
Safe and Sound Program Analysis with Flix

Magnus Madsen
Aalborg University

Denmark
magnus@cs.aau.dk

Ondřej Lhoták
University of Waterloo

Canada
olhotak@uwaterloo.ca

ABSTRACT

Program development tools such as bug finders, build automation
tools, compilers, debuggers, integrated development environments,
and refactoring tools increasingly rely on static analysis techniques
to reason about program behavior. Implementing such static analy-
sis tools is a complex and difficult task with concerns about safety
and soundness. Safety guarantees that the fixed point computation
– inherent in most static analyses – converges and ultimately ter-
minates with a deterministic result. Soundness guarantees that the
computed result over-approximates the concrete behavior of the
program under analysis. But how do we know if we can trust the
result of the static analysis itself? Who will guard the guards?

In this paper, we propose the use of automatic program verifica-
tion techniques based on symbolic execution and SMT solvers to
verify the correctness of the abstract domains used in static analysis
tools. We implement a verification toolchain for Flix, a functional
and logic programming language tailored for the implementation of
static analyses. We apply this toolchain to several abstract domains.
The experimental results show that we are able to prove 99.5% and
96.3% of the required safety and soundness properties, respectively.

CCS CONCEPTS

• Theory of computation→ Program analysis;

KEYWORDS

static analysis, lattices, safety, soundness, monotonicity

ACM Reference Format:

Magnus Madsen and Ondřej Lhoták. 2018. Safe and Sound Program Analysis
with Flix. In Proceedings of 27th ACM SIGSOFT International Symposium on
Software Testing and Analysis (ISSTA’18).ACM, New York, NY, USA, 11 pages.
https://doi.org/10.1145/3213846.3213847

1 INTRODUCTION

Designing, implementing, and testing static analysis tools is a chal-
lenging task. The analysis designer is faced with difficult trade-offs
between ensuring soundness, precision, and scalability of the anal-
ysis. The fixed point nature of many static analyses combined with
these trade-offs often lead to implementations that are hard to un-
derstand, debug, and extend. To avoid these issues, some designers

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ISSTA’18, July 16–21, 2018, Amsterdam, Netherlands
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5699-2/18/07. . . $15.00
https://doi.org/10.1145/3213846.3213847

have turned to Datalog [Ceri et al. 1989]. Datalog is a declarative
programming language for constraints on relations. A Datalog pro-
gram is a set of rules that together with a set of input facts imply a
minimal model. Datalog has been successfully used for specifica-
tion of large-scale points-to analyses for object-oriented programs,
in particular for Java [Bravenboer and Smaragdakis 2009; Smarag-
dakis and Bravenboer 2011]. The use of Datalog is not limited to
points-to analyses; other analyses can be implemented in Datalog,
such as definite assignment, reaching definitions, and available
expressions. These analyses involve constraints on relations. How-
ever, many analyses are not defined as constraints on relations, but
as constraints on lattices. This includes classic textbook analyses,
such as sign analysis, constant propagation, and interval analysis.
Regrettably, such analyses cannot be expressed in Datalog.

Flix, a functional and logic language, has been proposed to over-
come these limitations [Madsen et al. 2016a,b, 2018]. Flix is inspired
by Datalog and extends it with user-defined lattices as well as mono-
tone filter and transfer functions. In Flix, it is straightforward to
express dataflow analyses on lattices, and other types of analyses.

Datalog has an important property that is also desirable for Flix:
Every Datalog program has a unique minimal model that can be
efficiently computed by semi-naïve evaluation [Ceri et al. 1989].
Intuitively, the solution to a Datalog program is a finite set of facts,
there is a finite number of such solutions, and exactly one of them
is the minimal model. In Flix, the situation is more complicated.
The semantics of a Flix program is dependent on user-defined
functions, expressed in a functional language, which define lattices
and operations on lattices. Unfortunately, if these user-provided
functions, which are program code, are erroneous, then themeaning
of a Flix program is undefined and the fixed point computation
may diverge. We want to avoid that and ensure the same safety
guarantees for Flix as those of Datalog.

But safety alone is not enough, we also want soundness. Sound-
ness means that the model computed by a safe Flix program is a
sound over-approximation of the behaviour of the program under
analysis. In other words, soundness means that we can trust the
results of the analysis when reasoning about the program.

In the current state-of-affairs, when reasoning about the safety
and soundness of an analysis, the analysis designer has essentially
three choices: i) hand-wave an argument or proof (requires the
least amount of work), ii) work out a pen and paper proof (requires
a significant amount of work), or iii) construct a mechanized proof
(requires a substantial effort). In this paper, we propose a fourth
approach: to use program verification techniques to automatically
prove that the static analyzer is safe and sound. Our hope is to
provide robust guarantees without imposing any significant burden
on the analysis designer.

Automatically proving soundness of an entire static analysis is
very challenging, so as a first step, we settle for an easier problem:

https://doi.org/10.1145/3213846.3213847
https://doi.org/10.1145/3213846.3213847

ISSTA’18, July 16–21, 2018, Amsterdam, Netherlands Magnus Madsen and Ondřej Lhoták

Proving that the abstract domains used by the analysis are sound. If
this is the case, what remains to be proven is that the constraints of
the logic language accurately model the concrete semantics of the
program. Fortunately, there is often a one-to-one correspondence
between the concrete and abstract semantics. For example, and as
we shall see later, the constraint for an addition statement in the
concrete and abstract semantics is often the same.

The concerns of safety and soundness are not unique to Flix, but
apply equally well to other static analysis frameworks and tools.

In this paper, we extend the Flix language with annotations
to describe the necessary mathematical properties of functions,
and with a verifier based on symbolic execution and satisfiability
modulo theories to automatically check whether these properties
hold, or if not, to produce counter-examples. The reliance on fully-
automatic techniques is in line with our philosophy that Datalog
(and in extension Flix) should be easy to use and that benefits
should come for free whenever possible.

In summary, our paper makes the following contributions:
• We demonstrate, with several examples, that ensuring the
correctness, i.e. safety and soundness, of even a simple static
analysis is a non-trivial task with many pitfalls.

• We extend the Flix programming language with annotations
and laws to capture the mathematical properties required of
abstract domains and their operations.

• We implement a verification toolchain, based on symbolic ex-
ecution and satisfiability modulo theories, to verify that Flix
programs are correct, i.e. that user-defined lattices and their
operations satisfy the mathematical properties necessary to
ensure safety and soundness.

• We experimentally evaluate the usefulness of our verification
toolchain by applying it to several abstract domains. The
results are encouraging and show that we can verify 99.5%
and 96.3% of the required safety and soundness properties.

2 MOTIVATION

In this section, we introduce the Flix programming language by
showing how it can be used to express a simple dataflow analysis.
We then discuss several unsafe and unsound Flix programs that
motivate the need for verification of abstract domains.

2.1 A Simple Dataflow Analysis

Figure 1 shows a simple intra-procedural, flow-sensitive dataflow
analysis implemented in Flix. This analysis computes, for every
local variable, and at every program point, whether the variable is
an odd or even number.

Partial Order and Lattice Definition. Lines 1–6 define an algebraic
data type named Parity. This data type has four values: Top, Even,
Odd, and Bot. Lines 8–17 define a partial order on lattice elements
of the Parity type. The partial order is defined as a boolean valued
function of type leq : Parity× Parity → Bool which determines
when one element is less than or equal to another element. Line 9–
10 associates five property annotations with the function. We will
discuss these in greater detail later. Lines 19–21 and 23–25 define the
least upper bound operator and greatest lower bound operator of
the lattice. Lines 27–28 define a function beta to lift 32-bit integers
into elements of the parity lattice.

