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Abstract
Precise, flow-sensitive analyses of pointer relationshipsoften rep-
resent each object using the set of local variables that point to it (the
alias set), possibly augmented with additional predicates. Many
such analyses are difficult to scale due to the size of the abstraction
and due to flow sensitivity. The focus of this paper is on efficient
representation and manipulation of the alias set. Taking advantage
of certain properties of static single assignment (SSA) form, we
propose an efficient data structure that allows much of the repre-
sentations of sets at different points in the program to be shared.
The transfer function for each statement, instead of creating an up-
dated set, makes only local changes to the existing data structure
representing the set. The key enabling properties of SSA form are
that every point at which a variable is live is dominated by its def-
inition, and that the definitions of any set of simultaneously live
variables are totally ordered according to the dominance relation.
We represent the variables pointing to an object using a listordered
consistently with the dominance relation. Thus, when a variable is
newly defined to point to the object, it need only be added to the
head of the list. A back edge at which some variables cease to be
live requires only dropping variables from the head of the list. We
prove that the analysis using the proposed data structure computes
the same result as a set-based analysis. We empirically showthat
the proposed data structure is more efficient in both time andmem-
ory requirements than set implementations using hash tables and
balanced trees.

Categories and Subject Descriptors D.3.3 [Programming Lan-
guages]: Language Constructs and Features—Dynamic Storage
Management; D.3.4 [Programming Languages]: Processors—
Compilers; F.3.2 [Logics and Meanings of Programs]: Semantics
of Programming Languages—Program Analysis

General Terms Algorithms, Languages, Performance, Verifica-
tion

Keywords dataflow analysis, pointer analysis, alias analysis,
shape analysis, static single assignment form, dominance,live vari-
ables

1. Introduction
Many static analyses have been proposed to infer propertiesabout
the pointers created and manipulated in a program. The proper-
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ties inferred by these analyses are useful in applications such as
call graph construction, escape analysis, bug finding, and proving
domain-specific correctness properties of the program. Different
applications require different tradeoffs between precision and ef-
ficiency. This design space has been mapped and surveyed [12,22].
A somewhat fuzzy distinction has been made between “shape”
analyses (which are generally more precise) and “pointer” anal-
yses (which are generally more efficient). A shape analysis em-
phasizes individual concrete objects and the relationships between
them, whereas a pointer analysis emphasizes the pointers, and often
models multiple concrete objects using the same abstract represen-
tative (e.g. an allocation site).

This paper focuses on an increasingly used abstraction, which
we call alias sets, that combines certain aspects of both “pointer”
and “shape” abstractions. An alias set is the set of all localpointer
variables that point to a given object. The alias set contains all of
the pointers that point to the object at run time, and no others. If
the analysis is uncertain about whether a given pointerx points to
the concrete object, instead of creating a may- or must-point-to set,
it creates two alias sets, only one of which containsx. As a result,
like in a shape abstraction, every alias set (except the empty one)
corresponds to at most one concrete object at any given pointin
time during program execution. This makes the abstraction precise
and enables strong updates. Thus alias sets are useful for analyses
that track individual objects. Like a pointer abstraction,an alias
set emphasizes the local pointers pointing to the object, rather than
the precise relationships between objects, which are expensive to
model. The alias set abstraction is more precise than most pointer
analyses in that it subsumes both may- and must-alias information.
We will give a more precise definition and detailed discussion of
alias sets in Section 2.

Alias sets have been found to be useful in several classes of ap-
plications. They are the basis of many shape abstractions. Sagiv et
al. have designed a shape analysis that uses alias sets as theab-
straction of a heap object, which it augments with edges between
alias sets to model inter-object relationships [23]. Othershape anal-
yses [11,24] refine the object abstraction further (e.g. with heap ac-
cess paths or domain-specific predicates), but generally retain the
alias set at its core. Alias sets are a special case of access path sets:
they are sets of access paths with zero dereferences. Whereas an
access path begins at a local variable and specifies a list of fields
to be followed to reach the object, an alias set contains onlythe
local variables pointing directly to the object. Alias setshave also
been successful in analyses that are lighter than shape analysis, but
need more precise consideration of individual objects thanmost
pointer analyses can provide. For example, the alias set abstraction
has been used to detect memory leaks and automatically free ob-
jects [3, 19]. Alias sets have also been extended for precisecheck-
ing of typestate properties [8,9,17]. For these applications, pointer
analyses that determine only that a pointer points to some object
allocated at a given allocation site are insufficient, because these



analyses need to keep track of individual objects as execution flows
from one instruction to the next. We discuss these applications of
alias sets in more detail in the related work section.

