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Parametric polymorphism allows programmers to express algorithms independently of the types of values that
they operate on. The approach used to implement parametric polymorphism can have important performance
implications. One popular approach, erasure, uses a uniform representation for generic data, which entails
primitive boxing and other indirections that harm performance. Erasure destroys type information that could
be used by language implementations to optimize generic code.

We present TASTyTruffle, an implementation for a subset of the Scala programming language. Instead
of JVM bytecode, TASTyTruffle interprets Scala’s TASTy intermediate representation, a typed representa-
tion wherein generic types are not erased. TASTy’s precise type information empowers TASTyTruffle to
implement generic code more e�ectively. In particular, it allows TASTyTruffle to reify types as run-time
objects that can be passed around. Using rei�ed types, TASTyTruffle supports heterogeneous box-free
representations for generic values. TASTyTruffle also uses rei�ed types to specialize generic code, producing
monomorphic copies of generic code that can be easily and reliably optimized by its just-in-time (JIT) compiler.

Empirically, TASTyTruffle is competitive with standard JVM implementations on a small set of benchmark
programs; when generic code is used with multiple types, TASTyTruffle consistently outperforms the JVM.
The precise type information in TASTy enables TASTyTruffle to �nd additional optimization opportunities
that could not be uncovered with erased JVM bytecode.
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1 INTRODUCTION

Parametric polymorphism, commonly called generics, is a powerful abstraction technique for
expressing algorithms and data structures independently of the types of values they operate on.
Consider a swap function that replaces an array element with a new value and returns the old

value. Such a function can be generic over the element type, since the element type does not
a�ect the description of the algorithm. Below is a Scala implementation of such a swap method.
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def swap[T](arr: Array[T], i: Int, v: T): T = {

val result: T = arr(i)

arr(i) = v

result

}

Note the use of the type parameter T to
indicate the types of generic values.
Parametric polymorphism enables code

reuse and improves the maintainability of
software projects, but it poses a challenge

for the language implementation: how should generic values be represented at run time? Several
implementation approaches exist, each with inherent strengths and limitations, but most approaches
fall broadly into one of two categories.
The �rst approach, monomorphization (heterogeneous translation), uses a di�erent data repre-

sentation for each set of type arguments (an instantiation). For each instantiation, a specialized
copy of the code that operates on those representations is created. Below are some monomorphized
copies of the swap method.

def swap$int(arr: Array[Int], i: Int,

v: Int): Int = {

val result: Int = arr(i)

arr(i) = v

result

}

def swap$string(arr: Array[String], i: Int,

v: String): String = {

val result: String = arr(i)

arr(i) = v

result

}

Monomorphization is used in the implementations of C++ templates [Stroustrup 1999] and
Rust [Klabnik and Nichols 2023]. It creates arbitrarily many specializations of generic code, which
can increase the code size, but the resulting code has precise type information and representations
that can be e�ciently compiled.

The second approach, erasure (homogeneous translation), uses a single uniform data representa-
tion. This approach was pioneered by Java [Bracha et al. 1998]. In an erasure scheme, each generic
method is translated to a single method that treats generic data uniformly. The type of this uniform
representation is often some universal supertype; for Java, it is Object. The code below depicts a
typical erased representation for swap.

def swap(arr: Array[Object], i: Int,

v: Object): Object = {

val result: Object = arr(i)

arr(i) = v

result

}

The erased representation replaces T with the uni-
versal supertype Object. Erasure produces less code
than monomorphization, but forces generic data to
conform to a single representation. When a prim-
itive argument is passed for v, it must undergo an
expensive boxing operation in order to �t the uni-
form Object representation. Moreover, since arr is erased to Array[Object], an array of primitive
values can simply never be passed for arr. Erasure also loses the information that the method is
generic and the requirement that the array element type, the type of v, and the method return type
must be consistent — information that could be used by a just-in-time (JIT) compiler to produce
more e�cient code at run time.
Scala is a statically-typed programming language that takes its own erasure approach. No-

tably, and unlike Java, Scala allows arrays of primitives like Array[Int] to be used where a
generic array type Array[T] is expected. Thus, Scala’s generic array has a non-uniform rep-
resentation — it can be an array of reference types or an array of any of Scala’s eight prim-
itive types. In order to support this non-uniform representation, every generic array access
gets implicitly rewritten to use run-time accessor methods. The code below depicts the swap

method under Scala’s erasure scheme. Notice that array operations get rewritten to apply and
update calls. Also, since the common supertype for the di�erent representations of Array[T] is
Object, Scala’s erased representation loses the information that a generic array is an Array at all.
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def swap(arr: Object, i: Int,

v: Object): Object = {

val result: Object = apply(arr, i)

update(arr, i, v)

return result

}

These array accessor methods are expensive, re-
quiring a cascading series of type tests to iden-
tify the underlying type of a generic array. Con-
sider a snippet of the apply method below. Since
these methods use Object types in their signa-
tures, primitive values remain boxed when they

enter and leave the accessors. For example, since apply returns an Object, when
the underlying array is an Array[Int], the Int it returns is implicitly boxed up.

def apply(array: Object, i: Int): Object =

if (array.isInstanceOf[Array[Int]])

return array.asInstanceOf[Array[Int]](i)

else if (array.isInstanceOf[Array[Double]])

return array.asInstanceOf[Array[Double]](i)

else ...

Erasure imposes signi�cant perfor-
mance overheads at run time. Forcing
a uniform representation introduces ex-
pensive extra memory indirection, which
also inhibits classic compiler optimiza-
tions. Just-in-time (JIT) compilation can
mitigate some of the performance overhead, for instance, by eliding box-unbox sequences and
redundant type checks, but these transformations are driven by imperfect heuristics that can fail.
Dynamic type pro�ling can help recover the type information lost by erasure, but when type

pro�les are polymorphic (which is often the entire point of generics), they are less useful, especially
in recovering relationships between di�erent generic values. Consider the following Scala method
with two Array[T] parameters.

def copy[T](src: Array[T], dst: Array[T]): Unit = { /* copy src array into dst*/ }

The Scala source guarantees that both arrays have the same element type for any given invocation.
If the method is called separately with integer and double arrays, type pro�les will record that
it was called with arguments of types Array[Int] and Array[Double], but the correlation that
src is Array[Int] if and only if dst is Array[Int] is lost. Without such correlations, generating
e�cient code becomes much more di�cult.
Proposed solution. Instead of monomorphizing code at compile time, or erasing generic code to
a uniform representation, this paper investigates how generic type information can be retained
until execution and then exploited by a just-in-time compiler to generate e�cient code. Since
the input program is not monomorphized, this approach avoids the code bloat penalty associated
with monomorphization. Further, since precise type information is available at run time, the
implementation can use precise data representations that avoid the performance penalties associated
with erasure.

To validate our solution, we implemented TASTyTruffle, a new interpreter for a subset of Scala
that rei�es generic types and uses them to generate specialized generic code. Scala is typically
compiled to JVM bytecode, where generic type information is erased. Instead, TASTyTruffle
interprets TASTy, Scala 3’s compact binary representation of Scala programs. TASTy retains all of
the type information from the source program, including generic types, which makes it a valuable
alternative to JVM bytecode as an interpretation target.
This paper investigates the potential of the precise generic type information in TASTy for

generating e�cient code in a JIT compiler. We make the following contributions:

• A high-level description of TASTyTruffle, an interpreter for TASTy written using Truf-
�e [Würthinger et al. 2013, 2012] (Section 2). Tru�e is a framework built on top of the
Graal VM [Duboscq et al. 2013] that reduces the e�ort required to create high-performance
language implementations by partially evaluating an interpreter into a JIT compiler. Graal
is especially e�ective at performing speculative optimizations, which make it possible to
achieve good performance even with highly polymorphic code.
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• A strategy to reify generic types using TASTy and use those rei�ed types to implement generic
methods and classes (Section 3). TASTyTruffle passes rei�ed types into generic code, which
dynamically switches over the types to implement accesses to specialized data representations.
Having precise knowledge about the types used in a generic context allows TASTyTruffle
to avoid the indirection of boxing and gives the JIT compiler more opportunities to optimize
generic code.

• A technique to specialize generic code in TASTyTruffle to handle speci�c representations
(Section 4). In the rei�ed interpreter, generic code exhibits performance inconsistencies
on polymorphic workloads. TASTyTruffle creates specialized copies of generic code that
are monomorphic and more readily optimized by TASTyTruffle’s JIT compiler. Unlike
monomorphization, TASTyTruffle’s specialization is dynamic and performed on-demand.

• An empirical evaluation of TASTyTruffle on seven small benchmark programs (Section 5).
Compared to a standard HotSpot implementation, TASTyTruffle achieves higher average
throughput across all benchmarks (3.32× geometric mean). Compared to Graal, which uses
the same compiler (and is thus a more fair comparison), TASTyTruffle exhibits higher
throughput for polymorphic workloads (1.94× geometric mean) and performs comparably
on monomorphic workloads (1.09× geometric mean). We investigate the compiler IR for the
benchmarks and explore how rei�ed types in TASTyTruffle enable the compiler to more
e�ectively optimize the benchmarks. We also discuss the warm-up performance and memory
usage of our approach.