1 /* elements of the parity lattice */
2 enum Parity {
3 case Top,
4 case Even, case Odd,
5 case Bot
6 }
7
8 /* the partial order */
9 #reflexive #antiSymmetric #transitive
10 #leastElement(Bot) #greatestElement(Top)
11 def leq(e1: Parity, e2: Parity): Bool = match (e1, e2) with {
12 case (Bot, _) => true
13 case (Even, Even) => true
14 case (Odd, Odd) => true
15 case (_, Top) => true
16 case _ => false
17 }
18
19 /* the least upper bound */
20 #upperBound #leastUpperBound
21 def lub(x: Parity, y: Parity): Parity = /* ... */
22
23 /* the greatest lower bound */
24 #lowerBound #greatestLowerBound
25 def glb(x: Parity, y: Parity): Parity = /* ... */
26
27 /* the abstraction function */
28 def beta(x: Int): Parity = if (x % 2 != 0) Odd else Even
29
30 /* filter and transfer functions */
31 #strict1 #monotone1 #sound1(x −> x == 0)
32 def isMaybeZero(x: Parity): Bool = /* ... */
33
34 #strict2 #monotone2 #sound2((x, y) −> x + y)
35 def sum(x: Parity, y: Parity): Parity = /* ... */
36
37 #strict2 #monotone2 #sound2((x, y) −> x / y)
38 def div(x: Parity, y: Parity): Parity = /* ... */
39
40 /* declaration of input relations */
41 rel CFG(s1: Stm, s2: Stm)
42 rel CstStm(s: Stm, x: Var, i: Int)
43 rel AddStm(s: Stm, r: Var, x: Var, y: Var)
44 rel DivStm(s: Stm, r: Var, x: Var, y: Var)
45 rel NotKill(s: Stm, x: Var)
46
47 /* declaration of lattices */
48 lat In(s: Stm, x: Var, v: Parity)
49 lat Out(s: Stm, x: Var, v: Parity)
50 rel DivByZero(s: Stm, x: Var)
51
52 /* incoming dataflow */
53 In(s2, x, v) :− CFG(s1, s2), Out(s1, x, v).
54
55 /* outgoing dataflow */
56 Out(s, x, beta(i)) :− CstStm(s, x, i).
57 Out(s, r, sum(v1, v2)) :−
58 AddStm(s, r, x, y), In(s, x, v1), In(s, y, v2).
59 Out(s, r, div(v1, v2)) :−
60 DivStm(s, r, x, y), In(s, x, v1), In(s, y, v2).
61 Out(s, x, v) :− In(s, v), NotKill(s, x).
62
63 /* check for division by zero */
64 DivByZero(s, y) :−
65 DivStm(s, _, _, y), In(s, y, v), isMaybeZero(v).

Figure 1: An intra-procedural dataflow analysis.

Filter and Transfer Functions. Lines 30–38 define filter and trans-
fer functions for the parity lattice, e.g. abstract addition and division.
Specifically, lines 30–32 define a function to determine whether a
parity lattice element may represent zero, lines 34–35 and lines 37–
38 define abstract addition and division, respectively.

Relations & Lattices. Lines 40–45 declare four input relations
where: a fact CFG(s1, s2) represents an edge from s1 to s2 in the

Safe and Sound Program Analysis with Flix ISSTA’18, July 16–21, 2018, Amsterdam, Netherlands

control-flow graph, a fact CstStm(s , x , i) represents a constant as-
signment x = i at statement s where the variable x is assigned
the value i , a fact AddStm(s , r , x ,y) represents an addition expres-
sion r = x + y at statement s , a fact DivStm(s , r , x ,y) represents
a division expression r = x/y at statement s , and finally a fact
NotKill(s , x) represents that the variable x is not killed by the
statement s . Lines 48–49 declare two lattices that represent incom-
ing and outgoing dataflow of each control-flow graph node, i.e. the
dataflow immediately before and immediately after a statement.
Line 50 declares a relation to collect the statements (and local vari-
ables) where a division-by-zero error may occur. This is ultimately
the result of the analysis.

Semantic Rules. Lines 52–65 define the semantic rules of the
analysis. Line 53 defines a rule which propagates dataflow from
every control-flow graph node to its successors. Lines 56–61 define
the semantics of the three kinds of statements: constant assignment,
addition and division. For example, the rule for addition says that
if there is an addition statement s : r = x + y, then the value of
r , immediately after statement s , is at least the result of applying
the transfer function sum to the values of the variables x and y
immediately before the statement s . Line 61 propagates dataflow
values, from the program point immediately before a statement
to the program point immediately after that statement, for every
variable which is not killed by that statement. Finally, Line 65
uses the filter function isMaybeZero to select the statements and
variables that may cause a division by zero error.

Safety and Soundness. An important point here is that the anal-
ysis is separated into two parts: one part defines the constraints
of the analysis in a logic language, and the other part defines the
lattices and their operations in a functional language. In the pro-
gram, the functions leq, lub, glb, isMaybeZero, sum, and div are
decorated with a set of annotations. For example, the lub function
has the annotations #upperBound and #leastUpperBound specify-
ing that the function must be both an upper bound and the least
upper bound (according to the partial order defined by leq). As
another example, the sum function has the annotations #strict2,
#monotone2, and #sound2((x, y) -> x + y) specifying that the
function must be strict, monotone, and an over-approximation of
the function λx .λy.x + y. For practical reasons, each annotation
includes its arity. For example, the #monotone1 and #monotone2
annotations capture the monotonicity property of unary and binary
functions, respectively. In this example, we have explicitly anno-
tated every function with its required properties, but in practice all
annotations except for the soundness annotations can be inferred.

2.2 How Flix Programs May “Go Wrong”:

Unsafe and Unsound Programs

As discussed, a Flix program has a logic and a functional part.
The programmer uses the functional language to express abstract
domains, whereas the logic language is used to express constraints
on elements of the abstract domains. Unfortunately, user-defined
functions may contains bugs and fail to satisfy the required safety
and soundness properties. In this subsection, we consider three such
erroneous programs. We stress that these problems are not specific
to Flix, but could occur in any program analysis implementation.

⊤

Neg

Zer

Pos

⊥

(a) Sign

⊤

Neg Pos

· · · −2 −1 0 +1 +2 · · ·

⊥

(b) ConstSign

Figure 2: The Sign and ConstSign lattices.

def minus(e1: Sign, e2: Sign): Sign =
match (e1, e2) with {

case (Bot, _) => Bot
case (_, Bot) => Bot
case (Neg, Neg) => Top
case (Neg, Zer) => Neg
case (Neg, Pos) => Neg
case (Zer, Neg) => Neg
case (Zer, Zer) => Zer
case (Zer, Pos) => Neg
case (Pos, Neg) => Pos
case (Pos, Zer) => Pos
case (Pos, Pos) => Top
case _ => Top

}

Figure 3: Erroneous transfer function.

Example I. Figure 2a shows the sign lattice. This lattice has five
elements: Neg, which represents all negative integers including
zero; Zer, which represents zero; Pos, which represents all positive
integers including zero; ⊤, which represents any integer; and ⊥,
which represents “not an integer”. Figure 3 shows an implementa-
tion of the minus operation on sign lattice elements. The intention
is that the function is an over-approximation of subtraction on
integers. For example, if you have a positive number Pos and you
subtract zero Zer, then you get a positive number Pos.

We may now ask ourselves: is this function strict, monotone,
and a sound over-approximation of subtraction for integers? Strict-
ness and monotonicity are required for the minimal model of the
Flix program to exist (i.e. determinancy and termination), whereas
soundness is required to trust the result of the analysis. When run
on this program, Flix reports that the function is unsound:

Flix tells us that x = 0 and y = −1 is a counter-example to the
soundess property. We can calculate that:

0 − (−1) = +1 whereas minus(Zer, Neg) = Neg

but the abstraction of +1 yields Pos and clearly Pos ̸⊑ Neg, hence
the function is unsound! In this case, the mistake is in case (Zer,
Neg) => Neg which should have been case (Zer, Neg) => Pos
since subtracting a negative number from zero yields a positive
number. After fixing this issue, Flix does not issue any other warn-
ings and we can rest assured that the function is strict, monotone,
and sound.