Alias set analysis subsumes both may- and must-alias analysis.
Pointer analyses generally use one of two abstractions. Thefirst
are points-to pairs(p, o), indicating that the pointerp may point
to one of the concrete objects represented by the abstract object o.
The second are may- or must-alias pairs(p1, p2), indicating that the
pointersp1 andp2 may or must point to the same object. In compar-
ison, the alias set abstraction associates with each program point a
set of alias sets, each of the form{p1, . . . , pn}. The presence of the
set{p1, . . . , pn} indicates that there may exist an object pointed to
by all of the pointersp1, . . . , pn and no others. The presence of an
alias set containing bothp1 andp2 at a given program point im-
plies thatp1 andp2 may be aliased at that point. On the other hand,
if every alias set at a given program point contains either both p1

andp2 or neither of them, thenp1 andp2 must be aliased at that
point. If information about allocation sites is needed, an alias set
could be augmented with an allocation site, and thus represent only
those objects pointed to by the pointers in the set and allocated at
the given allocation site.

In recent years Static Single Assignment (SSA) form [4] has
gained popularity as an intermediate representation (IR) in optimiz-
ing compilers. The key feature of this IR is that every variable in the
program is a target of only one assignment statement. Therefore, by
construction, any use of a variable always has one reaching defini-
tion. This simplifies program analysis. SSA form has been applied
in many compiler optimizations including value numbering,con-
stant propagation and partial-redundancy elimination. Inaddition,
SSA form has other less obvious properties that simplify program
analysis. Specifically, the entire live range of any variable is domi-
nated by the (unique) definition of that variable, and the definitions
of any set of simultaneously live variables are totally ordered ac-
cording to the dominance relation. Thus, the definition of one of the
variables is dominated by all the others, and at this definition, the
variables are all live and have the values that they will haveuntil the
end of the live range. These properties have been used to define an
efficient register allocation algorithm [10]. We exploit these same
properties to efficiently represent the set of variables pointing to an
object.

Analyses using alias sets are difficult to make efficient for two
reasons. First, the size of the abstraction is potentially exponential
in the number of local variables that are ever simultaneously live.
Second, the analyses are flow-sensitive, so many different alias sets
must be maintained for different program points. The first issue, in
the rare cases that the number of sets grows uncontrollably,can be
effectively solved by one of several widenings suggested bySagiv
et al. [23]. Our work addresses the second issue. When the variable
sets are represented using linked lists ordered by dominance, we
show that due to the dominance properties of SSA form, updates
needed to implement the analysis occur only at the head of thelists.
As a result, tails of the lists can be shared for different program
points.

This paper makes the following contributions:

• We formalize an alias set abstraction for programs in SSA
form. The abstraction can be implemented using any set data
structure, including ordered lists. The abstraction can beused
to provide may and must-alias information to a client analysis
or used in a shape analysis with or without further information
about incoming pointers from other objects.

• We prove that if the program being analyzed is in SSA form and
if the lists are ordered according to the dominance relationon
the definition sites of variables, then the analysis requires only

local updates at the head of each list. Thus, the tails of the lists
can be shared at different program points.

• We implement an interprocedural context-sensitive analysis us-
ing the abstraction as an instance of the IFDS algorithm [20],
and evaluate the benefits of the list-based data structure com-
pared to sets implemented using balanced trees and hash tables.

The remainder of the paper is organized as follows: Section 2
formalizes the alias set abstraction and defines transfer functions
that can be used in any standard dataflow analysis algorithm to
compute the abstraction. In Section 3 we give a brief introduction
to SSA form and define terms used in the remainder of the paper.
Section 4 presents a new data structure and corresponding transfer
functions for representing alias sets. Empirical results comparing
the running times and memory consumption of the analysis using
different data structures are presented in Section 5. We discuss
related work in Section 6 and give concluding remarks in Section 7.