2 SYSTEM OVERVIEW

A challenge with implementing languages e�ciently is that they can be highly dynamic. An
interpreter may need to support a range of expensive operations, but if only some speci�c code
paths are taken during execution, it is more e�cient to only handle the cases observed. The Tru�e
framework [Würthinger et al. 2013] aims to make high-performance language implementations
possible with “modest e�ort”. The Tru�e ecosystem comprises several components, including (but
not limited to) a domain-speci�c language (DSL) for writing interpreters [Humer et al. 2014], a
set of general-purpose libraries, and a custom front-end to the Graal compiler, which plays an
important role in Tru�e’s performance.

2.1 The Tru�le Ecosystem

Tru�e interpreters take the form of abstract syntax trees (ASTs) written in Java. AST interpreters
are relatively intuitive to implement, but ASTs can be di�cult to optimize due to their indirection.
Tru�e compiles hot ASTs using Graal, using partial evaluation [Würthinger et al. 2017] to remove
these indirections (and perform other optimizations), which allows Graal to generate highly e�cient
code. Tru�e interpreters can change their behaviour depending on the run-time characteristics of
the interpreted program, for example, by rewriting an AST node based on speci�c types of inputs.

2.1.1 Partial Evaluation. Normally, AST interpreters are di�cult to compile, since they consist of
highly-polymorphic execute call sites. Tru�e uses partial evaluation (PE) to make AST interpreters
more amenable to compilation [Futamura 1999; Würthinger et al. 2017]. PE is a general technique
to specialize a program with respect to its statically determined inputs. For Tru�e, PE assumes a
particular AST is stable and devirtualizes as many calls (to execute and other methods) as it can.
It’s possible for such assumptions to be wrong, in which case any partially-evaluated code becomes
invalid. When control reaches an invalid code path, the code is deoptimized and resumes execution
in the Tru�e interpreter.
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2.1.2 Self-Optimizing ASTs. Tru�e nodes are self-optimizing [Würthinger et al. 2012]: a node can
have multiple specializations1, each de�ning di�erent semantics. By pro�ling the behaviour during
execution, nodes can automatically select which specialization should run. Self-optimization is
tedious to implement manually, so Tru�e provides a DSL to generate these nodes automatically.
Tru�e’s DSL processor generates these nodes during regular Java source compilation.

2.1.3 Tru�le’s Object Model. Interpreters often need to support object types (structures, class
instances, etc.). An object is logically a collection of named properties. Tru�e o�ers two object
models (or shapes): a dynamic model for objects whose properties (and their types) can change
during execution [Wöß et al. 2014], and a newer static model for objects with a �xed set of
properties [Ansaloni 2022]. The static object model is suitable for languages where objects have a
statically known set of properties, such as C, Java, or Scala. Static shapes can be built from a parent
shape. This is convenient for implementing inheritance — the resultant shape contains all of its
parent’s properties.

2.2 TASTyTruffle: A Tru�le Interpreter for Scala

TASTyTruffle is an interpreter built using the Tru�e framework [Würthinger et al. 2013]. The
primary goal of TASTyTruffle is to demonstrate how language implementations can bene�t from
generic type information. Thus, rather than implementing the entire Scala language, it implements
a core subset of it; namely, TASTyTruffle supports: primitives, classes with single inheritance,
and singleton objects; if-statements, while loops, and early returns; and both direct and indirect
method dispatch. More complicated features like pattern matching, multiple inheritance, and Java
interoperation are outside of the scope of the project.

Scala is traditionally compiled to Java Virtual Machine (JVM) bytecode and executed on a JVM.
TASTyTruffle instead interprets TASTy, a lossless representation of Scala code introduced in
Scala 3.2 Unlike JVM bytecode, wherein generic types from Scala source code are erased, TASTy
preserves all generic type information, which allows us to reify type information in the interpreter.

2.2.1 Data Representations. An important design consideration is how to represent program
data in TASTyTruffle. Scala’s type system is similar to Java’s, so we can represent many Scala
values in Tru�e with minimal friction. Primitive values (Int, Double, etc.) are represented by
their corresponding Java primitives. Representing primitives this way avoids the overhead of
boxing. Arrays of primitives (Array[Int], Array[Double], etc.) are also represented using their
corresponding Java arrays. Arrays of reference types are represented using Object[].

class Shape {

Map<Symbol, Field> fields;

Map<MethodSignature, Method> methods;

Map<MethodSignature, Symbol> vtable;

Symbol parent;

StaticShape staticShape;

}

Fig. 1. Data definition for Shape.

2.2.2 Shapes. What remains are class instances (i.e.,
objects) which contain �elds and can have methods
invoked on them. TASTyTruffle uses Tru�e’s static
object model to implement Scala objects. The parser
creates a static shape for each Scala class, mapping
each �eld to a property of the static shape. Tru�e uses
these �eld properties to synthesize a JVM class with
storage for each �eld. In the interpreter, each Scala
object is an instance of this synthetic class.

TASTyTruffle uses its own Shape abstraction to represent all of the information about a Scala
class (Figure 1). A Shape has tables for its declared �elds and methods, a virtual method table, a
symbolic reference to its parent and a static shape to create object instances.

1A Tru�e specialization is conceptually di�erent from a generic specialization.
2https://docs.scala-lang.org/scala3/guides/tasty-overview.html
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class ReadLocal extends Node {

@CompilationFinal Local local;

Object execute(VirtualFrame frame) {

return switch(local.getRepresentation()) {

case BOOL -> frame.getBoolean(local.getIndex());

case INT -> frame.getInt(local.getIndex());

case LONG -> frame.getLong(local.getIndex());

... // other primitives

default -> frame.getObject(local.getIndex());

}

}

}

Fig. 2. Source code for a ReadLocal node before partial evaluation.

Shape properties can be computed during parsing. The �elds and methods declared inside the
class are used to contruct the �eld and method tables. To construct the virtual method table, we use
Scala compiler APIs to determine a class’s declared and inherited methods. A symbolic reference
to the parent class can also be obtained from the AST. The interpreter uses an object’s shape
to execute type-speci�c operations, such as looking up �elds, performing method dispatch, and
checking the type of the object.

2.2.3 Data Representation and the AST. Since values in TASTyTruffle are represented in di�erent
ways, the AST must know a value’s representation in order to interpret it correctly. For example, to
read a local from the frame, TASTyTruffle needs to know whether the value is an int, a double,
an object, or something else. In such situations, we store the value’s representation on the node
itself, so it knows how to properly handle the value.

Locals. Local access nodes require both the frame index of a variable and its representation. For
example, the ReadLocal node (Figure 2) �rst switches over the local’s representation to determine
how to access it; then, once the representation is known, it reads the local using the appropriate
type and index.

class ReadLocal extends Node {

@CompilationFinal Local local;

Object execute(VirtualFrame frame) {

return frame.getInt(2);

}

}

Fig. 3. Source code for a ReadLocal node a�er partial

evaluation (when local has type INT and index 2).

This design interacts well with partial evalu-
ation. The partial evaluator treats �elds marked
@CompilationFinal as compilation constants,
so during compilation, the switch can be re-
placed with the branch to handle the appro-
priate representation. For example, suppose
ReadLocal is partially evaluated and its Local
has index 2 and type INT. The code after partial
evaluation is signi�cantly simpler (Figure 3).3

The branching and indirect calls are eliminated,
and what remains is a single frame read. When
Graal performs scalar replacement, whereby the frame object is elided and frame slots are replaced
with local variables, the frame read simpli�es to a regular local variable read.

3Partial evaluation happens during bytecode parsing, but we present source code for the sake of illustration.
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Fields. TASTyTruffle has �eld access nodes to implement direct �eld accesses.4 These nodes
work analogously to local accessors. Each node stores a �xed representation and points to a �xed
o�set in the receiver object, so each access compiles to a simple raw memory read/write. If Graal
performs scalar replacement on the receiver, �eld accesses also simplify to local variable accesses.

Arrays. TASTyTruffle has several kinds of array nodes that create and operate over arrays. The
array nodes need to support each array representation used in TASTyTruffle: namely, they should
work with each primitive array type (int[], boolean[], and so on) and Object[]. TASTyTruffle’s
array nodes store the array’s component type and switch over it to implement each operation;
when the nodes are compiled, partial evaluation replaces each switch with the branch that handles
the statically-known component type.

3 USING REIFIED TYPES IN TASTYTRUFFLE

Recall the swap method from Section 1. When compiled to JVM bytecode, the type parameter T
of swap is erased: both array and value are given type Object, and the bytecode operates on the
values in a uniform way. Forcing generic values into a uniform representation introduces boxing
overheads and impedes e�cient compilation.
Unlike JVM bytecode, TASTy has complete type information, which can be used to reify types.

By reifying types, we can pass type information into generic contexts at run time. Generic code
can use rei�ed types to dynamically support di�erent data representations for generic values. For
example, if swap takes a rei�ed type for T, when T is Int it can store value without boxing; it can
also determine that array is an Array[Int] and avoid expensive generic array type switches.

