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We propose type qualifiers based on Boolean algebras. Traditional type systems with type qualifiers have
been based on lattices, but lattices lack the ability to express exclusion. We argue that Boolean algebras, which
permit exclusion, are a practical and useful choice of domain for qualifiers.

In this paper, we present a calculus System F<.g that extends System F<. with type qualifiers over Boolean
algebras and has support for negation, qualifier polymorphism, and subqualification. We illustrate how System
F<.p can be used as a design recipe for a type and effect system, System F<.gg, with effect polymorphism,
subeffecting, and polymorphic effect exclusion. We use System F<.gg to establish formal foundations of the
type and effect system of the Flix programming language. We also pinpoint and implement a practical form of
subeffecting: abstraction-site subeffecting. Experimental results show that abstraction-site subeffecting allows
us to eliminate all effect upcasts present in the current Flix Standard Library.
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1 Introduction

Type qualifiers enrich type systems by decorating each type with additional information about
values, behavior, or computation [15]. For example, type qualifiers have been used to express
aliasing, immutability, capture tracking, nullability, reachability, among others [7, 39, 41, 51]. Type
qualifiers have also been used in type and effect systems [38], of which there has been much recent
work [9, 30, 32, 35, 40, 48].

An important design choice is the language of qualifiers and whether it supports subqualification
(i.e., subtyping but for qualifiers) and qualifier polymorphism (i.e., polymorphism over qualifiers).
Traditionally, most qualifier systems have been based on lattices which can support both [25].
However, lattices are not always expressive enough and lack a story for type inference in the
general case. In this paper, we propose type qualifiers over Boolean algebras supporting exclusion
(i.e. negation) while retaining qualifier polymorphism and subqualification. We find that exclusion
meaningfully increases expressive power compared to qualifier systems based on lattices.
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For example, in a type and effect system, we may want to express that a higher-order function
handles an exception. In the proposed system, which is implemented in Flix, we can express this as:

def handleException[a, ef](f: Unit -> a \ ef): a \ (ef - {DivByZero})

Here handleException is polymorphic over the type variable a and the effect variable ef. The function
parameter is of type Unit -> a and has effect ef, which we treat as a qualifier on its type. Because
handleException is effect polymorphic, we can instantiate the effect variable ef to any effect. For
example, it could be the effect set {Print, DivByZero}. The effect of the call to handleException is then
{Print, DivByZero} - {DivByZero} = {Print}. The reason this works is because the language of effects
forms a Boolean algebra and subtraction can be expressed as intersection with complement, i.e.
P-Q=Pn QC. But we still want (and can show!) that ef - {DivByzero} C ef.
In summary, the contributions of this paper are:

e (Calculus) We present System F«.g, a calculus that extends System F., with type quali-
fiers over Boolean algebras with support for qualifier polymorphism and subqualification.
We show how System F..g can be used as a design recipe for a type and effect system, System
F<.ge, with effect polymorphism, subeffecting, and polymorphic effect exclusion.

o (Soundness) We formalize System F<.g and System F.ge using the Rocq theorem prover. We
establish soundness of both systems. We leverage soundness of System F«.gg to establish the
soundness of the type and effect system in the Flix programming language.

¢ (Implementation) We pinpoint a limited form of subeffecting that we call abstraction-site
subeffecting, which is amenable to type and effect inference. We implement abstraction-site
subeffecting as an extension of Flix, building on System F«.ge.

o (Evaluation) We empirically evaluate the usefulness of abstraction-site subeffecting on the
Flix Standard Library. The results show that we are able to eliminate all 47 effect upcasts.

The soundness proofs are formalized in Rocq; details are discussed in Section 3. The extended
Flix compiler and the soundness proofs are available in the paper artifact [23, 24].

Research Landscape of Type Qualifiers and Boolean Algebras

We briefly discuss how this paper significantly extends recent work in type qualifiers and Boolean
algebras as used in programming languages:

Polymorphic Types and Effects Re?trlctable Varlarfts: Qualifying System F«.:

. . . A Simple and Practical Some Terms and
with Boolean Unification —— . . . i
Madsen and van de Pol [35] Alternative to Extensible Variants Conditions May Apply

v Madsen et al. [34] Lee et al. [25]
With or Without You: \ Qualified Types /
Programming with with
. _—
Effect Exclusion Boolean Algebras
Lutze et al. [30] This Work

Specifically, this paper is the culmination of several lines of research:

e Madsen and van de Pol [35] introduce a polymorphic type and effect system based on Boolean
formulas, use Boolean unification for inference, and implement it in Flix. The proposed system
lacks subeffecting and lacks a mechanized proof.

o Lutze et al. [30] recast the type and effect system from Boolean formulas to Boolean set
formulas and introduce the idea of polymorphic effect exclusion. The proposed system also
lacks subeffecting and lacks a mechanized proof.
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e Madsen et al. [34] introduce a type system for restrictable variants: a form of refinement
types for algebraic data types where each ADT is indexed by type-level set formulas. The
proposed system lacks a subqualification relation, though it uses polymorphism for
similar purposes. The system also lacks a mechanized proof.

e Lee et al. [25] introduce a framework for type qualifiers on lattice formulas. The framework
extends System F, supports subqualification, and its correctness is established in Rocq. The
system is limited to lattices (i.e., lacks support for negation of qualifiers), lacks a story for
type inference, and lacks an implementation.

In this paper, we present a framework for type qualifiers based on Boolean algebras with nega-
tion. The system supports subqualification and is proven correct in Rocq. Using this system,
we add a practical form of subeffecting to Flix, which we call abstraction-site subeffecting. We
implement abstraction-site subeffecting in Flix and empirically evaluate its usefulness.

There have been several other approaches to integrate Boolean algebras in type systems with
different tradeoffs and we discuss these in Section 6.

2 Motivation

We begin with two examples to motivate the need for type qualifiers with subqualification over
Boolean algebras: a polymorphic type and effect system [30, 35] and restrictable variants [34]. Both
examples benefit from polymorphism and subqualification.

2.1 A Polymorphic Type and Effect System with Effect Exclusion

Recently, Flix added effect exclusion to its type and effect system [30]. The idea is that a higher-
order function specifies that a function argument can have any effect, except for a specific set of
forbidden effects. For example, effect exclusion can be used to: (i) ensure that resources are not
being inadvertently released, (ii) avoid deadlocks resulting from locks being acquired cyclically,
(iii) prevent locks from being inadvertently unlocked or re-locked, (iv) prevent error handlers from
throwing exceptions themselves, (v) stop iterators from modifying their underlying collection,
(vi) avoid infinite recursion or looping behavior, and (vii) avoid re-entrance issues where a function
must not enter itself.

To demonstrate how polymorphism, exclusion, and subeffecting emerge and interact, we present
the implementation of a simple task scheduler in Flix. This scheduler enables functions to be
enqueued for later execution. We begin by defining a polymorphic data structure to store the
scheduled functions:

struct WorkList[ef: Eff, r: Region] {
mut 1: List[Unit -> Unit \ ef]
3

The workList struct has a single mutable field, 1, which holds an immutable list of functions of type

Unit -> Unit \ ef. The struct is parameterized by two type variables: ef and r. The ef parameter

serves as an upper bound on the effects that functions in the queue may perform, while r designates

the memory region with which the struct is associated. For a workList value w, the field 1 can be

read using w->1 and updated with w->1 = v. Reading or writing the field causes a heap effect in r.
We can now define a function schedule to enqueue a new task f:

def schedule(f: Unit -> Unit \ ef - Block, w: WorkList[ef - Block, rl): Unit \ r
= w->1 = Cons(f, (w->1))

Here we allow f to have any effect except the Block effect. The idea is that we want to exclude
(potentially) blocking operations from being enqueued, since such operations could stall the entire
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scheduler. The signature specifies that the effect of f must be ef - Block, which means that no
matter how ef is instantiated, we cannot pass a function that has the Block effect. This example
illustrates how effect exclusion can be used to both express and enforce programmer intent.
We can now schedule and execute tasks. For example, we can write:
def main(): Unit \ IO =
region rc {
let w = WorkList.empty(rc);

// We schedule two functions of type: Unit -> Unit \ IO
WorkList.schedule (() -> println("Hello"), w);
WorkList.schedule (() -> println("World!"), w);

// And we can run all scheduled functions.
WorkList.runAll(w)

3

If we try to schedule a function that has the Block effect:
def main(): Unit \ IO =

region rc {
let w = WorkList.empty(rc);
// Here Console.readLine() has type: Unit -> String \ {Block, IO}
WorkList.schedule(() -> {Console.readLine(); ()});

}

We get a type and effect error:

>> Unable to unify the effect formulas: 'Block' and '(~Block) & ef'.