ISSTA’18, July 16–21, 2018, Amsterdam, Netherlands Magnus Madsen and Ondřej Lhoták

def increment(e: ConstSign): ConstSign =
match e with {

case Bot => Bot
case Cst(n) => Cst(n + 1)
case Neg => Top
case Pos => Pos
case Top => Top

}

Figure 4: Erroneous transfer function.

Example II. Figure 2b shows the constant sign lattice, which
has the elements ⊥, ⊤, Neg, Pos, and Cst(n) for any n ∈ Z. As
before, Neg and Pos represent the negative and positive integers
(including zero), and Cst(n) represents the integer n. Intuitively,
this lattice is the reduced product of the constant propagation and
sign lattices. Figure 4 shows the implementation of the “increment
by one” operation on elements of this lattice. Again, we may ask
ourselves: is this function strict, monotone, and sound?

Perhaps surprisingly, this seemingly simple function contains
a subtle bug. When run on this program, Flix reports that the
function is not monotone and provides a counter-example x =
Cst(2147483647) and y = Pos. We can calculate:

increment(Cst(2147483647)) = Cst(−2147483648)
increment(Pos) = Pos

Let us denote increment by f . Monotonicity requires that when
x ⊑ y it must be that f (x) ⊑ f (y), but due to integer overflow
f (Cst(2147483647)) = Cst(−2147483648), and Cst(−2147483648) ̸⊑
Pos. Consequently, the function is not monotone and the fixed point
computation may not terminate. The problem is that in the def-
inition of Cst, not shown, we used a regular 32-bit integer. The
analysis must take overflow into account to ensure monotonicity!

Example III. Assume we have fixed the previous issue. Figure 5
shows an implementation of division on the ConstSign lattice.
Again, we ask ourselves: is this function, strict, monotone, and
sound? Flix reports that the function is not monotone when:

x = Cst(0) and y = Pos

Specifically, we have that divide(Cst(0), Neg) = Pos, and at the
same time divide(Pos, Neg) = Neg. However, Pos ̸⊑ Neg. Conse-
quently, the function is not monotone and the fixed point computa-
tion may not terminate. The issue is due to the missing case:
case (Cst(0), _) => Cst(0)

Adding this fixes the bug and Flix reports no other warnings and
we can rest assured that the function is strict, monotone, and sound.

Discussion. As these examples demonstrate, the implementa-
tion of abstract domains is a difficult task fraught with error. The
analysis designer must work carefully to ensure both safety and
soundness. The consequences of a small mistake can be grave: The
fixed point computation may produce non-deterministic results,
fail to terminate, or perhaps worst of all, produce unsound results.
Adding insult to injury, debugging fixed point computations tends
to be a difficult and time consuming process.

We propose to overcome these issues with automatic program
verification techniques. We want an automatic technique so that
we can help the programmer without burdening him or her with
extra work. A verification tool can provide the programmer with
confidence that his implementation is correct, or if not, provide

def divide(e1: ConstSign, e2: ConstSign): ConstSign =
match (e1, e2) with {

case (Bot, _) => Bot
case (_, Bot) => Bot
case (_, Cst(0)) => Bot
case (Cst(n1), Cst(n2)) => Cst(n1 / n2)
case (Cst(n1), Neg) => if (n1 > 0) Neg else Pos
case (Neg, Cst(n1)) => if (n1 > 0) Neg else Pos
case (Cst(n1), Pos) => if (n1 < 0) Neg else Pos
case (Pos, Cst(n1)) => if (n1 < 0) Neg else Pos
case (Neg, Neg) => Pos
case (Pos, Neg) => Neg
case (Neg, Pos) => Neg
case (Pos, Pos) => Pos
case _ => Top

}

Figure 5: Example of buggy transfer function.

concrete counter-examples showing (a) what properties are violated
and (b) give specific inputs that violate the properties.

3 BACKGROUND

In this section, we briefly recap the mathematical background be-
hind sound static analyzers. We pay close attention to the role of
lattices and their operations. Our goal is three-fold: (a) to specify the
necessary conditions for a Flix program to be safe, i.e. to capture
when a Flix program has a unique minimal model which is effi-
ciently computable by semi-naïve evaluation, (b) to specify the nec-
essary conditions for a Flix program to soundly over-approximate
the concrete behaviour of some program under analysis, and (c) to
demonstrate the complexity that faces the analysis designer and
motivate the use of automatic verification techniques.

3.1 Soundness of Abstract Semantics

At a high level, we seek to ensure that the abstract semantics em-
bodied in the Flix program is a sound over-approximation of a
specified concrete semantics of the language being analyzed.

At a general level, the concrete semantics is defined by a set S
of machine states, and a transition function f : S → S . For the
abstract semantics, we choose an abstract domain Ŝ and an abstract
transition function f̂ : Ŝ → Ŝ . To show a correspondence between
the concrete and abstract semantics, we must first define the re-
lationship between an abstract state and a concrete state, in the
form of a function β : S → Ŝ that axiomatizes the most precise
abstract representation of each concrete state. We then require that
every state transition in the concrete semantics is soundly over-
approximated by the abstract semantics. If the concrete semantics
transitions from a concrete state s to f (s), then the abstract seman-
tics must transition from β(s) to β(f (s)). However, this requirement
is too strict: it does not admit abstraction in the abstract semantics.
We add abstraction to the abstract domain by defining a partial
order ⊑ that means that if ŝ ⊑ ŝ ′, then we consider ŝ ′ to be an
abstraction of ŝ . Our soundness obligation is then:

∀s ∈ S : β(f (s)) ⊑ f̂ (β(s))

Using this inequation, we can prove that if s is the concrete state
after a finite sequence of concrete execution steps, it is abstracted
by the abstract state after the same number of abstract steps:

∀n ≥ 0 : β(f (n)(i)) ⊑ f̂ (n)(β(i)) (∗)

Safe and Sound Program Analysis with Flix ISSTA’18, July 16–21, 2018, Amsterdam, Netherlands

The proof is by induction on the number of execution steps. Here, i
is the initial program state.

In practice, we usually allow the concrete semantics to be non-
deterministic. This is necessary, for example, so that the static anal-
ysis soundly approximates the concrete execution on all possible,
unknown inputs to the program. To implement the abstract transi-
tion function, we then need an upper bound operator to compute
an over-approximation of multiple possible concrete states. A least
upper bound operator is desirable for two reasons. The first reason
is that a least upper bound yields the most precise abstraction of
multiple states. For the second reason, we must consider how we
will obtain a solution to the soundness property (∗).

We seek a value ŝ in the abstract domain such that ∀n ≥ 0 :
β(f (n)(i)) ⊑ ŝ . By (∗), it is sufficient if ∀n ≥ 0 : f̂ (n)(β(i)) ⊑ ŝ .
Kleene’s fixed point theorem provides an algorithm to compute
such an ŝ , but it requires Ŝ to be a complete semi-lattice (to have least
upper bounds), and f̂ to be continuous and therefore monotone on
that lattice (∀ŝ ⊑ ŝ ′ : f̂ (ŝ) ⊑ f̂ (ŝ ′)). We must therefore ensure that
Ŝ and f̂ have those properties in order to use the algorithm.

We have laid out the general properties that we must to prove,
but the domains S , Ŝ and functions f , f̂ are usually intricate in
practice, composed of many other smaller sets and functions. Prov-
ing the general properties requires proving similar lemmas on the
constituent sets and functions.

For the example from Section 2, we may define the concrete
state as the set of pairs of a program counter c and a mapm from
variables to integers. The abstract state could then be a map from
program counters c to maps m̂ from variables to elements of, say,
the sign lattice. The function β would then be:

β(c ,m) = λc ′.