3.1 Reifying Types

To reify types in TASTyTruffle, we extend the AST with TypeNodes. TypeNodes model a subset
of Scala’s rich type system: class types (e.g., Foo) are modeled by NamedType; each primitive
type is modeled by a respective primitive TypeNode (e.g., IntType); type parameters are modeled
by MethodTypeParam and ClassTypeParam; and generic type applications (e.g., List[Int]) are
modeled with AppliedType. The AppliedType node represents a generic type applied to concrete
type arguments, which are themselves TypeNodes (i.e., TypeNodes can form trees).
A TypeNode is a Tru�e tree that can be executed to obtain a Shape (Section 2.2.2). For any

TASTyTruffle node that needs a TypeNode, we extract the type information from TASTy during
parsing and convert it to a TypeNode. At run time, a node can evaluate its TypeNode(s) to compute
rei�ed types. To evaluate primitive and class type nodes, we simply look up their Shapes by name
from a global table. Evaluating type parameters and type applications can depend on local context
(e.g., type arguments passed to a generic method); their implementations are discussed in the
subsequent sections.

3.2 Generic Methods

A generic method uses type parameters to model the types of its generic values. With rei�ed types,
a generic method can dynamically support heterogeneous representations for its generic values.
We extend the TASTyTruffle AST in a few ways to make this possible.

3.2.1 Invoking Generic Methods. In TASTyTruffle, type arguments are rei�ed and passed to
generic methods at each call site. When the parser encounters a generic call, it supplies the call
node with additional TypeNodes for its type arguments. These type arguments are evaluated and

4Non-private �eld accesses are indirect accesses proxied through accessor methods.
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@NodeChild("typeNode")

class GenericReadLocal extends Node {

final int index;

@Specialization

int readInt(VirtualFrame frame, IntShape shape) {

return frame.getIntStatic(index + INT.ordinal());

}

@Specialization

double readDouble(VirtualFrame frame, DoubleShape shape) {

return frame.getDoubleStatic(index + DOUBLE.ordinal());

}

... // other specializations

}

Fig. 4. Source code for a GenericReadLocal node.

passed during the call. The generic callee can read these type parameters using MethodTypeParam
nodes, which load type parameters directly from the frame (just like regular parameters).

3.2.2 Generic Locals. When a local variable is generic, the way to access it from the frame changes
dynamically. For example, if a local has type T, it may be accessed from a di�erent location depending
on the concrete value of T (e.g., in a primitive or object section).
TASTyTruffle has generic variants of its local accessors that use TypeNodes to dynamically

determine how a generic local should be accessed. For instance, the GenericReadLocal node
de�nes a di�erent specialization for each data representation in TASTyTruffle (Figure 4). It
evaluates its typeNode child to a Shape, which Tru�e uses to dispatch to the appropriate strategy.
For example, if the typeNode evaluates to a DoubleShape, the generic local has type double,

and Tru�e will invoke the readDouble specialization. This specialization reads the local from the
primitives section of the frame, where it is stored as a primitive double without boxing.

Dynamically changing the representation of locals has subtle consequences for JIT compilation.
If the same frame slot is used for every representation of a generic local, the compiler models the
local’s type with the common Object supertype. Even though the interpreter design ensures that
a single type is used consistently (e.g., a local is always int for a given invocation), the compiler
cannot easily infer this, which can introduce boxing and run-time type checks. TASTyTruffle
works around this problem by allocating a unique frame slot for each possible representation of a
local. For example, index n may be used for reference types, n+1 for ints, n+2 for doubles, and so
on. Observe how each representation’s ordinal (e.g., INT.ordinal()) is added to a base index to
obtain a unique index. Using multiple slots can sometime allocate unnecessary frame space, but
during compilation Graal can elide storage for representations that are not observed at run time.

3.2.3 Generic Arrays. Since TASTyTruffle supports multiple array representations, code that
operates on generic arrays must dynamically support di�erent representations. For example, to
read from a generic array, we must �rst know whether it is an int[], double[], or some other
array type. TASTyTruffle de�nes generic variants of its array accessors that model the array
component type with a TypeNode. These accessors evaluate the TypeNode to decide how to cast
and access the array.
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3.3 Generic Classes

Like generic methods, generic classes model generic values using type parameters. Generic classes
support generic locals and arrays using the same AST nodes as generic methods — however, now
the TypeNodes stored on those nodes may be ClassTypeParams.
A generic class can also de�ne generic �elds. Since �elds are stored in class instances, the

representation of a generic class instance itself depends on the values of its type parameters. For
example, if a generic class de�nes a �eld of generic type T, the representation of a class instance
— in particular, the �eld layout — is di�erent when T is Int or Long. The code that operates on
generic class instances needs to account for the heterogeneous ways they can be represented.

3.3.1 Modeling Applied Generic Classes. To support generic classes, the interpreter needs a run-
time representation for a generic class applied to concrete type arguments (an applied generic class).
Recall thatTASTyTruffle uses a Shape to represent non-generic classes. A Shape contains an object
layout and tables for its �elds and methods (Figure 1). To model a generic class, we simply extend
Shape with an additional �eld mapping each type parameter to a concrete type argument (Figure 5).

class GenericShape extends Shape {

Map<Symbol, Shape> typeArgMap;

}

Fig. 5. Data definition for GenericShape.

Each unique set of type arguments supplied to a generic
class corresponds to a unique GenericShapewith its own
object layout. How GenericShapes are actually created
will be discussed shortly.

Like with method type parameters, class type param-
eters can be directly referenced in method bodies. The
TASTyTruffle parser creates ClassTypeParams when

parsing TypeNodes. Whereas MethodTypeParams are stored in the frame, ClassTypeParams are
stored on the GenericShape of a generic class instance. To evaluate a ClassTypeParam, we evaluate
the receiver object, obtain its GenericShape, and look up the parameter from its typeArgMap. Since
the map lookup is expensive, and generic class methods will observe di�erent GenericShapes for
each instantiation of the class, ClassTypeParam uses a polymorphic inline cache indexed on the
receiver’s shape.

3.3.2 Instantiating a GenericShape. The interpreter needs a mechanism to actually apply a generic
class to concrete type arguments. Since di�erent type arguments impose di�erent object layouts,
and a class is not applied to concrete types until execution, TASTyTruffle must retain enough
metadata about a generic class to dynamically instantiate specialized object layouts.
We de�ne a GenericShapeTemplate for this purpose. When the parser encounters a generic

class, it creates a GenericShapeTemplate that stores essentially the same information as a Shape.
However, since each Field’s representation and o�set depends on the concrete type arguments,
GenericShapeTemplate also stores TypeNodes for each �eld. If the �eld is generic, its TypeNode
will contain ClassTypeParam(s).

SpecializingTypeNodes. An important part of the application process isTASTyTruffle’sTypeNode
specialization. TASTyTruffle de�nes a TypeNodeSpecializer visitor that can traverse an AST
and replace type parameters with a set of constant types; for example, a ClassTypeParam could
be replaced by IntType. The visitor transforms subtrees, so ClassTypeParams nested inside
AppliedTypes can also be replaced with constant types.

The application process. To apply a generic class to type arguments, we:

(1) First create a typeArgMap mapping each type parameter to its concrete type argument.
(2) Then, construct the Fields. For each �eld in the GenericShapeTemplate, transform its

TypeNode into a non-generic TypeNode using the TypeNodeSpecializer. The resultant
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class AppliedType extends TypeNode {

final Symbol templateSymbol;

@Children TypeNode[] typeArgs;

@ExplodeLoop

Object execute(VirtualFrame frame) {

Shape[] concreteArgs = new Shape[typeArgs.length];

for (int i = 0; i < typeArgs.length; i++) {

concreteArgs[i] = typeArgs[i].execute(frame);

}

return Globals.lookupTemplate(templateSymbol).apply(concreteArgs);

}

}

Fig. 6. Source code for an AppliedType node.

TypeNode evaluates to a �xed Shape; use these Shapes to create Fields with specialized
representations.

(3) Use the Fields to synthesize a Tru�e StaticShape.
(4) Create a new GenericShape with the computed Fields, StaticShape, and typeArgMap.

Reuse the methods and parent information stored on the GenericShapeTemplate.

The resulting GenericShape, like any other Shape, can be used to instantiate instances of the
generic class. Any generic �elds on the class use a precise (specialized) representation.

3.3.3 Modeling Generic Classes in the AST. The interpreter models generic applications (such as
Map[Int, Double]) in the AST using the aforementioned AppliedType. AppliedType is a node
in the TypeNode hierarchy that computes a GenericShape (Figure 6).
An AppliedType contains child TypeNodes for each of its type arguments. To evaluate an

AppliedType, we evaluate all of the type arguments, look up the GenericShapeTemplate from a
global table, and then invoke apply on it with the type arguments. The resultant GenericShape
can be used to create new generic class instances.

If two AppliedType nodes apply the same GenericShapeTemplate to the same type arguments,
they should produce the same GenericShape. Idempotence is important not only for correctness —
two Map[Int, Double] instances should have the same Shape for type comparisons — but also
for performance, since TASTyTruffle’s inline caches are keyed on the receiver’s Shape. On each
GenericShapeTemplate, we store a cache that maps a list of Shapes (the concrete type arguments)
to computed GenericShapes. When apply encounters new type arguments, it instantiates a new
GenericShape and caches it; on subsequent invocations, it returns the cached GenericShape.