5 | WorkList.schedule(() -> Console.readlLine(), w);

mismatched effect formulas.
What happens if we try to enqueue two functions that have different effects?
For example, what if we have the functions:

def getCurrentUser(): String \ Env
def getCurrentHour (): Int32 \ Time

If we write the following in the current version of Flix:

let w = WorkList.empty(rc);
WorkList.schedule (() -> println(getCurrentUser()), w);
WorkList.schedule(() -> println(getCurrentHour()), w);

Surprisingly, we get a type error:

>> Unable to unify the effect formulas: '{Env, I0}' and '{Time, IO}'.

6 | WorkList.schedule (() -> println(getCurrentHour()), w);

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAR

mismatched effect formulas.

The problem is a lack of subeffecting. During inference, at the first call to schedule, we infer that the
type of WorkList is WorkList[{Env, 10}, rl. But this type precludes scheduling a function with the
{Time, 10} effects, just one of the Time or 10 effects, or even scheduling a pure function.

What we want is for workList to be assigned a type like WorkList[{Env, Time, I0}, r]and then use
subeffecting to pass in functions with the effects {Env, 10} and {Time, 103}, respectively.
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The Flix Standard Library contains many functions where the lack of subeffecting hurts and
has required its programmers to insert explicit effect upcasts (checked_ecast). One example is in the
List.foldrRight function:

def foldRight(f: (a, b) -> b \ ef, s: b, 1: List[al): b \ ef =
def loop(ll, k) = match 11 {
case Nil => k(s)
case X :: xs => loop(xs, ks -> k(f(x, ks)))
3
loop(l, x -> checked_ecast(x))
Here, foldright is implemented using continuation-passing style to avoid overflowing the stack.
Notably, the (inferred) effect of the continuation k is ef, from the function parameter f. This means
that we cannot call loop with the identity function to start the computation, due to the lack of
subeffecting.

In Section 5, we present a detailed study of the Flix Standard Library and how the lack of
subeffecting in Flix has led to numerous casts throughout the library. We then refactor the Flix
Standard Library to use abstraction-site subeffecting, which eliminates all casts.

2.2 Restrictable Variants

We give one more example to illustrate the usefulness of qualifiers based on Boolean algebras and
of qualification: restrictable variants [34]. A restrictable variant is an algebraic data type, i.e., a
variant type, indexed by a type-level set formula. The index over-approximates the variants in the
algebraic data type that can occur. In other words, restrictable variants are refinement types [16].
Following the examples of Madsen et al. [34], we can define a restrictable variant for a data type
that models Boolean expressions:

enum Expr[s] {
case Var(Int32)
case Cst(Bool)
case Not(Expr[s])
case Or(Expr[s], Expr[s])
case And(Expr[s], Expr[s])
case Xor(Expr[s], Expr[sl])
3

The index, or qualifier, s, is a type-level Boolean set formula that ranges over the variants of the
algebraic data type. The intuition is that given a type like Expr[{Var, Cst}], values of that type
can only use the var and cst constructors of Expr (also recursively if relevant).

def eval(e: Expr[~Varl): Bool =
choose e {
// Var case omitted: We can only evaluate closed terms.

case Cst(b) => b

case Not(x) => not eval(x)

case Or(x, y) => eval(x) or eval(y)
case And(x, y) => eval(x) and eval(y)
case Xor(x, y) => eval(x) != eval(y)

}

We can use the choose and choosex pattern match constructs to write functions that only operate
on a subset of the values of the restrictable variant. choose is used to convert a restrictable variant
into some other type and choosex is used to transform the variant itself, keeping careful track of its
index. For example, take eval from above, which reduce a closed term into a Boolean constant (~var
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is the complement of var). We have omitted the var variant in the pattern match, which has been
captured in the type of the argument to eval. Hence we cannot call eval with a Boolean expression
that may contain a variable.

We can also write a structure-preserving map function using choosex:

def map(f: Int32 -> Int32, e: Expr[s]): Expr[s] =
choosex e {

case Var(x) => Var (f(x))

case Cst(b) => Cst(b)

case Not(x) => Not(map(f, x))

case Or(x, y) => Or(map(f, x), map(f, y))

case And(x, y) => And(map(f, x), map(f, y))
case Xor(x, y) => Xor(map(f, x), map(f, y))
3

Here we map a function over the variable names of the Boolean expression. Notably, the map function
uses polymorphism to relate the input type to the output type. The signature of map tells us that if
the input does not contain, e.g., the var constructor, then neither does the output.

Finally, we can also write a substitution function that replaces each variable in a Boolean
expression with a value from an environment:

def subst(m: Map[Int32, Booll, e: Expr[s]): Expr[(s - Var) + Cst] =
choosex e {

case Var(x) => Cst(Map.getWithDefault(x, false, m))
case Cst(b) => Cst(b)

case Not(x) => Not(subst(m, x))

case Or(x, y) => Or(subst(m, x), subst(m, y))

case And(x, y) => And(subst(m, x), subst(m, y))
case Xor(x, y) => Xor(subst(m, x), subst(m, y))
}

Here the return type of subst tells us that the function eliminates the var variant. The typing is
perhaps not as precise as we would expect. In particular, the return type also states that the result
will contain the cst variant, even if the input contained neither var nor cst.

The original type system, as presented in Madsen et al. [34], did not support subqualification, but
relied solely on polymorphism. In that system, Expr[{Var}] was incompatible with Expr[{Var,
Cst}]. As a consequence, every constructor had to be given a polymorphic type scheme (var is
used both as a term and a type):

Var : Va.Int32 — Expr[Var + «]

With subqualification, a more natural monomorphic type is possible: Var : Int32 — Expr[Var].
The lack of subqualification means that a function like:

def mkNot(expr: Expr[s]): Expr[Not + s] = Not(expr)

does not type check, because expr has type Expr|[s] for a fixed s, which is incompatible with the Not
constructor because it requires Not in the index. The type-level indexes are mismatched and there
is no subqualification so this function, with the shown signature, is ill-typed.

We now turn to one of our main contributions: a polymorphic type system with qualified types
that range over Boolean algebras while supporting subqualification. This system overcomes the
limitations of Flix’s type and effect system and the limitations of restrictable variants.
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s,t u= Terms
| np integer values
x)p.t term abstraction = imple es
| Alx) b i S Simple Typ
| x term variable | T top type
s(t term application int integer type
| () pplicati | i integer typ
| A(X <: S)p.t type abstraction | -1 function type
<: p.t ualifier abstraction type variable
| A(Y<: Q) qualifier ab: i | X yp iabl
| s[S] type application | V(X <:8).T for-all type
s qualifier application <: Q). ualifier for-all type
| sgoy lifier applicati | V(Y<: Q).T  qualifier for-all typ
| upqual Q s qualifier upcast
| z.assert Qs quali'ﬁ.er assertion T.U e Qualified Types
| ifosthent;elset, conditional | (0}s qualified type
f = Environment P,Q,R := Qualifiers
empty
| I, x:T term binding | & base-elemenFs
| I X<S type binding | Y qualifier variables
| 1", Y<:Q qualifier binding | QAR|QVR  meetsand joins
’ | ~Q negation
) n= Values
| np C n= Concrete Qualifiers
| Alx)p.t | b base elements
| A(X <: S)p.t
| A(Y<:Q)pt

Fig. 1. The syntax of System F<.g, as an extension of System F<.q [25]. Changes are highlighted.

3 Calculus

In this section, we first introduce System F«.g, a typed polymorphic calculus with support for
Boolean algebra-based type qualifiers building on the work of Foster et al. [15] and Lee et al. [25].
System F<.p serves as a base calculus for providing support for Boolean algebra-based type qualifiers
to downstream applications, such as effect exclusion or restrictable variants. System F<.g supports
the natural subtyping that arises from type qualifiers [15] as well as the expressiveness of Boolean
formulas. We show that System F..p satisfies standard soundness properties. We then demonstrate
how System F«.5 can be used in practice by applying it to model effect exclusion with subeffecting
in a polymorphic effect calculus System F«.ge.

3.1 Qualified Types with Boolean Algebras
Now, we proceed by presenting System F<.g and showing that standard safety properties hold.