{
λv.βZ(m(v)) if c = c ′

λv.⊥ otherwise

Here, βZ(n) gives the sign of integer n. The concrete transition
function f could be defined as follows:

f (c ,m) =

(c ′,m[x 7→m(y) +m(z)]) if instr(c) = x := y + z &

c ′ = succ(c)

. . . if instr(c) = . . .

The abstract transition function f̂ could be defined as follows:

f̂ (ŝ) = λc ′.

ŝ(c)[x 7→ ŝ(c)(y) +̂ ŝ(c)(z)]) if instr(c) = x := y + z &

c ′ = succ(c)

. . . if instr(c) = . . .

Note that the concrete and abstract transition functions have the
same structure. In order to prove that∀s ∈ S : β(f (s)) ⊑ f̂ (β(s)), we
need to prove similar statements on the constituent functions such
as + and +̂, in particular that ∀i , j ∈ Z : βZ(i + j) ⊑ βZ(i)+̂βZ(j).

The take away is that a function f̂ is a sound over-approximation
of a function f when:

∀x . β(f (x)) ⊑ f̂ (β(x)) (Soundness)

where the function β lifts a single concrete element into an element
of the abstract domain and ⊑ is the partial order of the abstract
domain. This is the property we must verify for every operation of
an abstract domain.

3.2 Partial Orders and Lattices

In the previous section, we discussed the criteria necessary for
soundness. We now turn our attention to the criteria for safety,
specifically that partial orders, lattices, and operations on them
satisfy a range of properties. Readers who are familiar with this
material may want to skip to Section 4.

Partial Order. A partial order ⊑ is a binary relation on a set S
that satisfies three properties:

∀x . x ⊑ x (Reflexivity)
∀x ,y. x ⊑ y ∧ y ⊑ x ⇒ x = y (Anti-Symmetry)
∀x ,y, z. x ⊑ y ∧ y ⊑ z ⇒ x ⊑ z (Transitivity)

Intuitively, reflexivity states that an element must be equal to itself,
anti-symmetry states that two different elements cannot be mutu-
ally less than each other, and transitivity states that if x is less than
y, and y is less than z, then x must be less than z.

Least Element. A partial order may have a “smallest” or “least”
element. This element is usually called bottom and denoted by the
⊥ symbol. It must satisfy the property:

∀x .⊥ ⊑ x (Least-Element)

Greatest Element. Symmetrically, a partial order may have a
“largest” or “greatest” element. This element is usually called top
and denoted by the ⊤ symbol. It must satisfy the property:

∀x . x ⊑ ⊤ (Greatest-Element)

Least Upper Bound. A partial order may be equipped with a least
upper bound operator ⊔. The least upper bound must return an
element that is greater than or equal to its two arguments:

∀x ,y. x ⊑ (x ⊔ y) ∧ y ⊑ (x ⊔ y) (Upper-Bound)

And the element must be the least upper bound:

∀x ,y, z. x ⊑ z ∧ y ⊑ z ⇒ (x ⊔ y) ⊑ z (Least-Upper)

That is, the least upper bound must be the smallest of all the upper
bounds of x and y. A partial order equipped with a least upper
bound is called a join semi lattice.

Greatest Lower Bound. Analogously, a partial ordermay be equipped
with a greatest lower bound operator ⊓ which must return an ele-
ment smaller than or equal to its two arguments:

∀x ,y. (x ⊓ y) ⊑ x ∧ (x ⊓ y) ⊑ y (Lower Bound)

And the element must be the greatest lower bound:

∀x ,y, z. z ⊑ x ∧ z ⊑ y ⇒ z ⊑ (x ⊓ y) (Greatest Bound)

A partial order equipped with a greatest lower bound is called a
meet semi lattice. A lattice is a partial order that is both a join and
meet semi lattice.

3.3 Functions between Orders and Lattices

We recap two important properties of functions between lattices:
strictness and monotonicity.

Strict Functions. A function f : A → B is strict if it maps the
bottom ⊥A in its domain A to bottom ⊥B in its co-domain B:

f (⊥A) = ⊥B (Strict)

ISSTA’18, July 16–21, 2018, Amsterdam, Netherlands Magnus Madsen and Ondřej Lhoták

Monotone Functions. A function f : A → B is monotone (also
called order-preserving) if it satisfies the property:

∀x ,y. x ⊑ y ⇒ f (x) ⊑ f (y) (Monotone)

A function defined over multiple parameters is monotone if it is
monotone in each parameter. Intuitively, when the input to a mono-
tone function becomes “bigger”, its output also becomes “bigger”.

3.4 Pre-Orders and Normalization

A pre-order ≼ (or quasi-order) is “almost” a partial order and must
satisfy reflexivity and transitivity, but not necessarily anti-symmetry:

∀x . x ≼ x (Reflexivity)
∀x ,y, z. x ≼ y ∧ y ≼ z ⇒ x ≼ z (Transitivity)

Pre-orders are common in program analysis. For example, a typ-
ical definition of the interval “lattice” is L = {[b, e] | b, e ∈ Z ∪

{−∞,∞}} where we identify ⊤ with [−∞,∞] and ⊥ with any el-
ement [b, e] where b > e . So, [1,−1] and [5,−7] are smaller than
each other, but they are not equal.

We can turn a pre-order into a partial order with a normal-
ization function �. The function selects a representative among
elements that are individually smaller than each other according
to the pre-order. The normalization function thus re-establishes
anti-symmetry and turns the pre-order into a partial order:

∀x ,y. � (x) ≼ �(y) ∧�(y) ≼ �(x) ⇒ �(x) = �(y)
(Anti-Symmetry)

In the case of the interval “lattice” we can use a normalization
function that maps any element [b, e] where b > e to the element
[1,−1], thus turning the pre-order on intervals into a partial order.

Applying the normalization function everywhere in a Flix pro-
gram is tedious. For this reason, we have been experimenting with
a compiler extension that automatically applies the normalization
function every time a value of a pre-order is constructed.

3.5 Finite Height Lattices

We want Flix programs to eventually terminate, i.e. to reach the
least fixed point in a finite number of steps starting from the bottom
element(s) of the lattice(s). If a partial order satisfies the ascending
chain condition we can prove that the analysis terminates.

Ascending Chain Condition. Apartial order satisfies the ascending
chain condition (ACC) if, for every chain, the sequence:

x1 ⊑ x2 ⊑ · · · ⊑ xi ⊑ xi+1 · · ·

is eventually stationary, i.e. there is a k such that xk = xk+1.
Proving the ascending chain condition is tricky for automatic

program verification techniques. Instead, we aim to prove a stronger
property with a little help from the analysis designer.

Let � : E → Int be a “height” or “termination” function mapping
each element of a lattice to a decreasing integer. We require that:

∀x . � (x) ≥ 0 (Non-Negative)
∀x ,y. x ⊑ y ∧ x , y ⇒ �(x) > �(y) (Decreasing)

If the programmer supplies � and we are able to prove the two
properties above, then the partial order satisfies the ascending
chain condition [Nielson et al. 2005]. Consequently, the fixed point
computation will eventually terminate.

4 VERIFICATION TOOLCHAIN

We now discuss how to express and use properties in Flix and the
implementation of the verification toolchain.

4.1 Annotations and Laws

In the previous section, we discussed the mathematical properties
that user-defined lattices and functions must satisfy to ensure safety
and soundness.We now turn to the real world and go into the details
of how to express and use these properties in Flix.

In Flix, a property is expressed as a boolean valued function
using the law keyword. For example,
law commutative[a, b](f: (a, a) −> b): Bool =

∀(x: a, y: a). f(x, y) == f(y, x)

declares a law named commutative which describes a property of
a binary function f from values of type a to a value of type b. The
body of the law contains a universal quantifier over two variables
x and y both of type a. The quantified expression then asserts that
f(x, y) must be equal to f(y, x). As the example shows, laws
are essentially polymorphic higher-order functions.