2. Alias Set Analysis
This section defines how objects are represented using aliassets
and presents a transfer function to determine the alias setsat each
program point.

The overall abstractionρ♯ is a set of abstract objects (i.e. alias
sets). This abstract set is an overapproximation of run-time be-
haviour. For every concrete object that could exist at run time at
a given program point, the abstraction always contains an alias set
that abstracts that concrete object; however, the abstraction may
conservatively contain additional alias sets that do not correspond
to any concrete object. Each alias seto♯ is a set of local variables
of pointer type. The alias set contains exactly those variables that
point to the corresponding concrete object at run time. The alias set
is neither a may-point-to nor a must-point-to approximation of the
concrete object; it contains all pointers that point to the concrete
object and no others. If the analysis is uncertain whether a given
pointerx points to the concrete object, it must represent the con-
crete object with two alias sets, one containingx and the other not
containingx.

For example, consider a concrete environment in which vari-
ablesx andy point to distinct objects andz may be either null or
point to the same object asx. The abstraction of this environment
would be the set of alias sets{{x}, {x, z}, {y}}.

Each alias set except the empty set represents at most one
concrete object at any given instant at run time. For example,
consider the alias set{x}. At run time, the pointerx can only
point to one concrete objecto at a time; thus at that instant, the
alias set{x} represents onlyo and no other concrete objects. This
property enables very precise transfer functions for individual alias
sets, with strong updates. Continuing the example, the program
statementy := x transforms the alias set{x} to {x, y}, with no
uncertainty. We know that the unique concrete object represented
by {x} before the statement is represented by{x, y} after the
statement. Of course, since the analysis is conservative, there may
be other spurious alias sets in the abstraction. The important point
is that any given abstract object is tracked precisely by theanalysis.

This basic abstraction can be extended or refined as appropri-
ate for specific analyses. For example, Sagiv et al. [23] define a
shape analysis that uses this same abstraction to representobjects,
and adds edges between abstract objects to represent pointer rela-
tionships between concrete objects. Other analyses refine the ab-
straction by adding conditions to the alias sets that further limit the
concrete objects that they represent. For example, an aliasset rep-
resenting concrete objects pointed to by a given set of pointers can
be refined to represent only those concrete objects that werealso
allocated at a given allocation site.
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Figure 1. Transfer functions on individual alias sets. The superscript 1 on the function identifies the version of the transfer function; we will
present modified versions of the transfer functions later inthe paper.

The abstraction subsumes both may-alias and must-alias rela-
tionships. If variablesx andy point to distinct objects,ρ♯ will not
contain any set containing bothx andy. If variablesx andy point
to the same object, every set inρ♯ will contain either bothx andy,
or neither of them.

The analysis is performed on a simplified intermediate repre-
sentation containing the following intraprocedural instructions:

s ::= v1 ← v2 | v ← e | e← v | v ← null | v ← new

The symbole represents any heap location, such as a field of an
object or an array element andv can be any variable from the
set of local variables of the current method. The instructions are
self-explanatory: they copy object references between variables
and the heap, assign thenull reference to a variable, and create
a new object. In addition, the IR contains method call and return
instructions.

In Figure 1 we define transfer functions that specify the effect of
an instruction on a single alias set at a time. Ifs is any statement in
the IR except a heap load, and ifo♯ is the set of variables pointing
to a given concrete objecto, then it is possible to compute the exact
set of variables which will point too after the execution ofs. This
enables the analysis to flow-sensitively track individual objects
along control flow paths. When a new object is created and assigned
to a variable (s = v ← new), the transfer functionJsK1gen creates a
new alias set containing onlyv, since at runtime, afters executes,
v is the only variable that points to the new object. The copy
statementv1 ← v2 either adds or removes the variablev1 from
an alias set depending on whether the source variablev2 points to
the object. Strong updates are also performed in the case ofnull and
newsince, after these assignments execute, the assigned variable no
longer points to any object that it was previously pointing to. The
store statement has no effect on an alias set, since it does not affect
the values of any local variables. A load splits an alias set into two,
one containing the target of the load and the other not containing it.
The overall transfer functionJsK1