Syntax. The syntax of System F«.p is shown in Figure 1. The syntax follows from that of System
F<.q in Lee et al. [25], augmenting System F<. with support for type qualifiers via constructs for
annotating qualifiers on values. In addition, to give meaningful runtime semantics, we include (as
in Foster et al. [15] and Lee et al. [25]) support for checking and asserting qualifiers (via assert and
upqual). Our major change in System F<.g from System F<.q is to draw our base set of qualifiers
from a base Boolean algebra B, equipped with distinguished values T and L, operations meet (1),
join (U), negation (), and with ordering C. In addition, we reflect these operations in the syntax of
qualifiers with A, Vv, and ~, respectively.
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Evaluation for System F. and

(A(x)p.t)(v) —> t[x+— 0] (BETA-V)
(A(X<:S)p.t)[S'] — t[X > 5] (BETA-T)
s — t
(A(Y<: Q)p.t){Q'} — t[Y > Q'] (BETA-Q) —————  (CONTEXT)
E[s] — E[¢]
v tagged with P eval(P) € eval(Q) (UPQUAL) E == Evaluation Context
upqual Q v — v retagged with Q |1
with P L) L0) | E(t) | o(E)
v tagged wit eva C eva
g8 D sssr) | EISI| E{Q)
assertQou — v | upqual P E
| assertPE
ifo0thenselset — s (IF-TRUE) | ifeEthenselset
v#0
(IF-FALSE)
ifeothenselset — ¢
eval(P) = Partial Qualifier Evaluation

| C = C

|PAR => eval(P)neval(R)
|PVR => eval(P)Ueval(R)
|[~P => =eval(P)

Fig. 2. Reduction rules for System F<.g, as an extension of System F<.q [25]. Changes are highlighted.

Values and Qualifiers. Now, with our syntax presented, we discuss how we extend values with
support for qualifiers. Following Foster et al. [15, Section 2.2] and Lee et al. [25], we tag each
value with a qualifier expression P denoting the qualifier that the value should be typed at, and
we support asserting and upcasting qualifier tags. For example, the value A(x : Int)+.x represents
the integer identity function qualified at T. For brevity, we say “v tagged with P” to mean that the
runtime tag attached to v is P; here, A(x : Int)r.x is tagged with T.

Semantics. The evaluation rules of System F«.g in Figure 2 remain largely unchanged from System
F<.q and System F«., except that qualifier evaluation is extended to account for negation. Evaluation
converts syntactic algebra operations into the actual underlying algebra operations. Note that while
eval is partial and is only defined in terms of concrete qualifier expressions without variables, it
will only be used on concrete qualifier expressions during reduction.

Subqualification. System F<.g extends System F<.q’s subqualification rules to account for distribu-
tivity via (sQ-p1sT) and negation via (SQ-NEG-INTRO) and (SQ-NEG-ELIM), shown in Figure 3. These
additional rules extend the free lattice axioms of System F«.q to the rules necessary to capture
the structure of a free Boolean algebra. It is straightforward to show, by induction, that these
rules define a Boolean algebra (modulo bounds on free variables), and to show that the resulting
Boolean algebra embeds in any other (modulo bounds on free variables). Note that transitivity is
now an explicit rule in System F«.g, as the new Boolean algebra rules do not easily admit integrated
transitivity. Also note that only one-sided distributivity is required; the other distributivity rule
can be proven from the one given (as we do in our mechanization).
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Subqualification for System F«.g

O well formed in T’

SQ-TOP
r+Qo<:T ( )

QO well formed in T

SQ-BOT
T'rl1<:0 ( )

'rQ<: Ry
THO<:R VR,
I'rQ<: Ry
THO<:Ri VR,

(SQ-JOIN-INTRO-1)

(SQ-JOIN-INTRO-2)

'Ry <: Q THFRy<: Q

SQ-JOIN-ELIM
THFR VR <: Q (s )

FTFPA(QOVR)<: (PAQ)V (PAR) (sQ-DIST)
TFT<: OV (~0Q) (SQ-NEG-INTRO)
TFOA(~Q)<: L (SQ-NEG-ELIM)

TrQ<:1 F'rl=evalQ’ FT'rQ'<:R
IT'FO<:R

(SQ-EVAL-INTRO)

318:9

THRi<:Q
TFRIAR;<: Q
THFRy<: Q
TFRIAR;<: Q

(SQ-MEET-ELIM-1)

(SQ-MEET-ELIM-2)

T'FO<: R F'rQO<: Ry
TFO<:RI ARy

(SQ-MEET-INTRO)

Y<:Qerl
e — (sQ-vAR)

T'rY<:Q
re|Q0<:Q (SQ-REFL)

'rP<:Q 'rQ<:R

(SQ-TRANS)

'rP<:R

bl,bz €B bl C bg

(sQ-LIFT)

Trbi<:by

re|Q<:Q Trl=evalQ’ FrI<:R

IT'rQO<:R
(SQ-EVAL-ELIM)

Fig. 3. Subqualification rules of System F<.g, as an extension of System F<.q [25]. Changes are highlighted.

Typing for System F<.g

EE— (INT)
T'+np:{P}Int
x:TeTl
P— (VAR)
Trx:T
Lx:T1rt: T
(aBs)
TrA(x)pt:{P}Th > T,
ILX<:Svt:T
(T-ABS)
TFAX<:S)p.t:{P}V(X<:5).T
ILY<:Qrt:T
(Q-ABs)

TrA(Y<: Q)p.t:{P}Y(Y<: Q).T

T'rt:{Q}S FrrQ<:P
I'+assertPt:{Q}S

(TYP-ASSERT)

Trt:{Q}Th>»T, Trs:T

Tri(s): T (arr)
Tret:{Q} V(X<:8).T r+s'<:S
(T-APP)
THE[S']:T[X > 5]
Tret:{R}V(Y<:Q).T TreQ'<:Q
(Q-arp)
FrefQ'}:T[Y - Q']
T'ts:Th T'+Ti<: T
(suB)

Trs: T

Tre:{Q}S rrQ<:P

TYP-UPQUAL
I'+upqualPt:{P}S ( )

T'ts:{P}Int Trt:T Tru:T

I'+if@sthentelseu:T
(TYP-IFTHENELSE)

Fig. 4. Typing rules for System F<.g (and of System F<.q).
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Subtyping for System F..p F'rS$<:SandT+T1<: T
re|S<: 71 (suB-ToOP)
T'tT<:Th T+ Ty
Xel (SUB-ARROW)
_ (SUB-REFL-SVAR) T+ »T:<:T, > Ty
e X<: X
T'rS,<: 85 LX<:S+T<:T,
X<:85 €T F+5:1<:S; (5UB-sVAR) VX< ST VX< SO (SUB-ALL)
- + <: I <: <: .
Tr X< S, ( 1.1 ( 2).Th
T+ <: I,Y<: FT<: T
F'FO1<: Q2 FES1<: S Qe <: O Q+h 2 (SUB-QALL)
(SUB-QTYPE) TFY(Y<: Q)T <: V(Y <: Q)T

Tr{Q1} S1<: {Q2} Sz
Fig. 5. Subtyping rules of System F<.g (and of System F<.q).

Subtyping and Typing. Finally, System F<.g inherits all of System F<.q’s subtyping and typing
rules; all of its changes are in the structure and semantics of its type qualifiers, not in the structure
of its types or terms. For completeness, we reproduce these rules in Figures 4 and 5.

3.2 Metatheory

System F<.p satisfies the standard progress and preservation theorems.
THEOREM 3.1 (PRESERVATION). Suppose' +s:T,ands —> t. ThenT +t: T as well.
THEOREM 3.2 (PROGRESS). Suppose @ + s : T. Then either s is a value, ors — t for some term t.

While System F<.g does not place any interpretation on qualifiers outside of upqual and assert,
such a system can already be useful. For one, the static type of a value will always be greater than
the tag annotated on it, and that correspondence is preserved through reduction. This property can
be used to enforce safety constraints, as Foster et al. [15] and Lee et al. [25] note.

3.3 Applying System F<.g
We can use System F«.g as a framework for type systems with qualifiers that are Boolean algebras.
To instantiate the framework, follow the four steps:

(1) Select an algebra: Choose the base Boolean algebra B that qualifiers will be drawn from.
For a simple nullability system, B can simply be the two element Boolean algebra {T, L},
where T means nullable and L means not-null.

(2) Define value qualifiers: Determine how values will be qualified by the typing rules. For
example, in a nullability system, null will be qualified with T while references that are not
null will be qualified with L.

(3) Define qualifier elimination: Determine how to type elimination forms (e.g function
application or other expressions which consume values) with qualifiers. For example, in a
nullability system, the typing rule for dereference would require that the qualifier of that
reference is L.

(4) Define operational semantics (Optional): Augment the operational semantics to store
and check qualifiers in order to catch undesirable operations at runtime. For example, in a
nullability system, dereferencing a reference qualified with T would get stuck. Now if one
can prove that progress and preservation — soundness — hold for the resulting system, then
this guarantees that operations that are not allowed by the qualifiers will not be performed.
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Here, for example, one can show that nullable references will never be dereferenced. Since
these checks only stop programs from evaluating, qualifiers and checks can be erased safely.

3.4 Application: Polymorphic Effect Exclusion

With our base rules defined in System F<.g, we now show how they can be remixed as a design
pattern to support applications such as effect exclusion. We thus apply it to model an effect safety
system with support for effect exclusion, using it as a basis of an effect calculus System F«.ge. System
F<.ge itself is based on an earlier calculus System F<.qc by Lee et al. [25] for a simpler function
coloring system, but we extend it on top of System F«. to support effect exclusion.