3.3.4 Generic Fields. For a given generic class, each instantiated GenericShape can have a di�erent
�eld layout. These �elds may themselves have di�erent representations. When a class is generic,
the TASTyTruffle parser generates GenericFieldRead and GenericFieldWrite nodes for its
direct �eld accesses.5 Even though a generic class’s non-generic �elds have a �xed representation,
they must also use generic accessor nodes, because their position in the object layout can change.

A generic �eld accessor node is evaluated in much the same way as a non-generic �eld accessor
node. For example, to evaluate a generic �eld read, we compute the receiver, look up the Field
from the receiver’s Shape, and then switch over the �eld’s representation to decide how to read
the �eld.

5In Scala, indirect �eld accesses are proxied through accessor methods, which use these nodes in their implementations.
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However, non-generic �eld accessors only ever observe a single Field, so they can compute it
once and reuse it for every access. In contrast, a generic �eld accessor may need to use a di�erent
Field depending on the receiver’s Shape. Performing a �eld lookup on every execution would be
expensive and inhibit optimization, so generic �eld accessors use a polymorphic cache indexed on
the receiver’s Shape to remember previous computations.

3.3.5 Method Dispatch. Generic classes a�ect the method dispatch algorithm. Each Shape has a
vtable mapping each method signature to the name of the Shape that implements it. Normally,
calls look up the implementing Shape from a global Shape table, but a generic class does not have a
Shape.6 Instead, we modify the algorithm to search the receiver’s Shape hierarchy for a Shape with
the expected name. For example, if the vtable indicates that the generic class Foo[T] implements
a method, we search the receiver’s Shape hierarchy for a Shape named Foo, such as Foo[Int], that
will contain the method implementation.

3.3.6 Generic Parent Classes. To support generic parent classes in TASTyTruffle, the implemen-
tation is modi�ed in a couple of ways:

• The existing Shape uses a symbolic name to refer to its parent Shape, but if the parent is
generic, a symbolic name is not enough to determine the Shape — the type arguments matter.
We change the parent �eld to be a TypeNode so that a precise parent Shape can be computed.
It is possible for the parent TypeNode to reference type arguments from the child; for example,
Foo[T] extends Bar[T]. When instantiating Foowith concrete types, we execute the parent
TypeNode to get the parent Shape, but the TypeNode for Bar[T] cannot be directly executed
without a receiver object to resolve T. Instead, when a generic child class is applied to concrete
types, we �rst use the TypeNodeSpecializer to �ll in any type parameters in the parent
TypeNode so that it can be evaluated.

• The existing approach to evaluate a ClassTypeParam is to compute the receiver, obtain its
GenericShape, and then look up the type argument from the typeArgMap. With generic
parent classes, the receiver’s base Shapemay not contain the type parameter — the parameter
can be de�ned elsewhere in the type hierarchy.We change ClassTypeParam to search through
the Shape hierarchy for a GenericShape de�ning the type parameter. Since this search can
be expensive, we add an inline cache indexed on the receiver’s Shape.

3.4 Compilation

Reifying types means extra information must be computed and passed around the interpreter.
Dynamically supporting heterogeneous representations also leads to extra run-time type checks
and cache lookups. TASTyTruffle’s implementation of rei�ed types is carefully designed to avoid
these overheads (as much as possible) in compiled code.
Since TypeNodes are Tru�e trees, partial evaluation can determine when a TypeNode returns

a constant Shape. It can elide the code required to evaluate the TypeNode and replace it with a
constant Shape. These constant Shapes can be used to drive further optimizations, for example, by
removing unnecessary run-time type tests altogether.

Some of the generic AST nodes de�ne di�erent Tru�e specializations for each data representation.
For example, GenericReadLocal evaluates a TypeNode to determine what representation to use
when reading a local. By virtue of the Tru�e DSL, the compiled code for these nodes will only
support the representations actually seen at run time. For instance, if GenericReadLocal only
encounters Int and Double locals at run time, its compiled code will only handle those two

6A generic class has potentially many instantiated GenericShapes, but no Shape representing the uninstantiated generic
class.
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representations. The resultant code is compact and can give the compiler more precise type
information for optimizations.
The AppliedType node is also carefully written with partial evaluation in mind. Executing

an AppliedType requires several loops to evaluate its type arguments and compare the result
against each entry in the GenericShapeTemplate’s cache. Loops are troublesome for compiler
optimizations, since the program state after each loop is di�cult to determine. Through careful use
of Tru�e’s compiler directives (such as @CompilationFinal and @ExplodeLoop), we ensure that
all of these loops get unrolled. In the best case, where every type argument is a constant, partial
evaluation can completely replace the type application code with the constant Shape.

4 SPECIALIZING GENERIC CODE

Experimentally, the implementation of generics described in the previous section can exhibit
inconsistent performance. This section explains the performance problem and extends the scheme
with specialization to achieve more reliable performance.

4.1 Motivation

During interpretation, a variety of di�erent data representations can �ow through a generic AST.
The AST dynamically changes its behaviour for each representation, but the type pro�les and
specialization states of the nodes are shared, which can lead to megamorphic code that is poorly
optimized by Graal.

Consider again the swapmethod from Section 1. Suppose that during interpretation, the program
invokes swap with T being Double, Int, and a reference type. Each generic node in the AST will
specialize itself to handle each representation. After specialization, each node e�ectively performs
a switch over the type parameter T to decide how to execute. When Graal compiles swap, the
resultant control �ow graph looks something like Figure 7a. Control splits at each generic node
and then merges after the operation. These frequent control �ow splits inhibit optimization, since
Graal cannot infer a precise state after each merge.

Graal can usually eliminate the control �ow splits when generic code is inlined into a non-generic
call site. For instance, if swap is inlined into a context where the type argument is statically Int,
Graal will eliminate the branches where T is not Int. However, inlining decisions are complicated,
depending on inlining budget, compilation tier, and other compiler parameters. If (for whatever
reason) generic code is not inlined into a non-generic call site, the compiled code performs poorly.
The control �ow splits are especially unfortunate because they switch over the same type

parameters. When swap is invoked with T being Int, the second branch in Figure 7a is taken every
time. If the result of the �rst type switch could somehow be propagated through the tree, the
subsequent type switches could be elided.
This is the idea behind the replication or tail duplication [Mueller and Whalley 1995] transfor-

mation performed by optimizing compilers. Instead of merging control �ow after a conditional
branch, the compiler duplicates the code after the merge into each branch. Then, since the outcome
of the branch condition (e.g., a type check) is known in each branch, the compiler can aggressively
optimize the code in each branch. In the case of swap, rather than merge control after the �rst
switch, the compiler could duplicate the remainder of the graph (starting from the second switch)
into each branch. Then, since the value of T is statically known inside each branch, the compiler
can propagate it through the AST and fold away the redundant type switches. The resulting control
�ow graph would look something like Figure 7b. After the �rst type switch, all of the remaining
type switches can be optimized away. Within each branch, the compiler has precise knowledge
about the types of values, which can create further opportunities for optimization.
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... ...

store T, arr, i

(b) A�er optimization

Fig. 7. Part of the control flow graph for swap.

The motivation for TASTyTruffle’s specialization is to manually perform a tail-duplication-like
transformation at the AST level. Graal supports tail duplication, but deciding when to perform
it is an imperfect process driven by heuristics; improving Graal’s tail duplication decisions is an
active area of research [Leopoldseder et al. 2018]. If generic ASTs could be transformed during
interpretation to achieve the same e�ect as tail duplication, generic code could enjoy more reliable
performance that would not depend on Graal performing the transformation.

4.2 Specializing Generic Methods

To specialize a generic method, TASTyTruffle executes a di�erent copy of the generic AST (a
specialization) for each set of type arguments. Since each set of type arguments uses a di�erent
AST, the generic nodes within each AST dynamically specialize themselves to support only a single
representation. When each generic node is compiled, it only handles one representation, so within
each copy of the AST, there are no control �ow splits caused by type switches.

Consider the swap method once again. When T is Int, swap executes a copy of the generic AST
only used for Int. This AST contains various generic nodes that self-optimize to a monomorphic
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state. For example, the AST has a GenericReadLocal to read the generic v variable. Within the
Int specialization, T takes on the value Int, so the GenericReadLocal specializes itself to read a
primitive int from the frame. Since T is always Int for this AST, it never specializes to any other
representations, and when Graal compiles it, the resulting code does not contain type switches.
To implement method specialization, the TASTyTruffle parser simply replaces a generic

method’s body with a TypeSwitch node. The TypeSwitch node maintains a mapping from each set
of type arguments to a unique specialization that gets invoked for those type arguments. When it
encounters a new set of type arguments, the TypeSwitch node creates a fresh copy of the AST that
will self-optimize itself for that speci�c set of type arguments. This approach to specialization is
purely dynamic. We do not perform any static transformations on the generic AST to convert it to
a monomorphic form; each copy of the AST simply self-optimizes itself into a monomorphic state.
As with AppliedType, TypeSwitch is carefully written to work well with partial evaluation.

When some or all of the type parameters are PE-constant, the type switch can be simpli�ed or even
removed, and the specialized ASTs can be inlined directly into the compiled code.