ρ♯ applies the per-alias-set transfer
functionJsK1

o♯ to each alias sets in the abstract environment.
The alias sets at each point in the program can be computed us-

ing these transfer functions in a standard worklist-based dataflow
analysis framework like the one shown in Algorithm 1. The analy-
sis is a forward dataflow analysis where the elements of the lattice
are the abstract environments,ρ♯ (i.e., sets of alias sets). The merge
operation is set union.

3. Static Single Assignment (SSA) Form
The key feature of Static Single Assignment (SSA) form [4] isthat
every variable in the program is a target of only one assignment

Algorithm 1 : Dataflow Analysis

for each statement s, initialize out[s] to⊥
add all statements to worklist
while worklist not emptydo

remove somes from worklist
in =

F

p∈pred(s) out[p]
out[s] =JsKρ♯( in )
if out[s] has changedthen

foreach s′ ∈ succs(s)do
adds′ to worklist

end
end

statement. Therefore, by construction, any use of a variable always
has one reaching definition.

Converting a program into SSA form requires a new kind of
instruction to be added to the intermediate representation. At each
control flow merge point with different reaching definitionsof a
variable on the incoming edges, aφ instruction is introduced to
select the reaching definition corresponding to the controlflow
edge taken to reach the merge. The selected value is assignedto a
freshly-created variable, thereby preserving the single assignment
property. If multiple variables requireφ nodes at a given merge
point, theφ nodes for all the variables are to be executed simul-
taneously. To emphasize this point, we will group allφ nodes at a
given merge point into one multi-variableφ node:
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Each row,i, on the right side representsn reaching definitions of
variablexi. When control reaches theφ instruction through some
predecessorp (with 1 ≤ p ≤ n) of theφ instruction then thepth

column of the right side defines the values to be assigned to the
yi variables on the left side in a simultaneous parallel assignment.
Given aphi function φ and a predecessorp, we writeσ(φ, p) to
denote this parallel assignment:

σ(φ, p) =

0

B

@

y1 ← x1p

...
ym ← xmp

1

C

A

We now present some standard definitions. An instructiona
dominatesinstruction b if every path from the entry point tob
passes througha. We denote the set of instructions that domi-



nate instructions by dom(s). By definition every instruction dom-
inates itself. We write sdom(s) to denote the set of instructions
that strictly dominates i.e. dom(s) \ {s}. The immediatedom-
inator of an instructions, idom(s), is an instruction in sdom(s)
dominated by every instruction in sdom(s). It is well known that
every instruction except the entry point has a unique immediate
dominator. We use the notation defs(s) to denote the set of vari-
ables defined (i.e written to) by the instructions and vars(S) to
denote the set of variables defined by the instructions in a set S

(i.e. vars(S) ,
S

s∈S defs(s)).
In adapting the alias set analysis to work on SSA form, we do

not want to reduce its precision. It is well known that as longas
the transfer function is distributive, the fixed point computed by
Algorithm 1 is equal to the merge-over-all-paths (MOP) dataflow
value [14]. The transfer functionJsK1

ρ♯ for alias sets is indeed
distributive:

JsK1ρ♯(ρ
♯
1) ⊔ JsK1ρ♯(ρ

♯
2)

= JsK1gen∪
[

o♯∈ρ
♯
1

JsK1o♯(o
♯) ∪

[

o♯∈ρ
♯
2

JsK1o♯(o
♯)

= JsK1gen∪
[

o♯∈ρ
♯
1
∪ρ

♯
2

JsK1o♯(o
♯)

= JsK1ρ♯(ρ
♯
1 ⊔ ρ

♯
2)