Using System F<.g as a design recipe for System F<.ge. We illustrate how System F<.g can be used
as a design recipe for building System F«.ge.

(1) Select an algebra: For System F«.gg, we select the base Boolean algebra B to be the subset
algebra of effects. For example, if we have the I0 and Block effects, then the subset algebra
consists of {}, {I0}, {Block}, and {I0, Block}.

(2) Define value qualifiers: In System F«.gg, effectful values — term and type abstractions — are
qualified with the set of effects they are allowed to perform. For example, a term abstraction
that uses a primitive I0 effect, like printing to the screen, will be qualified with {I0}. To model
performing primitive effects in a calculus, we introduce a do b expression, which performs the
effect labelled by b. The expression do b simply returns a value immediately after checking
that the effect b is allowed by the current evaluation context; in a real implementation, an
effectful operation would also be performed.

(3) Define qualifier elimination: Elimination forms, like term or type application, will ensure
that the qualifier of the function being applied is included in the set of qualifiers (effects)
allowed by the enclosing context.

(4) Define operational semantics (Optional): We equip System F«.ge with operational seman-
tics that ensure that effects can only be performed in contexts where they are allowed. This
is shown in Section 3.4.

Syntax. Figure 6 presents the additional syntax of System F<.ge with support for performing
effectful operations and excluding effects from terms. Qualifier annotations, as noted above, are
reused on abstraction terms to denote the set of possible effects an abstraction may perform.

Evaluation. To model effect safety, Figure 7 describes the operational semantics of System F«.gg
using Felleisen and Friedman [14] -style CK semantics, extended with special barrier frames installed
on the stack denoting the effect of the function that was called, and fences excluding effects from
evaluation contexts. When a function is called, we place a barrier with the evaluated effect set of
the function itself; so a term like

(LappA(x) .x =x) —> (l,barrier L : k)
placing a barrier marking a function allowing
only the L effect above it in the continuation stack.

Barriers are used to ensure that applied functions are compatible with the rest of a stack. For
example, the following term places incompatible barriers on the stack.
((A(x)7.t) v,barrier LY — (A(x)r.t,argo : barrier 1)
—>  (v,app A(x)7.t = barrier L)
—  gets stuck.

To exclude effects, fence b frames are used to mark the extent of an evaluation context where
the effects labelled by b cannot be performed. Placing a barrier frame barrier b on top of a fence d
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fe e Terms f == Evaluation Frames

as before, except: barrier C barrier

|
| without C¢t  exclusion fence | fenceC fence
| do b effectful operation | argt argument
K u= Evaluation Context | appo appllcathn .
| targT type application
| [].. | garg Q qualifier application
I fax | ifest if

Fig. 6. The syntax of System F<.gg, based off of System F<.qc [25]. Non-standard context frames highlighted.

Evaluation for System F..g¢ ‘ (s,x) — (t,x")

(s(t),k) —> (s,argt k) (CONG-APP)

C C C;j for all barrier C; frames on k evalP=C
CnC; E L forall fence C; frames on k

(v,argt = k) —> (t,appo :: k) (CONG-ARG)

(s[S],k) — (s,targ$ : k) (CONG-TAPP) (v,app A(x)p.t = k) —> (t[x > v],barrierC : k)
(REDUCE-APP)
(s{O}.x) — (s,qargQ :: k) (CONG-QAPP)
Q Q C C C;j for all barrier C; frames on k evalP=C

(v,barrier C :: k) — (v, k) (BREAK-BARRIER) Cn¢; C Lforall fence C; frames on

(A(X <: S)p.t,targS’ = k) —> (¢t[X > S’],barrierC = k)

(v,fenceC :: k) —> (ov,k) (JUMP-FENCE) (REDUCE-TAPP)
(without C t,k) —— (t,fenceC : k) C C C; for all barrier C; frames on k evalP=C
(REDUCE-FENCE) CnC; C L forall fence C; frames on k

(A(Y<: Q)p.t,qarg Q' = k) — (t[Y — Q’],barrierC = k)

(ifosthent;elsety, k) —> (s,ifQ# £ = k) (REDUCE-QAPP)

(CONG-IF)
b C C; for all barrier C; frames on k

(0,if0s ¢ :: 1) — (s, k) (REDUCE-IFTRUE) b C; C L forall fence C; frames on k

(REDUCE-DO)
v#0 (dob,x) — (1,x)
REDUCE-IFFALSE)

(v,if0st k) —> (t,rc)(

Fig. 7. Operational Semantics (CK-style) for System F<.ge (based off of System F<.qc [25])

frame fails unless b C —d. Finally, effects can only be performed by do b if b is compatible —
contained within — all barrier frames on the stack and disjoint from all fence frames on the stack.

Typing. To guarantee soundness, Figure 8 endows the typing rules of System F..ge with modified
rules for keeping track of the effect that context abstractions need. We extend the typing rules with
an effect context R to keep track of the effects a function is allowed to perform. This effect context
R is simply a qualifier expression, and is introduced by the rules for typing abstractions by lifting
the qualifier tagged on those abstractions — see rules (A-ABs), (A-T-ABS), and (A-Q-ABS).

To ensure effect safety, both the elimination forms for abstraction application and effect applica-
tion check the effect context to ensure that the effects of the operation or function invocation are
compatible with the effects allowed by the current context.

Context and Configuration Typing. Progress and preservation theorems are traditionally stated in
terms of the behaviour of a single step reduction relation on terms.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLAZ2, Article 318. Publication date: October 2025.



Qualified Types with Boolean Algebras 318:13

Typing for System F<.ge T'|R Fs:T
x:TeTl A
TIRrx:T (A-vAR) T'|R+t:{R}YTy,»T, T |R I-S:Tl(A_APP)

T|R +t(s): T
ILx:Ty |P vt:T,

(A-ABS) ,
TIlL FA(X)p.t: {P}TL > T, 'R rt:{R}V(X<:S).T TrS' <:S
| TR +t[S']:T[X = §']
I'X<:S|P +t:T .
(A-T-ABS) (A-T-APP)
T | L FAX<: S)p.t:{P}V(X<:S).T
TR +t:{{R}V(Y<:0)T TrO'<0
ILY<:Q|P r¢:T T [R rt{Q'}:T[Y = Q]
(A-Q-ABS) -O-
T |L FA(Y<: Q)p.t:{P}V(Y<:Q).T (A-Q-are)
I'|b rdob:{L}int A-
TrR<: ~b T|Rrs:T ! ob:{L}in (A-po)
(A-WITHOUT)
I' | R rwithoutbs: T I'NRts: Ty T+ <: Ty
(A-suB)
I‘lRI—S:Tz
I'|R +s:{P}int
T'|Rvt,:T T|R+vt:T TIRrs:T ”R<¢Q(A_SUB_EFF)
(A-1F) [|QFs:T

I'|R +ifesthent;elsety: T

Fig. 8. Typing rules for System F<.gg based on System F<.qc [25]. Changes from System F<.p are highlighted.

METATHEOREM 1 (PROGRESS). If@ F e : U, then either e is a value or there exists a term t such that
s — .

METATHEOREM 2 (PRESERVATION). IfE+e:U ande — t,thenE+t:U.

Our operational semantics for System F<.ge are based on the CK machine [14], which operates
on an explicit machine configuration consisting of a term s in redex position and an evaluation
context x around s. In this setting, our original program s can be recovered by filling in the hole in
k with s. So we need to define what it means to give a type to k[s].

This we do in two parts. First, we define a context typing relation E | R + k : T ~» U that
describes how a context x expects a type T and produces a type U. Second, we define a machine
typing relation E | R + (s,x) : U, which defines how a particular machine configuration (s, k)
should produce U when evaluated, and which captures the intuitive! notion that x[s] should type
to U. Here, k should type to T ~» U and s should type to T. These rules are defined in Figure 9.

Metatheory. With all this, we can state and prove progress and preservation for System F«.g.

THEOREM 3.3 (PROGRESS OF SYSTEM F<.gg). Suppose (s, k) is a well-typed (in an empty environment)
machine configuration: namely, @ | R + (s, k) : U. Then eithers is a value and k the empty continuation,
or there is a machine state (t,x’) that it steps to.

THEOREM 3.4 (PRESERVATION OF SYSTEM Fc.gg). Suppose (s, k) is a well-typed machine configura-
tion, namely: E | R + (s,x) : U. If it steps to another configuration (t,k’), then E | R+ (t,x’) : U as
well.