4.3 Specializing Generic Class Methods

To specialize the methods in a generic class, di�erent copies of each method’s AST should be used
for each unique set of type arguments supplied to the class.
As it turns out, specializing class methods is rather simple, thanks to two important facts:

• TASTyTruffle uses the receiver’s Shape to dispatch method calls.
• TASTyTruffle creates a unique GenericShape for each unique set of type arguments sup-
plied to a generic class (Section 3.3).

To support class method specialization, TASTyTruffle simply needs to make a copy of each
method’s AST when a generic class is applied (as opposed to sharing the ASTs, as was done in
Section 3.3). When each GenericShape has di�erent copies of its methods, each copy is only
invoked with a �xed set of type arguments. The generic nodes in these methods will only specialize
themselves over these type arguments, and the resultant code will be monomorphic.
Unlike method specialization, methods specialized over class type parameters do not require

TypeSwitch nodes. In e�ect, TASTyTruffle performs the type switching at class application time:
the generic ASTs that should be executed are predetermined as soon as a GenericShape is resolved.
This specialization scheme works even for methods that have both class and method type

parameters. Such a method will �rst be duplicated when the generic class is instantiated; then,
when it is invoked with concrete type arguments, it will be duplicated again within the TypeSwitch.
The net e�ect is that TASTyTruffle uses a unique AST for each unique combination of class and
method type parameters, and so these ASTs will self-optimize into monomorphic states.

5 EVALUATING TASTYTRUFFLE

In this section, we evaluate the implementation of TASTyTruffle on a series of small Scala
programs that use generics. These are programs of up to a few hundred lines of code; they are
not full-sized Scala programs. The motivation for evaluating with these benchmarks is to validate
the implementation and explore the interactions between TASTyTruffle and the Graal JIT. Many
of the benchmarks are based on existing Scala standard library code that makes extensive use of
generics, so e�ciently implementing the generic idioms used in these benchmarks is a �rst step
toward e�ciently implementing more complex generic programs.
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Table 1. Table of benchmarks.

Benchmark Description Input size
ArrayCopy Copies the contents of one Array[T] to another. 1,000,000
Checksum Computes a checksum of an Array[T], invoking the ## operator

to hash each element.
1,000,000

InsertionSort Performs insertion sort over an Array[T] using an Ordering[T]

type class.
10,000

�ickSort Performs quicksort over an Array[T] using an Ordering[T] type
class.

20,000

StdDev Computes the standard deviation of an Array[T] where T is a
numeric type. Uses a Fractional[T] to perform mathematical
operations, and uses fold and reduce to compute the result in a
functional programming style.

100,000

ArrayDeqe De�nes a generic ArrayDeque[T] that mirrors the standard li-
brary. Repeatedly appends elements to a dynamically-resizable
bu�er.

100,000

HashMap De�nes a generic HashMap[K,V] backed by generic key and value
arrays. Constructs a map from a set of inputs, then looks up and
removes each result.

10,000

5.1 Benchmarks

Every benchmark relies on generic arrays in some form. Benchmarks that do not use arrays, such
as graph traversals, were considered for the evaluation, but they were deemed less interesting since
their execution time would likely be dominated by pointer chasing.
Note: TASTyTruffle can always allocate unboxed generic arrays (e.g., int[]) because it has

type information, whereas JVM implementations require an extra ClassTag object to supply the
component type at run time. Since our main goal in this evaluation is to compare how each
con�guration compiles code, it would be an unfair comparison to have one con�guration use
unboxed generic arrays and for another to use boxed arrays. Thus, the benchmarks are written
with ClassTags so that the JVM con�gurations also allocate unboxed generic arrays.

The full list of benchmarks is in Table 1. There are seven benchmarks loosely ordered by increasing
complexity. Later benchmarks generally use a superset of the generic idioms used by earlier ones
(e.g., in addition to type classes, StdDev also uses higher-order functions). The input sizes were
selected (through trial and error) so that benchmark invocations would run long enough to avoid
measurement error (e.g., from the benchmarking infrastructure) but not so long that few invocations
would complete during a measurement iteration.

Each benchmark has two di�erent workloads:

Monomorphic: In the monomorphic workload, the benchmark is invoked with a single con-
crete type. Such a benchmark workload is denoted with a concrete type, likeArrayCopy[Int].
The monomorphic workload is intended to measure best-case performance, where the com-
piler can often speculatively monomorphize the generic code over the concrete type.

Polymorphic: In the polymorphic workload, the benchmark is invoked with three di�erent
concrete types: Int, Double, and a simple BoxedInt class that wraps a primitive Int. A
polymorphic workload is denoted with the benchmark name, like ArrayCopy. Since generic
code is written to be used with multiple di�erent concrete types, the polymorphic workload
gives a more realistic assessment of how the compiler optimizes generic code.
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5.2 Setup

The benchmarks are run in four di�erent con�gurations:

HotSpot (H ): The Scala benchmarks are compiled to JVM bytecode using the standard Scala
compiler and executed by the HotSpot JVM (the typical execution environment for Scala
programs).

Graal (G): This con�guration is like H , but a Graal-equipped JVM is used instead.
Unspecialized TASTyTruffle (TU ): The Scala benchmarks are compiled to TASTy and exe-

cuted by TASTyTruffle without specialization.
Specialized TASTyTruffle (TS ): This con�guration is like TU , but specialization is enabled.

All benchmarks are run on a Ubuntu 22.04.2 system with four 16-core AMD Opteron 6380
processors and 512 GiB of memory. The HotSpot con�guration uses OpenJDK 17.0.4; all other
con�gurations use GraalVM Enterprise Edition 22.2.0 (which is built o� of OpenJDK 17.0.4). The
heap size is �xed to 8 GiB in all cases.
The benchmarks are executed using the Java Microbenchmark Harness (JMH)7. The harness

method that invokes each benchmark is excluded from compilation so that the generic code is not
inlined into a call site with concrete type arguments.
The primary goal of the evaluation is to assess how TASTyTruffle’s design enables Graal’s

JIT to more e�ectively optimize generic code. Quantitative performance di�erences between G,
TU , and TS generally indicate di�erences in the way programs are compiled; when they occur, we
discuss these di�erences. HotSpot, being the “standard” implementation of Scala, is included in the
evaluation as a performance baseline, but we do not analyze the code it produces.

5.3 Throughput

TASTyTruffle was designed to enable high-performance compiled code for generic workloads. To
assess whether it achieves this goal, our primary focus in this evaluation is on the peak throughput
of each benchmark after warm-up.
We run each benchmark for ten warmup iterations at ten seconds each to ensure that the

benchmark method gets compiled by Graal. Prior to the actual evaluation, we performed dry
runs, inspecting the compiler logs to ensure that each benchmark consistently reached a stable,
warmed-up state during the warmup iterations. After warmup, we run each benchmark for �ve
measurement iterations at ten seconds each. Since JIT compilation is so dependent on heuristics
and dynamic measurements, warmed-up code can often reach di�erent steady states, and so this
process is repeated for �ve di�erent forked runs. In total, 25 throughput measurements are collected
for each benchmark.
Figure 8 depicts the mean throughput for each benchmark. In the following subsections, we

discuss some reasons for these results. Di�erences in peak throughput can occur for many reasons,
and the reasons can be interrelated (and challenging to disentangle). Even within a particular
con�guration, the throughput can be highly variable due to the non-determinism of JIT compilation
(we see this with �ickSort and StdDev, where G exhibits di�erent steady-state throughputs in
di�erent forks). The goal in these sections is to identify features of the compiled code that likely
play a role in the throughput results.

5.3.1 Polymorphic Workloads. We �rst consider the throughput results for the polymorphic work-
loads (the top row of Figure 8). In general, TS achieves the highest throughput on the polymorphic
workloads. Compared to H , TS achieves a 4.42× speedup, G achieves a 2.27× speedup, and TU

7https://github.com/openjdk/jmh
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Fig. 8. Throughput of each benchmark (in operations per second) with 99.9% confidence intervals.

achieves a 1.92× speedup (geometric mean). We observe a few interesting features of the compiled
code that likely contribute to the observed di�erences.

def copy[T](src: Array[T],

dst: Array[T]) = {

var idx = 0

while (idx < src.length) {

dst(idx) = src(idx)

idx += 1

}

}

Loop unswitching. Recall that TS avoids polymorphic code
by making a copy of the AST for di�erent concrete generic
types. Graal’s loop unswitching transformation provides sim-
ilar bene�ts for G and TU . When a loop contains a condi-
tional branch and the branch condition is loop-invariant,
loop unswitching can extract the conditional branch outside
of the loop, duplicating the loop for each branch. Within
each copy of the loop, the outcome of the branch condition

is statically known. Since a generic type check (e.g., checking whether an array is an int[]) is
loop-invariant, and each benchmark executes some sort of loop, loop unswitching can e�ectively
monomorphize polymorphic benchmark code in the same way as TS ’s duplication.

idx = 0

if (src instanceof int[]) {

while (idx < src.length) { ... }

} else {

while (idx < src.length) {

if (src instanceof Object[]) {

...

}

else {

assert src instanceof double[]

...