Thus we would like to compute the MOP value even when analyz-
ing the code in SSA form. However, blindly applying Algorithm 1
to SSA form will give a less precise value because of a unique
semantic property ofφ instructions: the effect of aφ instruction
depends on which incoming control flow edge is used to reach it.
Algorithm 1 ignores this property, in that it merges the input values
from all incoming control flow edges before applying the trans-
fer function. Therefore, when applied to aφ instruction, the algo-
rithm appliesall of the parallel assignments associated withall of
the incoming control flow edges to the incoming dataflow valueon
eachedge. That is, it conservatively applies parallel assignments to
dataflow values on edges to which they should not have been ap-
plied, reducing precision. To eliminate this imprecision,we use a
modified version of the algorithm (Algorithm 2) that handlesφ in-
structions as a special case, respecting their unique semantics. The
transfer function for aφ instruction, rather than depending only on
the incoming dataflow value, is modified to also take the control
flow predecessor as a parameter. As a result, the transfer function
applies the parallel assignment associated with only that specific
predecessor, preserving the precision of the dataflow analysis on
the original intermediate representation. Therefore, since the trans-
fer functions are distributive, when Algorithm 2 is appliedto code
in SSA form, it computes the MOP alias sets for the original code.

We emphasize that none of the theoretical properties discussed
in the remainder of this paper rely on the use of Algorithm 2 to
perform the dataflow analysis. All of the optimizations thatwe
perform on the transfer functions would still be valid if we used
Algorithm 1 to perform the dataflow analysis. However, because
Algorithm 1 analyzesφ instructions in an imprecise way, the result
would not necessarily be as precise as the MOP result on the
original form of the code.

4. Efficient Alias Set Representation
In this section, we first extend the alias set analysis to workon SSA
form. We then take advantage of the properties of SSA form to
propose an efficient representation of alias sets using shared linked
lists that require only local updates at the head of the list.

To extend the transfer function from Figure 1 to SSA form, we
define it forφ instructions as shown in Figure 2. As discussed in

Algorithm 2 : Dataflow Analysis for SSA Form

for each statement s, initialize out[s] to⊥
add all statements to worklist
while worklist not emptydo

remove somes from worklist
if s is aφ instructionthen

foreach p ∈ preds(s) do
out[s] = out[s] ⊔ JφKρ♯(out[p], p)

else
in =

F

p∈pred(s) out[p]
out[s] =JsKρ♯ ( in )

end
if out[s] has changedthen

foreach s′ ∈ succs(s)do
adds′ to worklist

end
end

the previous section, the transfer function for aφ instruction has
two parameters: the incoming dataflow valueρ♯ and the control
flow predecessorp in which the dataflow value arrives. The trans-
fer function first determines the parallel assignmentσ(φ, p) that
corresponds to the given incoming control flow edgep. The alias
set is then updated by adding all destination variables whose val-
ues are being assigned from variables already in the alias set, and
removing all variables whose values are being assigned fromvari-
ablesnot in the alias set. Notice that the transfer function for the
simple assignment statementv1 ← v2 is a special case of the trans-
fer function forφ when the parallel assignmentσ contains only the
single assignmentv1 ← v2.

JφK1o♯(o
♯
, p) ,



o♯ ∪ {yi : yi ← xi ∈ σ(φ, p) ∧ xi ∈ o♯}
\ {yi : yi ← xi ∈ σ(φ, p) ∧ xi 6∈ o♯}

ff

JφK1ρ♯(ρ
♯
, p) ,

[

o♯∈ρ♯

JφK1o♯(o
♯
, p)

Figure 2. Transfer function for theφ instruction

For convenience, we transform the IR by inserting a trivialφ
instruction with zero variables at every merge point that does not
already have aφ instruction. In the resulting control flow graph, all
statements other thanφ instructions have only one predecessor.

In the remainder of this section we make use of SSA properties
to derive a new representation of alias sets in a program. In Sec-
tion 4.1 we make use of the liveness property of programs in SSA
form to simplify the transfer functions presented so far. Section 4.2
presents a data structure which makes it possible to implement the
simplified transfer functions efficiently. Finally in Section 4.3 we
discuss further techniques to make the data structure efficient in
both time and memory.