This can be formalized by defining the appropriate notion of plugging a term into a context. For an example, see the proof
artifact of [9].
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Configuration Typing for System F<.g¢ ‘E |RFk:T~>U ‘and‘E |RF (s,x):U ‘

_ (CTX-EMPTY) E|Rrk:T[X—T/]~U ErT/<: T
E|RFH[]:T~T (CTX-TABS)
E|RF (targT] =x) : {R} V(X <: T1). o ~» U

ElRI—KITz’V)U E|Rl—el:Tl

EIR (arger i 0) - (R} Tl_)TZMU(CTX-ABS) E|Rrk:TL[XH—> Q' ]~»U ErQ'<:Q (cTx-0ABS)
E|RF (gargQ’ = k) : {R} V(X <: Q). T, ~»U

E|R+k:T,~»U E|Rru:{R}T1 - T,

E|R+x:T~U
EIRF (appozx): Ty~ U | (cTX-WITHOUT)
(CTX-APP) E I (R A —|b) + (fenceb i Kf) :T~U

E|Rrx:T~U evalR = b, by C by E|Rprk:T~U ErRi<:R;

E | b+ (barrierb; zx): T~ U E|Ri+k:T~U
(CTX-BARRIER)

(CTX-SUBEFF)

E|R+rx:T~U E|Rve:T E|Rrey:T

EIRrk:BoU  EFT<iTy o com) E| R+ (ifeeje, k) : (P} int~ U
E|Rvrk:Ty ~»U (cTx-1F)

E|R+rk:T~»U E|Rvrs:T
E|R+(s,k):U

(CFG-TYPED)
Fig. 9. Context and Configuration Typing for System F<.gE.

Note that progress and preservation guarantee meaningful safety properties about System F«.ge;
effectful operations can only be invoked in contexts where they are allowed.

Mechanization. The proofs of the standard soundness theorems of our calculi System F«.g and
System F<.ge have been fully mechanized in Rocq, with inspiration drawn from the mechanization
of System F«.q and its derived calculi by Lee et al. [25] and from the mechanization of System F«.
by Aydemir et al. [1].

With System F<.g and System F<.ge constructed, we show how System F<.ge can be applied in
practice by using it to add subeffecting to Flix’s effect system.

4 The Flix Type and Effect System

Flix is a functional, imperative, and logic programming language with algebraic data types, extensi-
ble records, higher-order functions, parametric polymorphism, type classes with higher-kinded
types, first-class Datalog constraints, and a polymorphic type and effect system [33, 35] with
support for effect handlers, associated effects [29], and polymorphic effect exclusion [30]. The Flix
compiler, including the standard library and tests, is approximately 270,000 lines of code. Flix comes
with a standard library that is subject to its type and effect system. The library is extensive, offering
more than 3,500 public functions and spanning more than 37,000 lines of code.

The Flix type and effect system lacks subeffecting; instead programmers have to manually
insert explicit effect upcasts. To overcome this issue, we add a limited form of subeffecting, dubbed
abstraction-site subeffecting, to the Ap  calculus from Lutze et al. [30]. We present a new calculus Apx
to formally describe abstraction-site subeffecting and show that it is an instance of the more general
language, System F.ge. We then implement abstraction-site subeffecting in the Flix compiler and
empirically evaluate its usefulness.

Abstraction-site Subeffecting. Contrary to System F«.gg, we allow the use of the subeffect rule
only in combination with the abstraction rule (F-aBs). This idea is known (e.g. by Talpin and
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s,Lbu Terms T 1) Types

| 0,1,2,... integer terms | T —> T, functiontype
| A(x).t term abstraction | int integer
| x term variable X type variable
| s(t) application P,O,R = Effects
| letx =sint let bind | 1 no effects
| defx=v0int definition | b base effects
| dob effect invocation | Y effect variables
| twithout b effect exclusion | ~Q effect negation
| if@sthentelseu  conditional | QAR effect meet

v e Values | QOVR effect join
| 0,1,2,... S u= Schemes
| Alx).t |  VXY.T  scheme

Fig. 10. Syntax rules for Ag.x taken from AC [30] with some mild changes to allow clearer comparison. Note
that though the top effect is not present in the syntax, it can be expressed with ~ L for example. The A¢
language requires a stricter syntax than shown here, application is v1(v2) for example. We permit expressions
everywhere, with their obvious desugaring left implicit.

Jouvelot [47]) but has, to our knowledge, not been given a name, so we will call it abstraction-site
subeffecting. Abstraction-site subeffecting is simple to understand, easy to implement, and has a
low performance impact, even with a generic Boolean unification algorithm. One might question
the expressiveness of this limited form of subeffecting, but as we show in Section 5, it is sufficiently
expressive to remove all effect casts in the Flix Standard Library.

An alternative to abstraction-site subeffecting would be to inline the subeffecting rule into all
typing rules. This would increase the number of variables by orders of magnitude, which then
exponentially impacts the performance of unification. This is one reason that abstraction-site
subeffecting is an attractive choice.

Flix, with abstraction-site subeffecting, is open source, ready for use, and freely available at

https://flix.dev/ and https://github.com/flix/flix

4.1 Formalization of Ap

We present the syntax and type system of Apy, which is based on System F«.ge and Lutze et al. [30].

Syntax. The syntax of Apx is shown in Figure 10. As subeffecting does not change the syntax of
the language, there are no syntax changes from A except for superficial ones.

Subeffecting and Typing. As discussed earlier, for practical reasons, we added subeffecting just at
abstraction sites. This is implemented by the changes in the (F-aBs) abstraction rule in Figure 11;
the effect of the body P can be smaller (subqualified) than the effect wanted on the abstraction Q.
As Apx has polymorphism but not bounded polymorphism, for brevity we omit the typing context
for subqualification (P <: Q) in the typing rules; all qualifier (and type) variables have T as their
upper bound. Other than that, the subeffecting rules for Ay are the same as the subeffecting rules
for System F<.g (and System F<.gg) from Figure 3.

As Apx does not have subtyping outside of abstraction-site subeffecting, it has a rule (F-£Q) to
handle equivalent but distinct types. This is done via Boolean equivalence (=g), which is structurally
defined on the syntax of types with the exception of the effect qualifiers. Effects are tested for
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i€{0,1,2...}

= (F-INT)
— _ = = — Fi:intiL
x:¥VXY.T'eT T=T[Xw—T][Y 0] beant
(F-VAR) o
Tra:TiLl Trs: T 5T QO Tre:Tii R
(F-app)
T,x:Ty+t: TP P<:Q IFrs(t): T, PV OVR
(F-aBS)
Qo g .
TFA(x).t:Th — T L Trdob: b (F-po)
Tro: T L Ix:Srt:T 1P Fre:Tip PAbEBJ'(F_WITHOUT)
S=VXY.T, I'rtwithoutdb:T 1P
...binding variables in T7, not free in T’
- (F-DEF) T'rt: TP P=g Q T,=3T,
I'tdefx=vint: T 1P (F-EQ)
Trt:T1Q
IT'ts: Ty 1P Ix:Thrt:121Q
(F-LET) Trs: int 1 P Trt:T1Q I'ru:TIR

I'tletx=sint: T, 1PVQ

T'rif@sthentelseu:Ti P VQVR
(F-1F)

Fig. 11. Typing rules for Ap.x based on A [30]. Changes are highlighted.

equality by a two-sided subeffecting check. Again, we omit the environment of subeffecting for
brevity as all effect variables have T as their upper bound.

4.2 Soundness of Ag i

To indicate that the type system of Ay« is sound, we now give a translation sketch from typings of
Arix to typings of System F<.gg, as illustrated in Section 4.2.1.

This translation is mostly straightforward, as Ay x’s type system can be viewed as the ML-style
polymorphic lambda calculus analogue of System F<.ge. One technical issue is that type variables
range over unqualified types in System F<.ge but over fully-qualified types in Ay x. However, as
type variables in A x cannot be further re-qualified, we can simply view a type variable as a pair of
a qualifier variable and unqualified type variable in System F«.gg, as discussed in Lee et al. [25].
This distinction is sometimes shown when grammatically important — for example splitting X into
respective type and qualified type part, X; and X - but it is otherwise left implicit.

The point of this translation is to show that Ay is merely a simple and local restriction of System
F<.se that maintains soundness. The upside is that this restricted system allows type inference.