We associate a law with a function using the law name as an
annotation. For example,
#commutative
def plus(x: Int, y: Int): Int = x + y

and
#commutative
def eq(x: Int, y: Int): Bool = x == y

assert that the two functions plus and eq must be commutative.
The Flix compiler iterates through all annotations in the pro-

gram and instantiates each law annotation. Specifically, the first
argument of a law is the function value on which the annotation is
placed. For example, the above code fragments give rise to the two
property expressions commutative(plus) and commutative(eq).
The instantiated properties are collected and passed on to the ver-
ification toolchain. It is important to note that laws exist only at
compile-time and do not affect the run-time semantics of Flix.

The commutative law is clear and simple. For safety and sound-
ness properties, the laws are more involved. Here is the general
definition of monotonicity for binary functions:

law monotone2[a, b, c](f: (a, b) −> c,
leqa: (a, a) −> Bool,
leqb: (b, b) −> Bool,
leqc: (c, c) −> Bool): Bool =

∀(x1: a, x2: b, y1: a, y2: b).
((x1 `leqa` y1) ∧ (x2 `leqb` y2))

→ (f(x1, x2) `leqc` f(y1, y2))

We can read the law as follows: Given a function f of two arguments
of type a and b with a result type of c, and given partial orders on
a, b, and c named leqa, leqb, and leqc, then the body of the law
must be true. Specifically, for any values x1 and y1 of type a where
x1 ⊑a y1, and analogously for x2 and y2 of type b where x2 ⊑b y2,
it must be the case that f (x1, x2) ⊑c f (y1,y2). This is just a spelled
out version of the monotonicity law.

Here is the general definition of soundness for binary functions:
law sound2[a1, a2, c1, c2](fa: (a1, a1) −> a2,

fc: (c1, c1) −> c2,
beta1: c1 −> a1,
beta2: c2 −> a2,
leq: (a2, a2) −> Bool): Bool =

Safe and Sound Program Analysis with Flix ISSTA’18, July 16–21, 2018, Amsterdam, Netherlands

∀(x: c1, y: c1).
beta2(fc(x, y)) `leq` fa(beta1(x), beta1(y))

which captures the intuition discussed earlier, while taking the
different partial orders into account.

We can use these laws on a function, for example,
#monotone2(leq, leq, leq)
def plus(e1: Sign, e2: Sign): Sign = ...

where leq is the partial order for elements of type Sign. Since this
can become somewhat verbose and tedious to write, we can define
a new law specialized to sign lattice elements:
law monotoneSign2(f: (Sign, Sign) −> Sign): Bool =

monotone2(f, leq, leq, leq)

This defines a law named monotoneSign2, allowing us to write:
#monotoneSign2
def plus(e1: Sign, e2: Sign): Sign = ...

Annotation Inference. Most annotations can be inferred automati-
cally from the declarations, constraints, and types of a Flix program.
For example, if there is a declaration:

lat In(s: Stm, x: Var, v: Parity).

then we know that Parity must be a lattice and satisfy all the
properties of a lattice. Similarly, if there is a rule:
Out(s, r, sum(v1, v2)) :−

AddStm(s, r, x, y), In(s, x, v1), In(s, y, v2).

then we know that the function sum must be strict and monotone,
and we know the types of its arguments, so we can find the appro-
priate partial orders (a type has at most one partial order).

The only annotations that cannot be inferred for a Flix pro-
gram are the soundness annotations, since Flix does not know the
concrete semantics of the program under analysis.

4.2 Symbolic Evaluation

The symbolic evaluator is the main component of the verifier. Its job
is to take a property, which is a boolean valued expression that may
contain universal quantifiers, and determine whether it is true, or if
not, to produce a counter-example. The symbolic evaluator works
similarly to a normal interpreter, but where a normal interpreter
would have a signature like:

def eval(e: Expression, env: Map[Symbol, Value]): Value

the signature of the symbolic evaluator is:
def eval(e: Expression,

env: Map[Symbol, SymVal]): List[(PathConstraint, SymVal)]

where SymVal is a symbolic value, i.e. a symbolic variable or a
regular normal value, and PathConstraint is a first-order formula
over the theory of bitvectors, floating-point numbers, and integers.
Intuitively, whereas the normal interpreter returns a single value,
the symbolic evaluator returns a set of (symbolic) values where
each value is a possible outcome if and only if the path constraint
has a model, i.e. a satisfying assignment.

The symbolic evaluator works as follows: The evaluator per-
forms concrete execution whenever possible. When it encounters a
quantified expression, e.g. ∀x : Parity. e where e is an expression,
it inspects the type of the quantified variable and attempts to in-
stantiate it. For example, if the type is Parity, then the quantifier
is instantiated to the (concrete) values ⊥, ⊤, Even and Odd. If the

type is not enumerable, e.g. the type contains an integer, then a
symbolic value is instantiated. For example, if the type is Constant
(the constant propagation lattice), then the three values ⊥, ⊤, and
Cst(x) are instantiated, where x is a fresh symbolic variable. If
every quantifier has an enumerable type, then symbolic evaluation
corresponds to concrete execution, but that is rare.

Whenever the symbolic evaluator encounters a computation
with a symbolic value where it cannot continue concrete evalua-
tion, it grows the path constraint and, if necessary, returns a new
symbolic value to represent the result of the computation. For ex-
ample, if the symbolic evaluator encounters the expression x == 5,
where x is a symbolic variable of type Int, it returns two values,
true and false, where the first value is guarded by the path con-
straint x = 5 and the second is guarded by x , 5. If, on the other
hand, the symbolic evaluator encounters an expression x + 5, then
it returns a fresh symbolic variable y to represent the result with
the path constraint y = x + 5. As a consequence, in branches where
the condition cannot be determined, the evaluator proceeds along
both paths under different path constraints.

Eventually, the symbolic evaluator returns a list of (path con-
straint, symbolic value)-pairs. Since every property is boolean val-
ued, the value is either true or false. In the rare case that a user-
defined function contains an infinite loop, e.g. due to infinite re-
cursion, the symbolic evaluator loops forever and never returns.
However, in practice, this often overflows the stack and crashes the
program with a stack overflow error.

For each returned value and path constraint, we consider:
If the returned value is true under the path constraint pc, then

the property holds regardless of whether the path is realizable or
not. That is, if the path constraint is realizable, then the symbolic
execution is a possible concrete execution and it must return true,
i.e. the property holds. If, on the other hand, the path constraint is
unrealizable, then the symbolic execution does not correspond to
any concrete execution and can safely be ignored. In other words,
we can ignore the path constraint entirely; we do not need to feed
it to the SMT solver.

If the returned value is false under the path constraint pc,
then the property may or may not hold. If the path constraint
is realizable, then we have found a counter-example, whereas if
the path constraint is unrealizable, then the symbolic execution
does not correspond to any concrete execution, and it can safely be
ignored. To determine which is the case, we feed the path constraint
to the SMT solver. The SMT solver may do one of four things:

• The SMT solver may return “SAT” and a model (an assign-
ment of the free variables in the path constraint). If so, we
have found a concrete execution that returns false, i.e. a
counter-example to the property. We extract the free vari-
ables from the model and recompose them with some infor-
mation about how we instantiated the quantified variables
earlier, and we report the counter-example to the user.

• The SMT solver may return “UNSAT”, which means that the
path constraint has no solution and so does not correspond
to any concrete execution. In this case, we have dodged a
bullet, and the property still holds.