4.1 Live variables

In the alias set abstraction presented so far, the representation of an
object was the set of all local variables pointing to it. However,
applications of the analysis only ever need to know whichlive
variables are pointing to the object. If a variable is not live, then its
current value will never be read, so its current value is irrelevant.
Thus, it is safe to remove any non-live variables from the alias set.
This reduces the size of each alias seto♯, and may even reduce the
number of such sets inρ♯, since sets that differ only in non-live
variables can be merged. One way to achieve this improvementis



to perform a liveness analysis before the alias set analysis, then
intersect each alias set computed by the transfer function with the
set of live variables, as shown in the revised transfer function in
Figure 3.

filter(ℓ, ρ♯) , {o♯ ∩ ℓ : o
♯ ∈ ρ

♯}

JsK2ρ♯(ρ
♯) , filter(live-out(s), JsK1ρ♯(ρ

♯))

JφK2ρ♯(ρ
♯
, p) , filter(live-out(φ), JφK1ρ♯(ρ

♯
, p))

Figure 3. Transfer function with liveness filtering

The irrelevance of non-live variables enables us to take advan-
tage of the following property of SSA form:

Property 1. If variable v is live-out at instructions, then the
definition ofv dominatess.

This property implies that the set of live variables is a subset of
the variables whose definitions dominate the current program point.
That is, for every instructions, live-out(s) ⊆ vars(dom(s)). Thus
it is safe to intersect the result of each transfer function with the
larger set vars(dom(s)), as shown in the modified transfer function
in Figure 4.

JsK3ρ♯(ρ
♯) , filter(vars(dom(s)), JsK1ρ♯(ρ

♯))

JφK3ρ♯(ρ
♯
, p) , filter(vars(dom(φ)), JφK1ρ♯(ρ

♯
, p))

Figure 4. Transfer function with dominance filtering

In order to simplify the transfer functions further, we willneed
the following lemma, which states that the alias sets returned by
the original transfer function from Figures 1 and 2 contain only
variables defined in the statement being abstracted and variables
contained in the incoming alias sets.

Lemma 1. Define vars(ρ♯) =
S

o♯∈ρ♯ o♯. Then:

• vars(JsK1
ρ♯(ρ

♯)) ⊆ vars(ρ♯) ∪ defs(s), and

• vars(JφK1
ρ♯(ρ

♯, p)) ⊆ vars(ρ♯) ∪ defs(φ).

Proof. By case analysis of the definition ofJsK1 andJφK1.

Recall that the IR has been transformed so that every non-φ
instructions has a unique predecessorp. Sincep is the only prede-
cessor ofs, dom(p) = sdom(s). Therefore, as long as the output
dataflow set forp is a subset of dom(p), the input dataflow set fors
is a subset of sdom(s). By Lemma 1, the output dataflow set fors
is therefore a subset of vars(sdom(s)) ∪ defs(s) = vars(dom(s)).
Thus, the filtering using vars(dom(s)) is redundant. That is, the
transfer functions shown in Figure 5 have the same least fixedpoint
solution as the transfer functions from Figure 4. This is formalized
in Theorem 1.

JsK4ρ♯(ρ
♯) , JsK1ρ♯(ρ

♯)

JφK4ρ♯(ρ
♯
, p) , filter(vars(dom(φ)), JφK1ρ♯(ρ

♯
, p))

Figure 5. Simplified transfer function with dominance filtering

Theorem 1. Algorithm 2 produces the same result when applied
to the transfer functions in Figure 5 as when applied to the transfer
functions in Figure 4.

Proof. It suffices to prove that when the algorithm is applied to
the transfer function in Figure 5, every set in out[s] is a subset
of vars(dom(s)). This is proved by induction onk, the number of
iterations of the algorithm. Initially, the out sets are allempty, so
the property holds in the base casek = 0. Assume the property
holds at the beginning of an iteration. If the iteration processes a
non-φ instruction, Lemma 1 ensures that the property is preserved
at the end of the iteration. If the iteration processes aφ instruction,
the definition ofJφK4

ρ♯ ensures that the property is preserved at the
end of the iteration.

Corollary 1. When Algorithm 2 runs on the transfer functions from
Figure 4 or Figure 5, the transfer functionJsKρ♯ is evaluated only
on alias sets that are subsets of vars(sdom(s)).