4.2.1 Translation from A x to System F«.ge.
Typing rules from Ay x are shown on the left and the corresponding combined typing rules of
System F«.ge are shown on the right.
x:V(X<:T)(Y<: T)T €T

T=T[X—>T][Y - Q]

T L+x[Te]{Tq. Q) : T

Variables in Ay x may be mapped to a type scheme. If that is so, we translate that typing judgment
to an instantiated polymorphic function type in System F«.gg, taking care to split type variables in
Arix to a pair of unqualified type and qualifier variables in System F<.ge.

x:VXYT €T T=T'[X~T][Y+ Q]
T'rx:TiL
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Ix:Ti+t: TP P<:Q Lx:Ty |Prt:Tp T+HP<: Q
TrAG) LT ST T [LrA(x)pt:{Q}Ti - T

The abstraction typing rule in Ay lifts directly to a combination of the abstraction typing rule
in System F<.ge followed by a subsequent subsumption by (A-suB).
T'ro: T L Ix:S+t:T, 1P
S=VXY.T,
binding variables in Tj, not free in I’

I'tdefx=vint:T, 1P

[LX<:T,Y<:T|Llro:T
Ix:VXY<:T)T |P+t:D
T|Pr(A(x)pt)(AXtXqY <: T)1.0) : Ty

Definitions in Agx lift to effect-free curried polymorphic functions in System F«.ge (noting that o
being a value has no side effect when evaluated).
T|Prs:Th r,x:TllQl-tZTz
TrP<:PVQ TrQ<:PVvVQ
TIPVOF (A(x)o-t)(s): T
Let binders are converted into an effect-annotated application along with subeffecting.
[|Qrs:{P}Ty>T T|Rrt:T;

P . .
Frs:i 5100 Tre:TR T+P<:PVQVR TrQ<PVQVR
T'+R<:PVQVR

IF'|PVOVRFEs(E): T,

Term applications just lift directly from Ay to System Fe.ge via (A-suB-EFF) and (A-SUB).

T'kts: Ty P Ix:Th+t: 1210
I'tletx=sint: T 1PVQ

T+s(t): L PVQVR

Trdob:intib T|brdob:{L}int
Tret: TP PAb=p L F'|Pret:T I'tP<: ~b
T+ twithoutb: TP T'|Prwithoutbt: T

Effectful operations translate almost directly as well from Ay x to System F<.gg; note that in any
Boolean algebra, AE —-Bifand onlyif AMMBC L.

Tre:TiP [|Prt:Th
P=3Q Tisph TFP<:Q TrL<: Ty
Trt:T10 C|Qrt:T

Type and effect equality in Azx corresponds to a combination of (A-suB-EFF) and (A-SUB).

T|Pts:{Pany} int

Ths:intiP T|Qrt:T T|Rrty:T
Tret:T1Q T+tu:TIR T+P<:PVQVR T'+Q<:PVQVR
[rifosthentelseu:TIPVQVR I'FR<: PVOVR

T|PVQVRFifosthent;elsety: T

Conditionals in A x translate directly, except using (A-suB-ErF) to limit the effects.

4.3 Implementation of A

We have implemented abstraction-site subeffecting in the Flix compiler. Flix uses a constraint-based
type and effect inference algorithm with equality constraints. Supporting subeffect constraints
would require an intricate rewrite of the inference algorithm. Fortunately, and by design, we can
rewrite a subeffect constraint like P <: Q into an equality constraint P V Y = Q, where Y is a fresh
effect variable. We can apply this rewrite at every lambda abstraction, which allows us to support
abstraction-site subeffecting without extensive compiler modification.

Unfortunately, there is no free lunch. While adding an extra effect variable is simple, it could
affect the complexity of the Boolean unifiers we must compute. We study this in Section 5 and
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find that the performance impact is acceptable. A trivial and effective optimization we perform
is to omit subeffecting when a function is know to be pure. This is mostly relevant for top-level
functions since they are required to be annotated in Flix.

4.4 Type and Effect Inference

A major advantage of the Flix type and effect system is that, because the effect language forms a
Boolean algebra, we can support inference via Boolean unification [6, 30, 31]. In particular, Boolean
unification is unitary [8]. That is, given two Boolean formulas T; and T,, either there exists a
most-general unifier S such that S(T;) =g S(T3), or T; and T, cannot be unified. While there may
be many unifiers for Ty and T, there is always a most-general unifier. The existence of computable
most-general unifiers enables the implementation of unification-based type and effect inference.

We can compute Boolean unifiers using the Successive Variable Elimination (SVE) algorithm [6]
or Lowenheim’s method [31]. Boolean unification tends to produce exponentially large unifiers,
so special care is needed to ensure acceptable performance. In any case, the key takeaway is that,
for the Flix type and effect system in particular, and for any qualified system based on Boolean
algebras in general, Boolean unification enables inference. That is part of what makes a qualifier
system based on Boolean algebras attractive.

4.5 Abstraction-Site Subeffecting: Three Variants

The Agsx calculus supports subeffecting at every abstraction-site, i.e., at every lambda expression.
The real Flix language, however, has three different kinds of functions:

o (SE-DEF): Flix has module-level function definitions. For example, Option.map and List.flatMap
are module-level function definitions. These functions have mandatory type and effect
signatures. Applying subeffecting here means that the inferred effect of any function’s body
can be smaller than the declared effect of that function.

o (SE-INsT): Flix has type classes (called traits) and type class implementations (called in-
stances). A trait defines one or more function signatures, which must be specified by each
instance. For example, Flix has the Foldable trait, which specifies function signatures like
Foldable.foldLeft and Foldable.foldRight, and is implemented by data structures such as List[t]
and MutList[t, rl. Applying subeffecting here means that the effect of a function, in an in-
stance, can be smaller than the declared effect from the function signature in the trait.

o (SE-Lam): Flix has regular lambda expressions that occur inside functions, e.g., inside module-
level functions or inside trait instance function implementations. Applying subeffecting here
is like in the calculus.

We have implemented abstraction-site subeffecting for SE-DEF, SE-INs, and SE-LaMm, and we are
now ready to evaluate it.

5 Evaluation

We evaluate the usefulness of extending Flix with abstraction-site subeffecting. Specifically, we
consider the following four research questions:

e RQ1: How common are effect upcasts?

e RQ2: Which existing programming patterns can be improved by subeffecting?

¢ RQ3: How many effect upcasts can be elided with the abstraction-site subeffecting?

e RQ4: What is the performance impact of abstraction-site subeffecting on type inference?

We answer RQ3 and RQ4 for each variant of abstraction-site subeffecting: SE-DEF, SE-INs, and
SE-Lam. We will study these questions on a single large benchmark: The Flix Standard Library.
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5.1 The Benchmark: The Flix Standard Library

The Flix Standard Library? is the subject of the empirical evaluation. As Table 1 illustrates, it is one
of the largest real-world libraries subject to a type and effect system®:

Table 1. Languages with effect systems and their standard libraries. Adapted from Madsen et al. [37].

GitHub Lines of Code
Language Stars Contributors Library *.lang Repository
Eff [3] .8k 14 — 9k matijapretnar/eff
Frank [28] 3k 6 1k 5k frank-lang/frank
Effekt [9, 10] 3k 15 S5k 14 k effekt-lang/effekt
Links [21, 27] 3k 30 1.4k 31k links-lang/links
Koka [26, 52] 3.1k 30 17k 110 k koka-lang/koka
Flix [30, 35] 2.1k 68 39k 149k flix/flix

The Library column shows the number of lines of code in the library for that language®. The *.lang
column shows the total number of lines of code in that language within the same repository.

Library Overview. Table 2 shows an overview of the modules in the library of at least 125
lines. The Defs column shows the total number of functions in the module. This includes top-
level functions, public as well as private, but not lambda expressions. It also includes default trait
functions and functions in trait instances. The Pure, Effectful, and Poly columns show the number of
pure functions, functions with a concrete effect set, and effect polymorphic functions in the module,
respectively. If a function has an effect like ef + IO, then it is counted as effect polymorphic.

5.2 RQ1: How Common are Effect Upcasts?

Flix lacks subeffecting; hence today programmers must insert explicit effect upcasts to make their
programs pass the typechecker. Specifically, we identify two forms of upcasts:

First, there is direct subeffecting, where the programmer has a term t with effect P,i.e, T+t : TP,
but wants it typed as T + t : T 1 Q, where P <: Q. Such an effect upcast can be written as
checked_ecast(t), which instructs the compiler to add a free effect variable onto the actual effect
of t. A checked_ecast(t) is always sound.

Second, there is structural subeffecting, where the programmer has a term ¢ typed as:

P
I'+t:List[int — int] 1R

but wants it typed with Q instead of P, where P <: Q. In this case, subeffecting is required on the
function type inside the list. Here, the programmer has to write: unchecked_cast(t as ... ), where
the dots should be filled with the desired type. As the name suggests, the cast is not checked by the
compiler, and hence may be unsound. As is turns out, the Flix Standard Library does not have any
uses of structural subeffecting.

We count all uses of checked_ecast in the Flix Standard Library. Table 2 shows the results per
module. In total, we find 47 occurrences of checked_ecast, i.e., the library has 47 uses of subeffecting.
It is these explicit upcasts that we hope to get rid of with abstraction-site subeffecting.

Zhttps://api.flix.dev/ and https://github.com/flix/flix/tree/master/main/src/library

31f Java’s checked exceptions count as an effect system, then the Java Class Library is obviously the largest.