}

idx += 1

}

}

Consider the ArrayCopy benchmark depicted above.
It takes two arrays src and dst of type Array[T] and
copies the contents of src into dst. Recall that on the
JVM, Scala implements generic array accesses using
runtime methods that switch over the run-time type
of the array. The type of the arrays is invariant within
the loop, so in theory the loop can be unswitched over
the array type check. The code produced byG behaves
like the pseudocode to the right. Graal uses type pro-
�ling on the instanceof check to determine that the
arrays will likely be int[], double[], or Object[]. It
successfully unswitches the case where src is an in-
stance of int[], but the two type tests for double[]
and Object[] remain inside a loop together. When Ar-

rayCopy is invoked with non-integer arrays, it su�ers a performance hit because it must perform
these type tests on each iteration of the loop.

The compiler has many loop unswitching candidates, and deciding which conditional branches
are worth unswitching is driven by heuristics, so the results can be unpredictable. On G, all of the
benchmarks except InsertionSort and�ickSort produce IR graphs with generic array type
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checks inside loops; sometimes the loops get partially unswitched, like with ArrayCopy, but in
other cases there is no unswitching at all.
TU matches TS ’s throughput on the ArrayCopy, Checksum, and InsertionSort benchmarks.

For each of these benchmarks, the type checks get unswitched from the loop, resulting in highly-
optimized monomorphic code. Conversely, on the other benchmarks, wherein TU performs much
worse than TS , the type switches are either partially unswitched or not unswitched at all.

The duplication performed by TS thus appears to be a signi�cant reason why it achieves the
highest throughput on the polymorphic workloads. Though TU matches TS on the simple bench-
marks, Graal fails to make optimal loop unswitching decisions on the more complex benchmarks.
Our takeaway is that performing code duplication at the AST level, in e�ect, makes it so that the
compiler does not have to guess whether a type check is worth unswitching from a loop.

Explicit type associations. An interesting consequence of reifying types is that it makes type
associations between di�erent values more apparent to the compiler. Consider the two parameters
to the ArrayCopy benchmark. Both parameters have type Array[T], so the Scala type system
guarantees that these values have the same type. However, during translation to JVM bytecode,
both values are erased to type Object, so the fact that they have the same concrete type is lost. On
G, this leads to code containing redundant type checks and impossible branches.

idx = 0

if (src instanceof int[]) {

while (idx < src.length) {

if (dst instanceof BoxedInt[]) {

dst(idx) = Integer.valueOf(src(idx))

...

} else {

assert dst instanceof int[]

...

}

}

} else { ... }

We again consider the ArrayCopy benchmark.
In an early phase of compilation, inside the
copy of the loop dominated by the unswitched
src instanceof int[] guard, Graal does not
infer that dst must also be int[]. The compiler
graph, depicted in pseudocode to the left, contains
an impossible code path (introduced by type pro-
�les) where dst is a BoxedInt[]. The code then
attempts to store a boxed Integer into dst. In
this case, a later optimization phase eliminates
the nonsensical branch (presumably Graal detects
the type-incompatibility), but in other cases the

compiler may not be so lucky. Graal uses graph size as a heuristic for many optimizations including
inlining and loop unswitching, so if Graal cannot remove the impossible branches, or can only do
so in a later phase, the extra code could in�ate the graph size and prevent Graal from performing
optimizations.
In contrast, on TU and TS , generic array accesses are implemented not by switching over the

array type, but by switching over the rei�ed type parameter. Since both arrays share the same type
parameter T, after switching over T to determine the type of one array, the type of the other array
is immediately inferred, and no further type switches are required.

Implicit type associations. A similar problem arises in the benchmarks that use type classes. In
Scala, type classes are implemented with object instances that get implicitly passed around and
can be invoked by client code. All of the benchmarks except ArrayCopy and Checksum use type
classes to perform operations over polymorphic values.
For example, the sorting benchmarks take an Ordering[T] instance and invoke its lt (“less

than”) method to compare elements. On the polymorphic workloads, InsertionSort observes
a di�erent type class instance for each instantiation of T during interpretation: when T is Int, it
observes an Ordering[Int]; when T is Double, it observes an Ordering[Double], and so on. In
such cases, there is an implicit relation between the concrete type argument and the speci�c type
class instance supplied.
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object IntOrdering

extends Ordering[Int]

object DoubleOrdering

extends Ordering[Double]

object BoxedIntOrdering

extends Ordering[BoxedInt]

if (ord instanceof IntOrdering) {

...

if (T == Int) {

// read from int[]

} else if (T == Double) {

// read from double[]

}

} else { ... }

When InsertionSort is compiled on G , the JVM type
pro�les provide Graal with a list of type class instances ob-
served during interpretation. Graal uses these pro�les to
speculatively inline methods from the observed type class
instances. However, since types are erased on G, Graal
does not understand the correlation between di�erent
Ordering instances and T, which leads to unnecessary
type checks.

Though types are rei�ed onTU , it also su�ers from this
problem. Consider the pseudocode to the right, which
depicts part of the IR graph for InsertionSort on TU .
Unlike array representations, TASTyTruffle does not
use rei�ed type arguments to determine which type class
instance to use. Instead, the Scala compiler injects type
class instances at each call site during compilation. During execution, each type class method call
(e.g., ord.lt(...)) pro�les its receiver type; then, during compilation, Graal can use the pro�le to
speculate over the type class instance.

On TU , these pro�les are shared between di�erent type arguments, so the implicit association is
lost. For a call to ord.lt, the type pro�le observes the three types for Ordering depicted in the
code above. In the branch where ord is known to be IntOrdering, the compiler cannot infer that
T must be Int, leading to more unnecessary type checks.
TS does not exhibit this problem. Conveniently, since TS invokes a di�erent copy of the AST for

each concrete value of T, each copy has its own, separate set of inline caches. When T is Int, ord is
always an Ordering[Int] instance; there is no sharing of the type pro�les, and Graal can often
infer the exact type class instance to use (unless multiple di�erent Ordering[Int]s are used). This
separation of type pro�les is a convenient bene�t of TS ’s tree duplication.

Inlining. Whether calls are inlined into a call site is another important factor in performance.
Each con�guration successfully inlines every method invoked by the ArrayCopy, Checksum,
InsertionSort, and ArrayDeqe benchmarks. With �ickSort, StdDev, and HashMap, which
are more complicated, the con�gurations have varying degrees of success with inlining.

The main source of methods not being inlined onG appears to be type class methods. For example,
on �ickSort, the calls to Ordering methods do not always get inlined. G successfully inlines
these methods on the monomorphic workloads (e.g.,�ickSort[Int]), so the polymorphic call
sites likely pose a challenge for the inliner. TU and TS are always able to inline type class methods.

Another interesting case where inlining fails is StdDev onTU . The StdDev benchmark is written
in a functional programming style with generic reduce and fold methods. The fold method does
not get inlined into the main benchmark method on TU , but it does on G. This is counter-intuitive
because Tru�e’s inlining policy is generally more aggressive than Graal’s. Though we have not
con�rmed the precise reason fold does not get inlined on TU (inlining decisions can be somewhat
opaque), we suspect code size to be at fault. It appears that generic methods on TU can grow
signi�cantly in code size on polymorphic workloads: fold’s initial IR graph from the monomorphic
workload has 178 nodes, whereas the graph from the polymorphic workload has 4351 nodes (a 24×
increase). TU may not scale well with larger programs because of this limitation.

There is a similar code size concern forTS . Since generic methods use type switches with calls to
di�erent specialized copies of the AST, the entire IR graph for a generic method may contain too
many copies of ASTs to be inlined. However, since the type parameters to a generic method call are
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statically known to the inliner8, it can (with the help of partial evaluation) detect that it only needs
to inline one specialization. For example, when T is Int, a call to fold[T] only needs to inline the
fold$Int specialization rather than the entire fold[T] method and all of its specializations.

5.3.2 Monomorphic Workloads. On all of the monomorphic workloads besides HashMap[Int,Int],
the three Graal-based con�gurations perform comparably:TU achieves a 2.54× speedup,TS achieves
a 2.49× speedup, and G achieves a 2.28× speedup over H (geometric mean).9

Sometimes the TASTyTruffle con�gurations perform marginally worse than G, but the code
produced is structurally similar. In fact, many of the hot loops are compiled to identical low-level
code. It is possible that the way Tru�e code is invoked in the benchmarks — through the polyglot
API, which coerces each host (Java) value to a guest (TASTyTruffle) value — introduces an extra
overhead on the Tru�e con�gurations.

The fact that the results are so similar suggests that the presence of type information in TU and
TS does not give them much of an advantage on monomorphic workloads overG . In G , though the
JVM does not do the same degree of pro�ling as Tru�e interpreters, it does collect type pro�les
at virtual method call sites and instanceof checks. On monomorphic workloads, these pro�les
observe just a single type, so Graal can speculatively compile the benchmarks to monomorphic
code that handles the single type observed by the pro�le. This hypothesis is consistent with the IR
graphs produced on G.

Scala RuntimeMethods. Unlike the other benchmarks,G is not able to performmonomorphization
on HashMap[Int,Int], which leads to polymorphic code that gets poorly optimized. The reason it
is not monomorphized has to do with Scala’s runtime accessor methods.