Due to Corollary 1, the set difference operations inJsK1
o♯ are

now redundant. Thus, the simplified transfer functionJsK5
o♯ shown

in Figure 6 computes the same result asJsK4
o♯ .

The transfer function forφ instructions can be simplified in a
similar way. If we intersectJφK1

o♯(o
♯, p) with vars(dom(φ)), the

definition from Figure 2 can be rewritten as:

JφK5o♯(o
♯
, p) ,

8

<

:

o♯ \ {yi : yi ← xi ∈ σ ∧ xi 6∈ o♯}
∪ {yi : yi ← xi ∈ σ ∧ xi ∈ o♯}
∩ vars(dom(φ))

9

=

;

=

8

<

:

o♯ \ defs(φ)
∪ {yi : yi ← xi ∈ σ ∧ xi ∈ o♯}
∩ (defs(φ) ∪ vars(sdom(φ)))

9

=

;

=



o♯ ∩ vars(sdom(φ))
∪ {yi : yi ← xi ∈ σ ∧ xi ∈ o♯}

ff

We summarize the results of this section as follows:

Theorem 2. Algorithm 2 produces the same result when applied
to the transfer functions in Figure 6 as when applied to the transfer
functions in Figure 4.

Proof. By Theorem 1 and the reasoning in the two preceding para-
graphs.

Corollary 1 also applies to the transfer functions in Figure6.

4.2 Variable Ordering

In the preceding section, we simplified the transfer function so
that it performs only two operations on sets of alias sets. The first
operation is adding a variable defined in the current instruction
to an alias set. The second operation is intersecting each alias
set with vars(sdom(φ)), where φ is the current instruction. In
this section, we present a data structure that makes it possible to
implement each of these operations efficiently. The data structure
is an ordered linked list with a carefully selected ordering. To
construct the ordering, we take advantage of the following property
of the dominance tree.

Property 2. Suppose the instructions in a procedure are numbered
in ascending order in a preorder traversal of the dominance tree.
Then whenever instructions1 dominates instructions2, the pre-
order number ofs1 is smaller than the preorder number ofs2.

If the program is in SSA form, we can extend the numbering
of instructions to a numbering of variables in the program by
numbering each variable when its unique definition is visited in
traversing the dominance tree. A singleφ instruction may define
multiple variables; in this case, we number these variablesin an
arbitrary but fixed order. Parameters of the procedure, which are
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Figure 6. Transfer functions without set difference operations
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Figure 7. Transfer functions on sorted lists

all defined in the start node, are numbered in the same way. The
resulting numbering has the property that if the definition of v1

dominates the definition ofv2, then prenum(v1) < prenum(v2).
To represent each alias set, we use a linked list of variables

sorted in decreasing prenumber order. We will show that the two
operations needed to implement the transfer function manipulate
only the head of the list.

Recall from Corollary 1 that the transfer function for non-
φ statements is only applied to alias sets that are a subset of
vars(sdom(s)), wheres is the statement for which the transfer
function is being computed. To process aφ statement, the transfer
function shown in Figure 6 first intersects each incoming alias set
with vars(sdom(φ)), then adds variables defined inφ to it. In both
cases, variables defined in the current statements are being added
to a set that is a subset of vars(sdom(s)). Thus the definition of
each variable being added is dominated by the definition of every
variable in the existing set. Therefore, adding the new variables to
the head of the list representing the set preserves the decreasing
prenumber ordering of the list.

Now consider the intersectiono♯ ∩ vars(sdom(φ)) that occurs
in the transfer function for aφ instruction. The incoming alias set
o♯ is in the out set of one of the predecessorsp of φ. Therefore, due
to Theorem 2,o♯ ⊆ vars(dom(p)). We use the following property
of dominance to relate vars(dom(p)) to vars(sdom(φ)).

Property 3. Suppose instructionsa and b both dominate instruc-
tion c. Then eithera dominatesb or b dominatesa.

