-3-319-08909-6_10

Frank McSherry. 2018. Rust-Lang/datafrog: A Lightweight Datalog engine in Rust. https://github.com/rust-lang/datafrog.
[Accessed 23-06-2025].

Erik Meijer, Brian Beckman, and Gavin Bierman. 2006. Linq: reconciling object, relations and xml in the. net framework. In
Proceedings of the 2006 ACM SIGMOD international conference on Management of data. doi:10.1145/1142473.1142552

Jack Minker. 1988. Foundations of deductive databases and logic programming. Morgan Kaufmann.
J. Garrett Morris and James McKinna. 2019. Abstracting extensible data types: or, rows by any other name. Proceedings of

the ACM on Programming Languages 3, POPL (2019). doi:10.1145/3290325

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 348. Publication date: October 2025.

https://doi.org/10.1145/1265530.1265535
https://doi.org/10.1145/2588555.2594530
https://doi.org/10.1145/3410297
https://doi.org/10.1145/1989323.1989456
https://doi.org/10.1145/3303084.3309490
https://doi.org/10.1145/3293883.3295719
https://doi.org/10.1145/3293883.3295719
https://doi.org/10.1007/978-3-642-32925-8_12
https://doi.org/10.1145/1149114.1149117
https://doi.org/10.1145/1592761.1592785
https://doi.org/10.1145/3607846
https://doi.org/10.1145/3607846
https://doi.org/10.1145/3213846.3213847
https://doi.org/10.1145/3428193
https://doi.org/10.5281/zenodo.15743443
https://doi.org/10.5281/zenodo.15743443
https://doi.org/10.4230/LIPICS.ECOOP.2023.17
https://doi.org/10.1145/3428222
https://doi.org/10.1145/3485487
https://doi.org/10.1145/3622816
https://doi.org/10.1145/2908080.2908096
https://doi.org/10.1007/978-3-319-08909-6_10
https://github.com/rust-lang/datafrog
https://doi.org/10.1145/1142473.1142552
https://doi.org/10.1145/3290325

348:28 Magnus Madsen and Ondřej Lhoták

Nomair A. Naeem, Ondřej Lhoták, and Jonathan Rodriguez. 2010. Practical Extensions to the IFDS Algorithm. Springer Berlin
Heidelberg. doi:10.1007/978-3-642-11970-5_8

Casper Dalgaard Nielsen and Adam Yasser Tallouzi. 2025. Improving the Datalog Engine of Flix. Master’s thesis. Aarhus
University. Master’s Thesis.

André Pacak and Sebastian Erdweg. 2022. Functional Programming with Datalog. doi:10.4230/LIPICS.ECOOP.2022.7
André Pacak and Sebastian Erdweg. 2023. Interactive Debugging of Datalog Programs. Proceedings of the ACM on

Programming Languages 7, OOPSLA2 (2023). doi:10.1145/3622824
André Pacak, Tamás Szabó, and Sebastian Erdweg. 2022. Incremental Processing of Structured Data in Datalog. In

Proceedings of the 21st ACM SIGPLAN International Conference on Generative Programming: Concepts and Experiences.
doi:10.1145/3564719.3568686

Adam Paszke and Ningning Xie. 2023. Infix-Extensible Record Types for Tabular Data. In Proceedings of the 8th ACM
SIGPLAN International Workshop on Type-Driven Development. doi:10.1145/3609027.3609406

Thomas Reps, Susan Horwitz, and Mooly Sagiv. 1995. Precise interprocedural dataflow analysis via graph reachability.
In Proceedings of the 22nd ACM SIGPLAN-SIGACT symposium on Principles of programming languages - POPL ’95.
doi:10.1145/199448.199462

Leonid Ryzhyk and Mihai Budiu. 2019. Differential Datalog. Datalog 2 (2019).
Mooly Sagiv, Thomas Reps, and Susan Horwitz. 1996. Precise interprocedural dataflow analysis with applications to constant

propagation. Theoretical Computer Science 167, 1–2 (1996). doi:10.1016/0304-3975(96)00072-2
Arash Sahebolamri, Langston Barrett, Scott Moore, and Kristopher Micinski. 2023. Bring Your Own Data Structures to

Datalog. Proceedings of the ACM on Programming Languages 7, OOPSLA2 (2023). doi:10.1145/3622840
Arash Sahebolamri, Thomas Gilray, and Kristopher Micinski. 2022. Seamless deductive inference via macros. In Proceedings

of the 31st ACM SIGPLAN International Conference on Compiler Construction. doi:10.1145/3497776.3517779
Bernhard Scholz, Herbert Jordan, Pavle Subotić, and Till Westmann. 2016. On fast large-scale program analysis in Datalog.