“The line count was measured with find -name ’*.ext’ |xargs cat|wc -1 in the root directory and then in the directory
which we identified as the standard library using the appropriate language extension.
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Table 2. The Flix Standard Library.

‘ Effect Classification ‘ Effect Variables

Module Lines | Defs Pure Effectful Poly | Upcasts | BASELINE SE-DEF SE-INs SE-Lam
Adaptor.flix 238 21 6 5 10 137 +15 +22
Applicative flix 185 14 8 6 42 +6 +20
Array.flix 1,689 138 5 133 1 1,702 +130 +3 +92
BigDecimal flix 213 22 22 49

BigInt.flix 393 37 37 117 +10
Chain flix 975 112 59 2 51 1 658 +36 +17 +54
Chalk.flix 560 55 55 295 +7
Charflix 243 31 31 38

CodePoint flix 306 33 33 72

Concurrent/... 727 31 3 28 151 +28 +6
DelayList.flix 1,346 110 55 1 54 3 943 +42 +13 +78
DelayMap.flix 889 81 37 1 43 588 +38 +6 +177
Environment.flix 137 16 16 31

Eq.flix 242 37 37 129

File.flix 452 37 1 29 7 113 +35 +1 +34
Files.flix 943 47 1 35 11 4 496 +46 +56
Fixpoint/... 3,243 152 123 29 2,401 +29 +225
Float32.flix 339 37 37 118

Float64.flix 373 39 39 117

Foldable flix 396 46 46 2 264 +46 +74
GetOpt.flix 421 26 24 2 188 +2 +19
Graph flix 558 29 5 24 261 +24 +13
Group.flix 165 29 29 74

Hash flix 171 23 23 112

Identity.flix 133 20 10 10 1 55 +10 +1
Int16.flix 446 54 54 172

Int32.flix 480 56 56 171 +1
Int64.flix 494 57 57 188 +1
Int8.flix 419 52 52 159

Iterator.flix 759 50 12 38 4 692 +38 +73
JoinLattice.flix 212 14 14 59

List.flix 1,433 155 89 2 64 6 995 +49 +17 +128
Map flix 984 121 50 2 69 655 +58 +13 +174
MeetLattice.flix 213 14 14 59

MultiMap.flix 568 71 31 1 39 412 +33 +7 +122
MutDeque.flix 446 41 5 36 557 +35 +1 +18
MutDisjointSets.flix 178 10 1 9 112 +9 +5
MutList.flix 936 82 1 81 1,068 +78 +3 +51
MutMap.flix 679 78 78 3 555 +75 +3 +22
MutQueue.flix 225 18 18 257 +17 +1 +8
MutSet.flix 436 50 50 1 362 +49 +1 +7
Nec.flix 1,034 129 63 2 64 8 919 +42 +24 +95
Nel flix 712 110 54 2 54 1 426 +32 +24 +25
Option.flix 585 78 33 45 2 242 +28 +17 +16
Order.flix 653 71 71 263

PartialOrder.flix 197 14 14 56

Prelude.flix 247 18 12 2 4 59 +6 +3
RedBlackTree.flix 1,003 80 41 39 3 722 +28 +11 +95
Reducible.flix 296 38 21 17 2 197 +17 +64
Regex flix 716 55 42 13 457 +13 +16
Result.flix 443 48 17 31 2 183 +28 +3 +16
SemiGroup.flix 169 25 25 68

Set.flix 642 83 43 1 39 465 +30 +10 +103
String.flix 1,377 121 100 21 783 +21 +53
StringBuilder.flix 147 17 17 101 +17 +6
Time/... 176 15 10 5 21 +5

ToString flix 186 27 27 129

Validation flix 294 32 14 18 140 +16 +2 +20
Vector.flix 1,523 158 87 3 68 3 1,162 +53 +18 +104
Totals 37,551 | 3,543 2,027 133 1,383 47 22,871 +1,311 +205 +2,142
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5.3 RQ2: Programming Patterns That Rely on Subeffecting

We now investigate the programming patterns that give rise to effect upcasts. The following
examples are presented without subeffecting.

Example I. We have already seen the effect upcast in List.foldRight in Section 2:

def foldRight(f: (a, b) -> b \ ef, s: b, 1: List[al): b \ ef =
def loop(ll, k) = match 11 {
case Nil => k(s)
case X :: xs => loop(xs, ks -> k(f(x, ks)))
3
loop(l, x -> checked_ecast(x))
The foldright function is effect polymorphic; its effect depends on the effect of its function ar-
gument f. Internally, the foldrRight function is implemented using a recursive function with an
accumulator, a typical pattern in functional programming to ensure that the stack does not over-
flow. The accumulator is a function that is built up and then called in the base case. Notably, the
accumulator function calls f, which means it has the effect ef. More precisely, the type of k is
b -> b \ ef. The computation starts by calling loop with the identity function. However, this does
not work because the identity function is pure, which is incompatible with the requirement that
the continuation must have the effect ef. An effect upcast (checked_ecast) casts the pure variable
expression x to have the effect ef. Unfortunately, if we forgot this effect upcast, the Flix compiler
would tell us:

>> Mismatched pure and effectful Functions.
4 | case x :: xs => loop(xs, ks -> k(f(x, ks)))

AAAAAAAAAAA

mismatched effects.

Notably, the error occurs at the “wrong” source location, i.e., at the call to the continuation, and not
where we have to insert the effect upcast! Anecdotally, programmers are very confused by such
errors, and often cannot progress without help.

Example II. We find another effect upcast in the Iterable instance for Array[a, rl:

instance Iterablel[Arrayla, r]]l {
type Elm = a // Associated type.
type Aef = r // Associated effect.
def iterator(rc: Region[r1l, a: Arrayla, rl):
Iterator[a, r + r1, r11 \ (r + ri1) =
checked_ecast (Array.iterator(rc, a))

}

Here, iterator returns a fresh iterator over the elements of the array. The effect upcast is required
because the declared signature of the iterator function in the Iterable trait must have effect r + r1.
That is, when we create an iterator, we expect a heap effect in the region of the iterator (r1) and a
heap effect in the region of the mutable memory (r). However, uniquely in the case of Array[a, rl,
creating the iterator does not need to touch region r. The reason is that to create the iterator, we
need the length of the array, but accessing the length of a mutable array is pure, because arrays
cannot change their length once created. Hence we must upcast the effect from r1to r + r1.

Example IIl. We find another effect upcast in the Foldable.foldLeftM function:

def foldLeftM(f: (b, a) -> m[b]l \ ef, s: b, t: tl[al):
m[b] \ (ef + Foldable.Aef[t]) with Monad[m] =
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let f1 = (x, acc) -> z -> Monad.flatMap(acc, f(z, x));
s |> Foldable.foldRight(f1, x1 -> checked_ecast(Applicative.point(x1)), t)

The foldLeftM function performs an effectful monadic fold over t, which is Foldable. The function
argument f has effect ef. Moreover, the data structure t has an associated effect Foldable.Aef[t]
(see [29]). The problem here is that the function f1 has effect ef, but the initial function passed to
foldRight, i.e., x1 -> Applicative.point(x1), is pure. Hence the need for the effect upcast.

This function serves to illustrate the richness and non-trivial complexity of the Flix type and effect
system and the Flix Standard Library. Specifically, foldLeftM uses all of the following programming
language features: (i) type classes, (ii) higher-kinded types, (iii) effect polymorphism, (iv) associated
effects, and now (v) abstraction-site subeffecting, which can be used to omit the effect upcast.

Two of these examples require effect upcasts because of a continuation-based programming
style. This programming pattern is pervasive and is the cause of the vast majority of effect upcasts
in the library.

5.4 RQ3: Effect Upcasts That Can Be Elided With Subeffecting

We now measure how many effect upcasts are removable by each variant of abstraction-site
subeffecting: SE-DEF, SE-INs, and SE-Lam. Table 3 shows the result.

Table 3. Breakdown of removable effect upcasts in the Flix Standard Library.

Removable Upcasts

Upcasts SE-DEr SE-INs SE-Lam

47 0 1 46

Table 3 shows that of the 47 upcasts, SE-DEF eliminates 0 casts, SE-INs eliminates 1 cast, and
SE-LaMm eliminates 46. Hence, together, SE-INs and SE-LaM eliminate all effect upcasts. All uses of
checked_ecast can be removed.

5.5 RQ4: Performance Impact of Subeffecting

Abstraction-site subeffecting is based on introducing new effect “slack” variables, which allow the
effect of a function to be widened. Recall that the three variants: SE-DEF, SE-INs, and SE-Lam differ
in where these variables are introduced. Unfortunately, introducing new effect variables is not free:
it increases the complexity of the unifiers computed by Boolean unification during type and effect
inference, and hence has an impact on performance.