• The SMT solver may return “UNKNOWN” if the path con-
straint belongs to an undecidable fragment of logic or if the

ISSTA’18, July 16–21, 2018, Amsterdam, Netherlands Magnus Madsen and Ondřej Lhoták

SMT solver took longer than a user-specified timeout. In
both cases, we have to conservatively assume that the prop-
erty does not hold. Unfortunately, since there is no model,
we cannot report a counter-example to the programmer.

• The SMT solver may loop forever if the path constraint
belongs to an undecidable fragment of logic. As stated above,
we handle this with a user-specified timeout and report to
the programmer that it is unknown if the property holds.

We perform all the above steps for every property in the program.
If a property fails to hold, the verifier issues an error message and
the counter-example, as shown in Section 2.

Language Support. The symbolic evaluator supports the entire
Flix language, including algebraic data types, pattern matching,
closures, higher-order functions, arbitrary and machine-sized arith-
metic, and floating-point arithmetic. In fact, a specific design goal
of the functional language in Flix was for it to be amenable to
automatic program verification techniques.

4.3 Quick Checker

If the symbolic evaluator or the SMT solver fail to verify a property,
all is not lost. We can fall back on testing as an empirical way to gain
some confidence that our program is correct. Quick checking is an
automatic test generation technique originally proposed by Classen
and Hughes for the Haskell programming language [Claessen and
Hughes 2011]. The idea is that given a universally quantified for-
mula, a quick checker randomly instantiates each quantifier and
evaluates the formula to determine whether or not it holds for the
specific input. In essence, quick checking is a form of randomized
testing, but it is smart about how it selects its inputs.

Inspired byMidtgaard andMøller [2015], we have implemented a
quick checker on top of our verification infrastructure. Naturally, if
the verifier has proven a property, there is no reason to test or quick
check it, but in cases where the SMT solver reported “UNKNOWN”,
quick checking can serve as a useful fallback. For details of how to
implement such a quick checker, we refer the reader to [Midtgaard
and Møller 2015].

4.4 Limitations

Undecidability. A limitation of our approach is decidability of
the path constraints generated by the symbolic evaluator. For ex-
ample, linear integer constraints are decidable, whereas non-linear
arithmetic is undecidable. Undecidability is an unfortunate, but
inherent limitation of any fully automatic verification technique.
In Section 5, we experimentally evaluate how often the SMT solver
reports “UNKNOWN”.

Recursion and Infinite Loops. Another limitation of the symbolic
evaluator is that it cannot prove properties of recursive functions
unless the arguments happen to be known statically, which is rarely
the case. If the symbolic evaluator encounters a recursive call, it will
enter that call, and if the arguments are symbolic, it will continue
the recursion forever. What is needed is an induction hypothesis
that can be applied at the place of the recursive call. One option
would be to ask the programmer for the induction hypothesis. This
is something we want to explore more in the future.

Correctness of Constraints. We have discussed how to verify the
soundness of the abstract domains and the operations on them. The
abstract domains are the building blocks from which the static anal-
ysis is constructed. Specifically, as shown in Section 2, the static
analysis is formulated as a set of constraints on these domains.
Each constraint is a Horn clause that may use the functions which
implement the abstract operations of the abstract domains. The
constraints are safe by construction, i.e. strict and monotone, pro-
vided that the functions on the abstract domain are. The soundness
of the constraints, and hence of the overall analysis, remains the
responsibility of the analysis designer.

In practice, the complete concrete semantics of a language is
often not known, and much of the job of the analysis designer is
to actually determine and specify the high level structure of that
semantics. On the other hand, the semantics of the underlying
operations, such as integer arithmetic, is well known. Thus, it is
feasible and useful to automatically verify the soundness of these
underlying operations. For the high level structure, we have to trust
that the analysis designer has understood the semantics correctly
and structured the constraints of the Flix program accordingly.

5 EVALUATION

In this section, we evaluate the Flix verification toolchain on several
lattices from the book Introduction to Lattices and Order [Davey and
Priestley 2002] and on several well-known abstract domains from
the static analysis literature.

5.1 Implementation Details

The Flix compiler and run-time is currently 40,000 lines of Scala
code. Of these, the symbolic evaluator is 1,500 lines of code, the
infrastructure for laws and properties is 1,000 lines of code, and the
interface for the SMT solver is around 500 lines of code. The sym-
bolic evaluator handles all aspects of the Flix language, including
closures, algebraic data types, and pattern matching. Flix uses the
Z3 SMT solver from Microsoft [Moura and Bjørner 2008]. The Flix
implementation is open-source and freely available online1.

5.2 Case Study: Basic Lattices

We selected a variety of lattices from Introduction to Lattices and
Order [Davey and Priestley 2002]. For each lattice, we defined the
bottom element, the top element, the partial order, the least upper
bound and the greatest lower bound. For details on these lattices,
we refer the reader to the book.

Results. Table 1 shows the results of running the verifier on
these nine lattices. For each lattice, we collected the following
information: the number of lines of code used to implement the
lattice, the number of properties to check, the number of paths
executed by the symbolic evaluator, the number of queries issued
to the SMT solver, and the total time spent by the verifier. As
an example, the Cube lattice is implemented in 127 lines of Flix
code, there were 13 properties to check, the symbolic evaluator
encountered 2,904 paths during evaluation, 0 SMT queries were
issued, and the verifier took 2.0 seconds. No SMT queries were
issued by the symbolic evaluator because the lattice is finite and

1Official website: http://flix.github.io. GitHub repository: http://github.com/flix/flix

http://flix.github.io
http://github.com/flix/flix

Safe and Sound Program Analysis with Flix ISSTA’18, July 16–21, 2018, Amsterdam, Netherlands

Table 1: Verification of lattices from Davey and Priestley [2002].

Lattice Lines Properties Paths Queries Time

Cube 127 13 2,904 - 2.0s
InfNoAccNoDcc 59 13 189 340 2.9s
M2 48 13 412 - 0.4s
M3 51 13 765 - 0.5s
M2 +M3 194 13 4,077 - 2.6s
N5 61 13 765 - 1.2s
Sub D4 147 13 5,530 - 2.8s
Sub Z2 Z4 121 13 2,904 - 1.7s
Sub Zero⋆ 282 13 11,869 - 9.1s

Totals 1,090 117 29,415 340 23.2s

thus the symbolic evaluation amounted to exhaustive enumeration
and concrete evaluation of all the quantifiers in each property. Even
for these basic lattices, the number of paths can be quite large
and thus the burden for the programmer to verify these properties
manually would be quite substantial. The running times range from
less than half a second to around nine seconds. This is slower than
a typical run of the Flix compiler, but still fast enough that the
verifier can be run repeatedly during program development.

We were able to automatically verify all the required properties
of the lattices. We did find some bugs during development, and in
most cases, these were simple transcription errors or copy-paste
errors. This suggests that even for “trivial” lattices that were merely
transcribed from a book, subtle errors can and do creep in. In sum-
mary, we verified 117 properties for nine lattices implemented in
around 1,000 lines of Flix code.

5.3 Case Study: Abstract Domains

We implemented eleven abstract domains from the static analy-
sis literature. Many of these abstract domains are classic textbook
examples, e.g. the 4-valued boolean Belnap domain, the constant
propagation domain, interval domains, and sign domains. To have
some richer or significantly more complicated domains, we con-
structed the reduced product of several of these domains, e.g. the
reduced product of the constant propagation and parity domain.

Table 2 shows the results of verifying each of these domains.
For lack of space, we only briefly describe each abstract do-

main. Belnap is the classic four-valued boolean domain. Constant
is the flat constant propagation domain. Interval is the interval
domain with the use of a normalization function as described ear-
lier. IntervalAlt is an alternative interval domain where every
interval larger than ten is mapped to the top element. Parity is
the classic parity domain. PrefixSuffix is a domain that tracks
the first and last character of a string. Mod3 is a modulo-3 domain.
Sign and StrictSign are the domains described earlier. Finally,
ConstParity and ConstSign are reduced products2 of the constant
domain and the parity and sign domains, respectively. The abstract
domains are described in greater detail in the technical report.