In Proceedings of the 25th International Conference on Compiler Construction. doi:10.1145/2892208.2892226
P Griffiths Selinger, Morton M Astrahan, Donald D Chamberlin, Raymond A Lorie, and Thomas G Price. 1979. Access path

selection in a relational database management system. In Proceedings of the 1979 ACM SIGMOD international conference
on Management of data.

Jiwon Seo. 2018. Datalog Extensions for Bioinformatic Data Analysis. In 2018 40th Annual International Conference of the
IEEE Engineering in Medicine and Biology Society (EMBC). doi:10.1109/embc.2018.8512571

Jiwon Seo, S. Guo, and M. S. Lam. 2013. SociaLite: Datalog extensions for efficient social network analysis. In 2013 IEEE 29th
International Conference on Data Engineering (ICDE). doi:10.1109/icde.2013.6544832

Alexander Shkapsky, Mohan Yang, Matteo Interlandi, Hsuan Chiu, Tyson Condie, and Carlo Zaniolo. 2016. Big Data
Analytics with Datalog Queries on Spark. In Proceedings of the 2016 International Conference on Management of Data.
doi:10.1145/2882903.2915229

Ahmedur Rahman Shovon, Landon Richard Dyken, Oded Green, Thomas Gilray, and Sidharth Kumar. 2022. Accelerating
Datalog applications with cuDF. In 2022 IEEE/ACM Workshop on Irregular Applications: Architectures and Algorithms
(IA3). doi:10.1109/ia356718.2022.00012

Yannis Smaragdakis and Martin Bravenboer. 2011. Using Datalog for Fast and Easy Program Analysis. Springer Berlin
Heidelberg. doi:10.1007/978-3-642-24206-9_14

Yannis Smaragdakis, Martin Bravenboer, and Ondrej Lhoták. 2011. Pick your contexts well: understanding object-sensitivity.
In Proceedings of the 38th annual ACM SIGPLAN-SIGACT symposium on Principles of programming languages. doi:10.
1145/1926385.1926390

Jonathan Lindegaard Starup, Magnus Madsen, and Ondřej Lhoták. 2023. Breaking the Negative Cycle: Exploring the Design
Space of Stratification for First-Class Datalog Constraints. doi:10.4230/LIPICS.ECOOP.2023.31

Pavle Subotić, Herbert Jordan, Lijun Chang, Alan Fekete, and Bernhard Scholz. 2018. Automatic index selection for large-scale
datalog computation. Proceedings of the VLDB Endowment 12, 2 (2018). doi:10.14778/3282495.3282500

Yihao Sun, Ahmedur Rahman Shovon, Thomas Gilray, Kristopher Micinski, and Sidharth Kumar. 2023. Optimizing Datalog
for the GPU. doi:10.48550/ARXIV.2311.02206

Tamás Szabó, Gábor Bergmann, Sebastian Erdweg, and Markus Voelter. 2018. Incrementalizing lattice-based program
analyses in Datalog. Proceedings of the ACM on Programming Languages 2, OOPSLA (2018). doi:10.1145/3276509

Tamás Szabó, Sebastian Erdweg, and Gábor Bergmann. 2021. Incremental whole-program analysis in Datalog with lattices.
In Proceedings of the 42nd ACM SIGPLAN International Conference on Programming Language Design and Implementation.
doi:10.1145/3453483.3454026

Tamás Szabó, Sebastian Erdweg, and Markus Voelter. 2016. IncA: a DSL for the definition of incremental program analyses. In
Proceedings of the 31st IEEE/ACM International Conference on Automated Software Engineering. doi:10.1145/2970276.2970298