Recall that operations on generic arrays are proxied through runtimemethods that switch over the
type of the array. Since the JVM’s type pro�ling is limited to virtual method calls and instanceof

checks — neither of which is performed by the benchmarks — the benchmarks themselves do not
collect any pro�les about the types of arrays they encounter. It is the type pro�les of the runtime
methods that get used during compilation to infer possible types for the generic arrays. These type
pro�les are shared globally by all code that accesses generic arrays.

idx = 0

if (src instanceof int[]) { ... }

else if (src instanceof float[]) { ... }

else if (src instanceof char[]) { ... }

else { ... }

For example, we ran a variant of the monomor-
phic ArrayCopy[Int] workload on a JVM where
the generic array accessors were heavily used with
float, char, and boolean arrays. The pseudocode
to the left represents the compiled code produced

for the copy method. Even though the ArrayCopy[Int] benchmark is only ever invoked with
int[], the polluted type pro�les on the accessor methods lead to extra branches for float[],
char[], and boolean[] (inside the else). Thus, the performance results on G are somewhat of
a �uke. The performance can degrade arbitrarily depending on how frequently the generic ac-
cessors are used with other types. In the case of HashMap[Int,Int], the type pro�les for these
accessor methods are heavily polluted with non-int arrays, so the benchmark code could not be
monomorphized. Even after carefully hand-writing the benchmark harness code in Java to avoid
using the array accessors, the pro�les were still polymorphic, so it is unlikely that real programs
would encounter monomorphic pro�les for the array accessors.

8On TS , type parameters at a call site are always statically known during inlining. Only specializations of generic code are
compiled, so any type parameter T used at a generic call site gets replaced by a constant type during specialization. For
example, fold[T]will not get inlined into computeStdDev[T], but into a particular specialization like computeStdDev$Int
where T is known.
9Excluding HashMap[Int,Int] (which G optimizes poorly because of runtime method type pollution), G achieves a 2.52×
speedup over H .
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Fig. 9. Graal IR subgraph for the put method of HashMap[Int,Int] on G.

Instead of runtime accessor methods, TASTyTruffle uses intrinsic nodes to implement generic
array accesses. Each node collects its own type pro�le, which prevents this global type pollution
issue and allows PE to know the precise set of array types that �ow into each generic node.

Case study: HashMap[Int,Int]. In this section we discuss a speci�c compilation issue G exhibits
on the HashMap[Int,Int] workload. Due to an interesting combination of factors, the compiler is
forced to introduce boxing operations even when it knows that it is working with ints.

def put(key: T, value: U) = {

var idx = hash(key)

while (/* keys(idx) is occupied */) {

if (keys(idx) == key) {

// overwrite value

}

idx = idx + 1

}

...

}

The boxing occurs inside the put method
listed to the right. The code performs linear
probing to �nd an index to store a new table en-
try. Inside the loop, it compares the input key
against a value stored in the keys array. Be-
cause of Scala’s erasure, key automatically gets
boxed to an Integer. In the other monomor-
phic benchmarks, Graal is able to elide the box-
ing, but it fails on this workload.
We present a small portion of the Graal IR

for the == comparison in Figure 9. This graph follows the “sea-of-nodes” design [Click and Paleczny
1995]; in brief, the red edges represent control �ow, and the teal edges represent data �ow.10 The

10For a primer on understanding Graal IR, we recommend https://chrisseaton.com/tru�eruby/basic-graal-graphs/.
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compiler has inlined put into a context where it knows that keys is an int[] and that key comes
from an int value. Despite this knowledge, Graal does not remove the automatic Integer boxing.
There are a few factors that introduce this issue:

(1) The left-hand side of the comparison, keys(idx), is implemented with a call to the runtime
accessor method ScalaRunTime.array_apply. The inliner decides, based on its heuristics,
to not inline this call (node 10534), so the result has type Object.

(2) In Scala, generic == uses a pointer comparison as a quick check (node 10536) followed by
a slower fallback call to the �rst operand’s equals method (not depicted). If array_apply
was inlined, the compiler could have determined that both operands were ints and hence
that the pointer comparison was unnecessary. It could have instead elided the boxing and
performed a simpler integer comparison. Since the call is not inlined, key on the right-hand
side must remain a boxed Integer so that the pointer comparison can be performed.

(3) Normally, a pointer comparison between an existing object and a freshly-created object always
evaluates to false (since they must be di�erent objects), so there is still an opportunity
for Graal to elide the boxing by completely removing the reference-equality check (node
10536). However, the Java Language Speci�cation (JLS) requires Integers between -127 and
128 to be interned and reused to reduce the performance penalty of boxing. Therefore, the
boxing operation has two branches: one where a new Integer is allocated (node 16491), and
another where an interned value is read from a cache (node 16486). Since the resultant value
(node 16476) is not necessarily a fresh object, Graal cannot elide the pointer comparison, and
so the int value that was boxed in the call to put must remain boxed.

This example demonstrates a limitation ofG . Even when Graal can infer the types of generic val-
ues, things can still go awry because of unfortunate inlining decisions and unexpected interactions
between the type system and library code. In TASTyTruffle, the array accessors are interpreter
intrinsics, so it can always infer that keys(idx) will return a primitive int.

5.4 Warmup

Although Tru�e interpreters achieve high peak throughput, they are known to struggle with
start-up performance [Humer and Bebić 2022; Marr et al. 2022]. It takes time for the JIT to compile
Tru�e ASTs, and in the meantime, Tru�e implementations are stuck executing relatively-slow
AST interpreters. Though start-up performance is not a primary research goal for TASTyTruffle,
we brie�y examine its warm-up behaviour in this section.

We measured, across ten runs, the average throughput of the Checksum, HashMap, and �ick-

Sort benchmarks as the programs warmed up. Figure 10 plots the average throughput over time for
each benchmark. We captured the average throughput over 200 ms intervals; the 99% con�dence
interval for the throughput in each interval is depicted in a translucent colour. In general, the
throughput is unstable at the beginning as the benchmarks warm up, and it tends to stabilize over
time as the JIT compiles hot code paths.

Overall, H and G warm up much faster than the TASTyTruffle con�gurations. At t = 0, H and
G usually have non-zero throughput, but the TASTyTruffle throughput is very close to zero. We
also see that H and G ramp up earlier than TASTyTruffle; for example, on�ickSort H and G
reach their peak performance by around 2s, whereas TU and TS take much longer.

These observationsmakes sense, becauseH andG execute JVMbytecode, the native interpretation
target of the JVM. TASTyTruffle executes ASTs that are themselves implemented in JVM bytecode.
The Tru�e-based interpreters, executed on the JVM, are too slow to achieve much throughput, so
the host code (e.g., the nodes and their execute methods) must generally be compiled �rst by the
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Fig. 10. Average throughput over time for Checksum, HashMap, and QuickSort on monomorphic and

polymorphic workloads.

JVM. Then, once the host code is fast enough to interpret the guest code for enough iterations, the
guest code can be compiled by Tru�e.

The e�ect of tiered compilation. Graal uses two tiers of compilation. The tiered compilation is
visible in some of the warmup graphs. For example, HashMap on TS jumps up to around 60 ops/s
in the �rst few seconds, then later jumps up to around 90 ops/s. Since di�erent methods within the
system get compiled concurrently, the separation between these tiers is not always so apparent.
Sometimes, TS seems to reach peak performance before TU . For example, on the �ickSort

benchmark, TS reaches peak at around 5 seconds, whereas TU peaks after 7 seconds. The di�erence
likely lies in Graal’s tiered compilation. Since second-tier compilation cannot occur until the code
exceeds an invocation threshold, how long it takes to execute the �rst-tier version of a method may
a�ect the time to trigger second-tier compilation. Since TU is highly polymorphic, Graal cannot
optimize �rst-tier compilations very much: the �rst-tier graphs show a loop that is polymorphic
over the three array types. In contrast, on TS each specialized AST is �rst-tier compiled separately,
and each loop is monomorphic, so the compiler can perform more optimization.
Thus, despite the extra work required to duplicate ASTs, it appears the code duplication of TS

may enable better �rst-tier compilation, which in turn may lead to faster warmup than TU .
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5.5 Memory

We performed a couple of experiments to assess the memory usage of TASTyTruffle.

5.5.1 Heap Size. By virtue of their representation, ASTs tend to consume more memory than other
interpretation targets. For the Checksum,HashMap, and�ickSort benchmarks, we modi�ed our
benchmark scripts to dump the live (reachable) heap at the end of execution so we could measure
this di�erence. Table 2 depicts the heap sizes across con�gurations. These measurements do not
include Scala program data; the memory usage of Scala objects is discussed in the next section.
Across all workloads, the reachable heap is 3-4× larger on TASTyTruffle than the JVM con-

�gurations. Interestingly, only a small portion of the memory increase comes from ASTs. We
programmatically compared the heap contents and found that the vast majority of extra memory
usage comes from classes loaded by the TASTyTruffle con�gurations; TASTyTruffle loads
almost �ve thousand more classes than the JVM con�gurations. Roughly half of these extra classes
come from the TASTy parsing API (which itself hooks into the Scala compiler infrastructure), so
there is room for improvement, but the remaining half appear to be classes needed by the Tru�e
runtime to invoke and compile Tru�e ASTs. Thus, we believe some of this extra heap footprint is
unavoidable with Tru�e-based interpreters.