We conduct a preliminary experiment to measure the cost of SE-DEF, SE-INs, and SE-LAaM.
We measure the increase in effect variables and the direct impact on compiler throughput. The
experiments use Flix version 0.52.0 extended with the three variants. Flix is run using Java 21.0.2 on
an Intel i5-13500 CPU with 64 GB of memory. We compute the throughput by running the compiler
on the Flix Standard Library and its unit tests and report the median of 250 runs.

Table 2 shows a detailed breakdown of the increase in effect variables per module and per variant.
For example, the row for the List module shows that without subeffecting, type and effect inference
introduces 995 effect variables. Adding subeffecting, in the form of SE-DEF, SE-INs, and SE-LaM,
introduces 49, 17, and 128 additional effect variables, respectively.

Table 4 shows a summary of the performance results. We see that each of SE-DEF, SE-INs, and
SE-LaM incurs a modest slowdown due to the increased complexity of Boolean unification. We
remark that these results are preliminary and that optimization possibilities are left on the table.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLAZ2, Article 318. Publication date: October 2025.



Qualified Types with Boolean Algebras 318:23

Table 4. Performance cost of abstraction-site subeffecting.

Effect Variables Performance
Variants | Variables Increase ‘ Throughput Slowdown
BASELINE 22,871 - | 101,473 lines/sec -
SE-DEF 24,182 +5.7% 96,796 lines/sec 1.05x
SE-INs 23,076 +0.9% 99,975 lines/sec 1.01x
SE-Lam 25,013 +9.4% 97,503 lines/sec 1.04x

The point of our experiment is to demonstrate that inference with abstraction-site subeffecting is
practical despite the increase in variables.

5.6 Lessons Learned
We conclude the evaluation with the following observations:

e RQ1: We find that — due to the lack of subeffecting in Flix — effect upcasts are common
throughout the Flix Standard Library.

e RQ2: We find that the programming patterns that rely on effect upcasts typically involve
recursive functions that build an explicit effectful continuation to avoid blowing the stack.

e RQ3: We count that, of the 47 effect upcasts, abstraction-site subeffecting eliminates 0
casts with SE-DEF, 1 cast with SE-INs, and 46 casts with SE-Lam. This strongly suggests
that subeffecting is important for lambda expressions, but less important for module-level
definitions and instance definitions. Moreover, the fact that SE-INs and SE-Lam eliminate all
effect upcasts suggests that general subeffecting is not needed since we would assume that
the standard library has more effect polymorphism than the average program.

e RQ4: Performance experiments suggest that SE-DEF, SE-INs, and SE-Lam incur slowdowns,
but that the performance of type and effect inference remains acceptable.

6 Related Work

Lattice-Based Type Qualifiers. Our work on System F..p is a natural extension of the free lattice
structure that Lee et al. [25] present in System F«.o. Boolean algebras are after all just lattices
equipped with negation and distributivity axioms. System F<.q in turn ties together common sub-
qualification structures seen in previous work, such as Boruch-Gruszecki et al. [7]’s capturing types
for Scala, Wei et al. [51]’s polymorphic reachability types, and Gariano et al. [17]’s polymorphic
effect system. While most previous work in this area falls neatly in the structure of a (free) lattice
first presented by Foster et al. [15], some does not. Notably, Wei et al. [51] introduce the notion of
freshness in their reachability calculus to separate freshly allocated values, which by definition
cannot be reachable by existing values in a program’s state. We think that their notion of freshness
can be modelled by negation in a Boolean algebra, and it would be interesting future work to model
reachability using these ideas. Other work on type qualifiers includes a long line of work on other
invariants such as immutability [22, 49, 53], and other invariants [12]. It would be interesting to
see how negation can be used to augment these qualifier systems. Similar work has also been done
recently to model general polymorphic effect systems using algebraic structures [19].

Boolean Algebras Without Subqualification. Dually to work on subtyping with type qualifiers,
Boolean algebras and formulas have also been used to enrich types to capture additional invariants
about a program. Unlike the work on type qualifiers, which has a long history, the work done on
Boolean algebras has been more recent. For example, only recently have Boolean algebras been
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used to model (non)-nullable references [36] and effects [35], in comparison to a long line of work
done on nullability in the context of type qualifiers. As Madsen and van de Pol note, part of the
limitations of their work is that subqualification on Boolean qualifiers was an open problem [36,
Conjecture 4.18]. We answer their conjecture affirmatively, and hope that our work makes Boolean
algebra based type qualifiers more accessible to other language designers going forward.

Boolean-Like Qualifier Systems. Outside of systems that use Boolean algebras, there are also
systems that have notions of exclusion in their type systems. For example, Qi and Myers [44]
propose a type and effect system for reasoning about when fields can be safely read in a mutable
object oriented language. They use a notion of exclusion to qualify object types with what fields
are available to be read, and an effect system on field writes to make fields accessible once written
to. It would be interesting work to replicate their initialization system using ideas from this paper,
restrictable variants and effect exclusion.

Boolean Unification Algorithms. Inference of Boolean effects requires Boolean unification algo-
rithms for solving the subqualification constraints that are generated as part of the type checking
process. Boolean formula unification algorithms date back as far as Boolean values themselves, as
seen in Boole’s [6] original work, and Léwenheim’s [31] turn of the century book. More modern
work includes that of Rudeanu [45] and Buttner and Simonis [11]. Boudet et al. [8] investigate
unification on general Boolean algebras and rings. Finally, of particular interest to implementers
will be Baader [2]’s study of the computational complexity of Boolean unification algorithms.

Algebraic Subtyping. Closely related to lattices and Boolean algebras is recent work on algebraic
subtyping, first by Dolan and Mycroft [13] and more recently by Parreaux [42] and Parreaux and
Chau [43]. In contrast to our approach, where we lightly augment the existing subtyping lattice
of System F.. with support for Boolean-algebra valued type qualifiers, the literature on algebraic
subtyping is focussed on integrating the algebraic theory of lattices into the subtyping structure
directly. While their approach is more expressive — for example, with records, they are able to
reason about intersections, unions, and negations of records — we only propose using qualifiers to
indicate which fields are present. Unions and intersections on types add expressiveness but also add
complexity. The changes needed to support a full Boolean algebra based subtyping lattice are more
heavyweight than what we propose here. Concretely, they have algebraic rules that go beyond
Boolean algebras, which require a custom solver.

Effect Systems and Type Qualifiers. Effect systems augment type systems to track the side effects
that a given computation can perform. They describe properties of computation, dually to how
type qualifiers describe properties of values. In the presence of functions as first-class values, this
distinction can be blurry; some effect systems can be implemented using type qualifiers as a building
block. This is what we did with System F<.ge, where we used annotated type qualifiers on function
types to describe the effects that a function can perform when called. However, while closely related
- type qualifiers can be used to implement some effect systems, and effects can be described by
lattices [46] — there are effect systems that use different implementation techniques. Some, like
Leijen [26], use row polymorphism [50] to handle effect polymorphism and limited subeffecting.
Others, as we describe below, use different algebraic structures to describe noncommutative effects.
Moreover, an effect system needs additional introduction and elimination forms to relate the
qualifiers on function types to the actual effects that are performed in the body of a function.

Ordered Effects. Effect systems can come with other algebraic structures as well. In many situa-
tions, one wants to keep track of the order in which effects happen to be performed, in addition
to which effects were performed. Examples of such tasks involve atomicity or synchronization,
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as locks can only be unlocked after being locked. For this task, Gordon [19] proposed a system
which used monoids or semigroups instead of the full commutative structure of a lattice or Boolean
algebra.

Abstraction-Site Subeffecting. Abstraction-site subeffecting has been used in practice by other
systems to handle type inference around sub-effecting, as we do in our contribution to Flix. Systems
which use abstraction-site subeffecting (even though they do not use the term abstraction-site
subeffecting) include Bierman and Parkinson [4], Bocchino et al. [5], Gordon [18], Greenhouse and
Boyland [20], Talpin and Jouvelot [47].

7 Conclusion

We have presented a calculus System F.g that extends System F<. with type qualifiers over Boolean
algebras and with support for qualifier polymorphism and subqualification. We have shown how
System F«.p can be used as a design recipe for a type and effect system, System F<.ge, with effect
polymorphism, subeffecting, and polymorphic effect exclusion. We have mechanized the calculi
in Rocq. Building on System F<.g, we have introduced A;x to establish formal foundations of the
Flix type and effect system. We have described abstraction-site subeffecting and discussed three
variants: SE-DEF, SE-INs, and SE-LaM, which differ in where subeffecting is applied. We have
implemented all three variants in the Flix compiler. Using SE-INs and SE-LAM, we are able to
eliminate all effect upcasts in the Flix Standard Library. The upshot is that Flix now has a type and
effect system, established on formal foundations, which supports effect polymorphism, subeffecting,
and polymorphic effect exclusion.
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