Jeffrey D. Ullman. 1988. Principles of database and knowledge-base systems. Computer Science Press.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 348. Publication date: October 2025.

https://doi.org/10.1007/978-3-642-11970-5_8
https://doi.org/10.4230/LIPICS.ECOOP.2022.7
https://doi.org/10.1145/3622824
https://doi.org/10.1145/3564719.3568686
https://doi.org/10.1145/3609027.3609406
https://doi.org/10.1145/199448.199462
https://doi.org/10.1016/0304-3975(96)00072-2
https://doi.org/10.1145/3622840
https://doi.org/10.1145/3497776.3517779
https://doi.org/10.1145/2892208.2892226
https://doi.org/10.1109/embc.2018.8512571
https://doi.org/10.1109/icde.2013.6544832
https://doi.org/10.1145/2882903.2915229
https://doi.org/10.1109/ia356718.2022.00012
https://doi.org/10.1007/978-3-642-24206-9_14
https://doi.org/10.1145/1926385.1926390
https://doi.org/10.1145/1926385.1926390
https://doi.org/10.4230/LIPICS.ECOOP.2023.31
https://doi.org/10.14778/3282495.3282500
https://doi.org/10.48550/ARXIV.2311.02206
https://doi.org/10.1145/3276509
https://doi.org/10.1145/3453483.3454026
https://doi.org/10.1145/2970276.2970298

Flix: A Design for Language-Integrated Datalog 348:29

Todd L Veldhuizen. 2014. Leapfrog triejoin: A simple, worst-case optimal join algorithm. In Proc. International Conference on
Database Theory.

John Whaley and Monica S. Lam. 2004. Cloning-based context-sensitive pointer alias analysis using binary decision
diagrams. In Proceedings of the ACM SIGPLAN 2004 conference on Programming language design and implementation.
doi:10.1145/996841.996859

Carlo Zaniolo, Natraj Arni, and Kayliang Ong. 1993. Negation and aggregates in recursive rules: the LDL++ approach. Springer
Berlin Heidelberg. doi:10.1007/3-540-57530-8_13

David Zhao, Pavle Subotić, and Bernhard Scholz. 2020. Debugging Large-scale Datalog: A Scalable Provenance Evaluation
Strategy. ACM Transactions on Programming Languages and Systems 42, 2 (2020). doi:10.1145/3379446

Received 2025-03-19; accepted 2025-08-12

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 348. Publication date: October 2025.

https://doi.org/10.1145/996841.996859
https://doi.org/10.1007/3-540-57530-8_13
https://doi.org/10.1145/3379446

	Abstract
	1 Introduction
	2 Background
	2.1 A Brief Introduction to Datalog
	2.2 A Brief History of Flix: From Datalog Dialect to Full-Blown Programming Language

	3 Datalog Programming in Flix
	3.1 A Brief Overview of Flix
	3.2 Datalog Programs as First-class Values
	3.3 Injecting Facts and Querying the Minimal Model
	3.4 Polymorphism
	3.5 Higher-Kinded Polymorphism
	3.6 Back to First-Class Constraints
	3.7 Rho Abstraction
	3.8 Expressions in Atoms and Guards
	3.9 Functional Predicates
	3.10 Stratified Negation
	3.11 Lattice Semantics
	3.12 Polymorphic Lattice Semantics
	3.13 Lattice Stratification
	3.14 Poor Man's Provenance with Lattice Semantics
	3.15 When to use First-Class Datalog Constraints?
	3.16 Why not a Library?

	4 Language Design
	4.1 Typing Discipline
	4.2 Explicit Constructs for Solving and Querying the Minimal Model
	4.3 Implicit Variable Binders and Integration with Lexical Scope

	5 The Flix Datalog Solver
	5.1 Compiler
	5.2 Runtime

	6 Applications
	6.1 Ullman's Algorithm
	6.2 The IFDS and IDE Frameworks

	7 Teaching Logic Programming and Program Analysis with Flix
	8 Related Work
	9 Conclusion
	10 Data-Availability Statement
	References