Recall that TS creates duplicate ASTs to monomorphize generic code. We can see the impact this
duplication has on the memory footprint by comparing the AST footprint between TU and TS . As
expected, TS uses more memory than TU for its ASTs; this di�erence is greater on polymorphic
workloads where more ASTs are duplicated. In the most extreme case (HashMap), the AST footprint
increases by about 19%. In the future, there are strategies we can employ to reduce the memory
footprint of TS , for example by only duplicating the most frequently-used specializations.

5.5.2 Data Structure Size. We also examined the size of the data structures underlying the Scala
objects in each implementation. TASTyTruffle implements Scala objects by dynamically synthe-
sizing JVM classes containing the precise set of �elds in each Scala class (Section 2.2.1). In other
words, both TASTyTruffle and JVM-based object representations should occupy the same amount
of memory as long as they use the same representations for those �elds.
Recall from Section 5.1 that the benchmarks use ClassTags to allocate unboxed represen-

tations for generic arrays (to make throughput comparisons fair). In this case, the data struc-
tures in our benchmarks have exactly the same footprint. For example, across 5 executions, a
HashMap[Int, Int] with 1,000,000 entries consistently occupied the same amount of memory on
all con�gurations — 16.8 MB.

In reality, most data structures in the Scala standard library do not use ClassTags, so when they
allocate generic arrays, they use Object arrays. We rewrote the HashMap benchmark to not use
ClassTags and found that the same HashMap[Int, Int] instance with 1,000,000 entries occupied
31.1 MB on H and G — nearly double the size of TASTyTruffle’s representation. The di�erence
comes from the use of Object arrays that store boxed Integers (rather than primitive ints) for
the key and value arrays. In e�ect, TASTyTruffle’s rei�ed types allow us to reduce the footprint of
generic data structures without ClassTags (i.e., without making breaking changes to data structure
APIs).

6 RELATED WORK

Parametric polymorphism, �rst distinguished from other forms of polymorphism by Strachey
[2000], can be implemented in a variety of ways. Morrison et al. [1991] introduce a form of
tagged polymorphism that stores tags not on the generic data itself (which can be ine�cient) but
alongside generic data as �rst-class values in the language. This approach is more commonly known
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Table 2. Heap size for Checksum, HashMap, and QuickSort benchmarks (in KB).

Benchmark Conf. Total (± SD) AST (± SD) # Classes (± SD)
Checksum H 5160.52 (± 0.10) 0 2487.40 (± 1.20)

G 5407.40 (± 0.30) 0 2551.80 (± 1.60)
TU 22257.77 (± 20.38) 305.40 (± 0.02) 7390.40 (± 1.62)
TS 22320.72 (± 1.67) 311.18 (± 0.02) 7413.80 (± 0.98)

Checksum[Int] H 5168.43 (± 0.15) 0 2487.40 (± 1.20)
G 5407.34 (± 0.17) 0 2551.80 (± 1.60)
TU 22190.46 (± 2.25) 294.42 (± 0.02) 7388.00 (± 1.79)
TS 22217.33 (± 5.16) 297.02 (± 0.02) 7410.00 (± 0.89)

HashMap H 5868.21 (± 0.22) 0 2586.40 (± 1.20)
G 6121.29 (± 0.88) 0 2648.80 (± 1.60)
TU 22787.60 (± 2.40) 379.76 (± 0.04) 7454.00 (± 2.76)
TS 22960.62 (± 2.01) 450.66 7472.20 (± 2.48)

HashMap[Int,Int] H 5866.54 (± 0.03) 0 2584.40 (± 1.20)
G 6119.48 (± 0.68) 0 2646.80 (± 1.60)
TU 22498.59 (± 18.05) 344.39 7431.40 (± 3.20)
TS 22567.28 (± 7.75) 369.40 7458.40 (± 4.63)

�ickSort H 5836.74 (± 0.37) 0 2512.40 (± 1.20)
G 6085.97 (± 5.23) 0 2574.80 (± 1.60)
TU 22648.55 (± 18.86) 377.65 7424.20 (± 2.23)
TS 22745.31 (± 16.70) 407.78 (± 0.02) 7447.20 (± 2.99)

�ickSort[Int] H 5835.05 (± 0.22) 0 2510.40 (± 1.20)
G 6074.69 (± 0.11) 0 2572.80 (± 1.60)
TU 22445.24 (± 13.94) 355.49 (± 0.02) 7408.20 (± 4.53)
TS 22491.78 (± 11.09) 366.87 (± 0.02) 7429.20 (± 2.71)

today as type rei�cation, which is at the heart of TASTyTruffle’s approach. TASTyTruffle’s
implementation of parametric polymorphism is similar to the approach taken by the .NET Common
Language Runtime (CLR) [Kennedy and Syme 2001]. Unlike JVM bytecode, the CLR intermediate
language preserves generic type information, so the CLR can reify generic type arguments at run
time. TASTyTruffle and the CLR di�er in how they handle reference-type specializations. Since
reference types have the same data representation, values with di�erent reference types can be
treated uniformly; the CLR uses a single specialization for all reference-type instantiations to avoid
creating too many specializations. Though TASTyTruffle creates a separate specialization for
each reference-type instantiation, the type pro�les from each specialization are independent, so
the compiled code has less polymorphism.
Dragos and Odersky [2009] extended the Scala compiler to support static specialization. Pro-

grammers can direct the compiler to automatically generate specializations for each primitive type,
leading to more optimized generic code. Ureche et al. [2013] improved Scala’s static specialization
using “miniboxing”, which allows sharing specializations among multiple types at the expense of
additional run-time conversions. Since Tru�e supports implicit conversions between data types, it
is possible that TASTyTruffle could incorporate a miniboxing-like approach into its specialization
scheme. Some works have found success in using whole-program static analyses (i.e., analysis
under a closed-world assumption) to analyze and optimize Scala code [Doeraene 2018; Petrashko
2017].
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Early in Java’s adoption of generics, Cartwright and Steele [1998] proposed NextGen, which uses
an alternative compilation strategy for generics. The code compiled by NextGenmakes generic types
accessible at run time for type-related operations like instanceof. A major limitation of NextGen
is that it does not support primitive type instantiations; the authors cite the type-incompatibility
between primitives and reference types as the reason. Project Valhalla [Goetz 2014] is an ongoing
project that aims to evolve the Java language to allow type parameters to range over both reference
and primitive types, enabling run-time specialization of generic code in the future. Graur et al. [2021]
developed JCS, a tool to specialize some classes from the Java Collections library. A common idea
with these static approaches is to circumvent the lack of run-time types in the JVM by generating
specialized code during or before compilation. TASTyTruffle avoids erasure altogether, using
rei�ed types to defer code specialization until run time. Whereas most of these approaches require
the programmer to choose what code gets specialized, TASTyTruffle performs specialization
automatically.
Schinz [2005] designed a compilation strategy that rei�ed all Scala types as JVM classes at run

time. The rei�ed types enable Scala code to perform type-speci�c operations like pattern matching
and type checks over generic types. The approach introduces signi�cant overheads with respect to
running time and memory consumption. In contrast, TASTyTruffle models only enough types to
enable generic code specialization, and types are modeled with built-in interpreter intrinsics rather
than language-level objects, which can be more amenable to optimization. The extra overhead of
reifying types in TASTyTruffle (much of which can be optimized away during JIT compilation) is
outweighed by the performance gains it enables via specialization.
Stadler et al. [2013] explored the relative impact of di�erent Graal optimizations on Scala and

Java benchmarks by selectively disabling them and comparing the performance. They observe that
Graal more e�ectively optimizes the Scala benchmarks than the Java benchmarks because Scala
code “contains more opportunities for optimization.” In particular, they �nd pro�ling types and
branches, inlining polymorphic call sites (based on receiver type pro�les), and intrinsifying native
methods to be especially e�ective. Prokopec et al. [2017] uses case studies to demonstrate how
Graal optimizations can aggressively simplify Scala collections code. The authors cite the genericity
of Scala’s collections library code as a major reason for its performance overhead. They also remark
that, while JITs can be very e�ective, they are fundamentally limited by the data representations
chosen by the language.

7 CONCLUSION

Many programming language implementations use erasure to support parametric polymorphism.
While erasure reduces code size by avoiding code duplication, it is inherently limiting to performance
because it introduces run-time indirection and destroys type information that could be used by the
implementation to improve performance.

We presented TASTyTruffle, a Scala implementation that interprets TASTy IR instead of JVM
bytecode. TASTyTruffle uses TASTy’s type information to reify types as �rst-class objects in
the interpreter. These rei�ed types enable TASTyTruffle to dynamically select precise, box-free
representations for generic values, and generate e�cient code specialized for these representations.
On our benchmarks, we found that TASTyTruffle achieves higher peak throughput than the
traditional HotSpot JVM. TASTyTruffle is also competitive with a JVM equipped with the same
Graal compiler, especially when generic code is instantiated with multiple concrete types.

TASTyTruffle demonstrates how precise type information can empower a language implemen-
tation to achieve high performance on generic code. By reifying types and specializing generic code,
TASTyTruffle enjoys much of the same performance bene�ts as a monomorphization scheme.
Unlike monomorphization, TASTyTruffle’s specialization is speculative and performed at run
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time, which leaves further opportunities to improve performance in the future; for example, by
speculatively changing object layouts.

DATA-AVAILABILITY STATEMENT

An archive containing the TASTyTruffle source and dependencies is available at [D’Souza et al.
2023].
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