Results. Table 2 shows the results of running the verifier on these
eleven abstract domains. The structure of the table is similar to
Table 1, but includes some extra columns. The column Abstracts
refers to the concrete domain approximated by the abstract domain.
The Ops column refers to the number of operations that were im-
plemented on this lattice, excluding the partial order, least upper

2Note: The reduced product should not be confused with the Cartesian product.

Table 2: Verification of abstract domains.

Domain Abstracts Ops Lines Safety Soundness Paths Queries Time

Belnap Boolean 7 177 38 / 38 7 / 7 2,353 0 0.8s
Constant Int32 17 268 61 / 61 17 / 17 2,344 132 2.3s
Interval BigInt 9 184 22 / 23 9 / 9 23,520 3,484 29.5s
IntervalAlt BigInt 9 199 25 / 26 9 / 9 170,650 23,091 187.0s
Parity Int32 17 296 61 / 61 17 / 17 4,637 39 2.3s
PrefixSuffix String 3 147 24 / 24 0 / 3 29,416 10,209 75.3s
Mod3 BigInt 9 209 39 / 39 8 / 9 6,755 596 7.2s
Sign BigInt 9 233 37 / 37 9 / 9 5,600 38 2.8s
StrictSign BigInt 9 226 39 / 39 9 / 9 5,750 80 2.3s

ConstParity BigInt 9 239 35 / 36 9 / 9 11,448 1,540 14.1s
ConstSign BigInt 9 233 37 / 37 9 / 9 11,672 924 9.7s

Totals 107 2,411 419 / 421 103 / 107

bound, etc. The columns Safety and Soundness refer to the num-
bers of safety and soundness properties that were present and that
were verified. For example, we implemented 7 operations (exclud-
ing ⊑, ⊔, and ⊓) for the Belnap domain in 177 lines of Flix code.
This resulted in 38 + 7 properties to be checked. The breakdown
of these were 1x Reflexivity, 1x Anti-Symmetry, 1x Transitiv-
ity, 1x Least-Element, 1x Upper-Bound, 1x Least-Upper-Bound,
1x Greatest-Element, 1x Lower-Bound, 1x Greatest-Lower-
Bound, 1x Non-Negative, 1x Decreasing, 7x Strictness, 7x
Monotonicity, 7x Commutativity, and 6x Associativity, to-
gether with 1x Sound-1, and 6x Sound-2. The symbolic evaluator
encountered 2,353 paths and issued 0 SMT queries. The total verifi-
cation time, for this domain, was 0.8 second.

In total, we proved 419 out of 421 (99.5%) safety properties and
103 out of 107 soundness properties (96.3%). For the interval lattices,
we failed to prove 2 safety properties due to uses of multiplication.
For the PrefixSuffix lattice, we failed to prove 3 soundness prop-
erties due to the lack of string support in the SMT solver that we
used. Finally, for the Mod3 lattice, we failed to prove 1 soundness
property due to multiplication.

We investigated the long running time of the verifier on the
Interval and PrefixSuffix domains. We see that the number of
explored paths and SMT queries is significantly higher than for the
other domains. We looked into the details of each property and
discovered that in most cases just a few properties are responsible
for the majority of paths and SMT queries. For example, for the
PrefixSuffix lattice, we discovered that associativity of the
least upper bound explored 14,000 paths, issued 6,000 queries, and
took 60s. If verification time is a concern, an option might be to set a
small timeout for each property, which would cause the verification
to complete quickly at the cost of failing to prove a few properties.

In summary, we implemented 11 abstract domains with 107
operations in 2,411 lines of Flix code. This gave rise to 421 safety
and 107 soundness properties. Of these, we were able to prove 99.5%
and 96.3% of the properties automatically.

Discussion. We used the verifier during the implementation of
these lattices, and in our experience it was quite helpful. For exam-
ple, we would frequently implement a function and then run the
verifier to check that the function was correct. Furthermore, we
found that when a mistake was made, frequently multiple proper-
ties would be broken (e.g. bothUpper-Bound andCommutativity),
and looking at the multiple counter-examples was more helpful
than looking at a single counter-example.

ISSTA’18, July 16–21, 2018, Amsterdam, Netherlands Magnus Madsen and Ondřej Lhoták

6 RELATEDWORK

This paper draws together several fields: the design and implementa-
tion of static analysis frameworks, program verification techniques,
and dynamic symbolic execution.

Static Analysis Frameworks. Over the years, several static anal-
ysis frameworks have been proposed. PAG is a dataflow analysis
framework that generates C code from the specification of lattices
and transfer functions [Martin 1998]. WALA is a static analysis
library written in Java [Fink and Dolby 2012]. WALA implements
many popular static analyses, including points-to analysis, class
hierarchy analysis, and the IFDS algorithm [Reps et al. 1995]. Soot
is a Java bytecode analysis framework that has been widely used as
a frontend for other static analyses [Vallée-Rai et al. 1999]. Doop is
a points-to analysis framework for Java [Bravenboer and Smarag-
dakis 2009; Smaragdakis and Bravenboer 2011]. Hoopl is a dataflow
analysis and transformation framework written in Haskell [Ram-
sey et al. 2010]. Frama-C is a static analysis framework for C pro-
grams [Cuoq et al. 2012].

A common limitation of these frameworks is that they assume
the user-defined implementations of abstract domains and their
operations are correct (safe and sound). As far as we know, Flix is
the first static analysis “framework” that attempts to verify these
implicit assumptions. If a Flix program passes the verifier, then the
programmer can be confident that his or her program satisfies the
necessary properties for the fixed point computation to terminate
with a sound deterministic result.

Verified Static Analyzers. CompCert is a formally verified realistic
compiler for the C programming language [Leroy 2006, 2009]. The
compiler is implemented and proven correct using the Coq proof as-
sistant [Barras et al. 1997; Bertot and Castéran 2013; Chlipala 2013].
The correctness proof guarantees that the compiler preserves the
semantics of the original program through the phases of the com-
piler all the way down to machine code. Proving correctness of
CompCert was a significant task and required a multiple person-
year effort. The compiler is itself roughly 25% program code and
75% proof code. Multiple static analyses have been implemented on
top of CompCert: (a) an intra-procedural, flow-sensitive, and field-
sensitive alias analysis [Robert and Leroy 2012], (b) a value analysis
with a non-relational interval domain [Blazy et al. 2013], and (c) a
larger static analyzer, Verasco, which includes non-relational inte-
ger interval and congruence domains, and relational polyhedra and
symbolic equalities domains [Jourdan et al. 2015].

Flix and Coq offer complementary approaches to the same prob-
lem, but starting from opposite ends. The Flix verifier is fully
automatic and imposes no extra burden on the programmer. On the
other hand, it is limited to fairly simple abstract domains defined
without the use of recursion. Coq, in contrast, requires a lot of extra
work from the programmer, but can prove properties involving
inductive definitions. We do not think either approach is better;
ultimately it depends on the type of analysis being implemented,
and the amount of effort the analysis designer is willing to spend.

Randomized Testing. QuickCheck is a technique, originally de-
veloped for Haskell, which performs random light-weight test-
ing [Claessen and Hughes 2011]. In QuickCheck, the developer or
library specifies the properties that some mathematical object must

satisfy and provides methods to randomly generate instances of
those objects. QuickCheck then attempts to falsify the property by
generating input aimed at interesting corner cases. Quick Checking
has been adapted to test the correctness of lattices.

In relation to Flix, verification offers a stronger guarantee than
testing: If we have proven some property, there is no reason to
test that property. However, in cases where the verifier is unable to
prove a property, testing can be used as a fallback. Inspired by [Midt-
gaard and Møller 2015], we have implemented a quick checker on
top of the Flix verification infrastructure. One nice extension of this
work is that our quick checker also checks soundness properties.

Symbolic Evaluation. The idea of symbolic execution goes back
more than three decades [Boyer et al. 1975; King 1976]. Since then,
a lot of research effort has been devoted to concolic testing, which
executes the program both symbolically and concretely [Godefroid
et al. 2005; Sen and Agha 2006]. The symbolic evaluator in Flix is a
fairly straightforward implementation of these classic ideas with a
special focus on (a) handling all aspects of the Flix language and
(b) giving high-quality error messages.

7 CONCLUSION

In this paper we have proposed the use of automatic program
verification techniques to ensure the safety and soundness of static
analysis tools. Safety guarantees that the fixed point computation
converges and terminates with a deterministic result. Soundness
ensures that operations on abstract domains over-approximate their
corresponding concrete operations.

We have implemented a verification toolchain in Flix, a func-
tional and logic programming language for the implementation of
static analysis tools. If the specification of the static analysis, i.e.
the constraints of the Flix program, is sound, the verifier can be
used to guarantee that the overall analysis is sound.

We have applied the verification toolchain to several abstract
domains. The experiments showed that we were able to prove
99.5% of the safety and 96.3% of the soundness properties. The
experimental results suggest that the use of automatic verification
techniques is feasible and can help increase confidence in the overall
correctness of static analyses.

ACKNOWLEDGMENT

This research was supported by the Natural Sciences and Engineer-
ing Research Council of Canada.

REFERENCES

Bruno Barras, Samuel Boutin, Cristina Cornes, Judicaël Courant, Jean-Christophe Filli-
atre, Eduardo Gimenez, Hugo Herbelin, Gerard Huet, Cesar Munoz, Chetan Murthy,
and Others. 1997. The Coq Proof Assistant Reference Manual. Ph.D. Dissertation.

Yves Bertot and Pierre Castéran. 2013. Interactive Theorem Proving and Program
Development: Coq’Art: The Calculus of Inductive Constructions. Springer.

Sandrine Blazy, Vincent Laporte, André Maroneze, and David Pichardie. 2013. Formal
Verification of a C Value Analysis Based on Abstract Interpretation. In International
Static Analysis Symposium (SAS).

Robert S. Boyer, Bernard Elspas, and Karl N. Levitt. 1975. SELECT— a Formal System for
Testing andDebugging Programs by Symbolic Execution. In Proc. of the International
Conference on Reliable Software.

Martin Bravenboer and Yannis Smaragdakis. 2009. Strictly Declarative Specification of
Sophisticated Points-To Analyses. In Proc. Object-Oriented Programming, Systems,
Languages, and Applications (OOPSLA).

Safe and Sound Program Analysis with Flix ISSTA’18, July 16–21, 2018, Amsterdam, Netherlands

Stefano Ceri, Georg Gottlob, and Letizia Tanca. 1989. What You Always Wanted to
Know About Datalog (and Never Dared to Ask). IEEE Transactions on Knowledge
and Data Engineering (TKDE) (1989).

Adam Chlipala. 2013. Certified Programming with Dependent Types: A Pragmatic
Introduction to the Coq Proof Assistant. MIT Press New York.

Koen Claessen and John Hughes. 2011. QuickCheck: A Lightweight Tool for Random
Testing of Haskell Programs. International Conference on Functional Programming
(ICFP) (2011).

Pascal Cuoq, Florent Kirchner, Nikolai Kosmatov, Virgile Prevosto, Julien Signoles, and
Boris Yakobowski. 2012. Frama-C – A Software Analysis Perspective. In Software
Engineering and Formal Methods (SEFM).

Brian Davey and Hilary Priestley. 2002. Introduction to Lattices and Order. Cambridge
University Press.

Stephen Fink and Julian Dolby. 2012. WALA – The TJ Watson Libraries for Analysis.
Patrice Godefroid, Nils Klarlund, and Koushik Sen. 2005. DART: Directed Automated

RandomTesting. In Proc. Programming Language Design and Implementation (PLDI).
Jacques-Henri Jourdan, Vincent Laporte, Sandrine Blazy, Xavier Leroy, and David

Pichardie. 2015. A Formally-Verified C Static Analyzer. In Proc. Principles of Pro-
gramming Languages (POPL).

James C. King. 1976. Symbolic Execution and Program Testing. Commun. ACM (1976).
Xavier Leroy. 2006. Formal Certification of a Compiler Back-End or: Programming

a Compiler with a Proof Assistant. In Proc. Principles of Programming Languages
(POPL).

Xavier Leroy. 2009. Formal Verification of a Realistic Compiler. Commun. ACM (2009).
Magnus Madsen, Ming-Ho Yee, and Ondřej Lhoták. 2016a. From Datalog to Flix: A

Declarative Language for Fixed Points on Lattices. In Proc. Programming Language
Design and Implementation (PLDI).

Magnus Madsen, Ming-Ho Yee, and Ondřej Lhoták. 2016b. Programming a Dataflow
Analysis in Flix. In Tools for Automatic Program Analysis (TAPAS).

Magnus Madsen, Ramin Zarifi, and Ondřej Lhoták. 2018. Tail Call Elimination and
Data Representation for Functional Languages on the Java Virtual Machine. In Proc.
International Conference on Compiler Construction (CC).

Florian Martin. 1998. PAG – An Efficient Program Analyzer Generator. The Interna-
tional Journal on Software Tools for Technology Transfer (1998).

Jan Midtgaard and Anders Møller. 2015. QuickChecking Static Analysis Properties. In
Software Testing, Verification and Validation (ICST).

Leonardo De Moura and Nikolaj Bjørner. 2008. Z3: An Efficient SMT Solver. In Tools
and Algorithms for the Construction and Analysis of Systems (TACAS).

Flemming Nielson, Hanne Nielson, and Chris Hankin. 2005. Principles of Program
Analysis. Springer.

Norman Ramsey, Joao Dias, and Simon Peyton Jones. 2010. Hoopl: AModular, Reusable
Library for Dataflow Analysis and Transformation. In Proc. Haskell Symposium.

Thomas Reps, Susan Horwitz, and Mooly Sagiv. 1995. Precise Interprocedural Dataflow
Analysis via Graph Reachability. In Proc. Principles of Programming Languages
(POPL).

Valentin Robert and Xavier Leroy. 2012. A Formally-Verified Alias Analysis. In Inter-
national Conference on Certified Programs and Proofs (CPP).

Koushik Sen and Gul Agha. 2006. CUTE and jCUTE: Concolic Unit Testing and Explicit
Path Model-Checking Tools. In Computer Aided Verification (CAV).

Yannis Smaragdakis and Martin Bravenboer. 2011. Using Datalog for Fast and Easy
Program Analysis. In Datalog Reloaded.

Raja Vallée-Rai, Phong Co, Etienne Gagnon, Laurie Hendren, Patrick Lam, and Vijay
Sundaresan. 1999. Soot – A Java Bytecode Optimization Framework. In Proc. Centre
for Advanced Studies on Collaborative Research (CASCON).

	Abstract
	1 Introduction
	2 Motivation
	2.1 A Simple Dataflow Analysis
	2.2 How Flix Programs May ``Go Wrong'': Unsafe and Unsound Programs

	3 Background
	3.1 Soundness of Abstract Semantics
	3.2 Partial Orders and Lattices
	3.3 Functions between Orders and Lattices
	3.4 Pre-Orders and Normalization
	3.5 Finite Height Lattices

	4 Verification Toolchain
	4.1 Annotations and Laws
	4.2 Symbolic Evaluation
	4.3 Quick Checker
	4.4 Limitations

	5 Evaluation
	5.1 Implementation Details
	5.2 Case Study: Basic Lattices
	5.3 Case Study: Abstract Domains

	6 Related Work
	7 Conclusion
	References