Since any path top can be extended to be a path toφ, every strict
dominator ofφ dominatesp. Thus, sdom(φ) ⊆ dom(p). Let a be
any instruction in dom(p)\sdom(φ). The instructiona cannot dom-
inate any instructionb ∈ sdom(φ), since by transitivity of domi-
nance, it would then dominateφ. By Property 3, every instruction
in sdom(φ) dominatesa. Therefore,a has a higher preorder num-
ber than any instruction in sdom(φ), soa appears earlier in the list
representingo♯ than any instruction in vars(sdom(φ)). Therefore,
to computeo♯ ∩ vars(sdom(φ)), we need only drop elements from
the head of the list until the head of the list is in vars(sdom(φ)).
This is done using the prune function in Figure 7. The rest of Fig-
ure 7 gives an implementation of the transfer functions fromFig-
ure 6 using ordered lists to represent alias sets. Adding a variable to
a set has been replaced by cons, which adds the variable to thehead
of the list, and intersection with vars(sdom(φ)) has been replaced
by a call to prune.

4.3 Data Structure Implementation

To further reduce the memory requirements of the analysis, we use
hash consing to maximize sharing of cons cells between lists. Hash
consing ensures that two lists with the same tail share that tail. In
our implementation, we define anHCList, which can either be the
empty list or aConsCell, which contains a variable and a tail of



typeHCList. We maintain a mapVar×HCList→ ConsCell.
Whenever the analysis performs a cons operation, the map is first
checked for an existing cell with the same variable and tail.If such
a cell exists, it is reused instead of a new one being created.

5. Empirical Evaluation
We have extended the analysis defined in the preceding sections to
a context-sensitive interprocedural analysis by implementing it as
an instance of the interprocedural finite distributive subset (IFDS)
algorithm of Reps et al. [20]. The IFDS algorithm requires ananal-
ysis whose domain isP(D) for some finite setD, and whose trans-
fer functions are distributive. The analysis from the preceding sec-
tions satisfies these conditions; in this case,D is the set of all pos-
sible alias sets (i.e., sets of local variables). IFDS is an efficient dy-
namic programming algorithm that evaluates the transfer functions
on each individual alias set at a time, rather than on the set of all
alias sets at a program point. The algorithm successively composes
transfer functions for individual statements into transfer functions
summarizing the effects of longer paths within a procedure.Once
the composed transfer function summarizes all paths from the be-
ginning to the end of a procedure, it can be substituted for any calls
of the procedure.

Extending the IFDS algorithm to work on SSA form required
one straightforward modification. The original algorithm tabulates
the incoming dataflow set for each statement (i.e., the join of the
outgoing dataflow sets of its predecessors). However, our more
precise treatment ofφ nodes requires processing the incoming flow
set from each predecessor separately and joining the results only
after the transfer function has been applied. Thus, we modified
IFDS so that, forφ instructions only, it keeps track of a separate
incoming dataflow set for each predecessor, instead of a single,
joined incoming set.

We implemented the analysis within our framework for verify-
ing temporal properties of multiple interacting objects [16,17]. The
overall framework first performs an alias set analysis, thenuses its
results in a second analysis that tracks the state of groups of ob-
jects with respect to a given temporal safety property. Since the
optimizations in this paper affect only the efficiency of thealias set
analysis but not its results, the output of the client analysis is the
same regardless of which implementation of the alias set analysis
is used.

For empirical evaluation of the analysis we used the DaCapo
Benchmark suite, version 2006-10-MR2 [2]. To deal with reflective
class loading we instrumented the benchmarks using ProBe [15]
and *J [7] to record actual uses of reflection at run time and
provided the resulting reflection summary to the static analysis.
The jython benchmark generates code at run time which it then
executes; for this benchmark, we made the unsound assumption
that the generated code does not call back into the original code
and does not return any objects to it. We used the standard library
from JDK 1.3.112 for antlr, pmd and bloat, and JDK 1.4.211
for the rest of the benchmarks, since they use features not present
in JDK 1.3. We used the Soot framework [25] as a front-end
to construct the intermediate representation that is the input to
our analysis. We excluded the eclipse benchmark from our study
because we were unable to make Soot soundly model the many uses
of reflection in this benchmark. To give an indication of the sizes of
the benchmarks, Figure 8 shows, for each benchmark, the number
of methods reachable in the static call graph and the total number
of nodes in the control flow graphs of the reachable methods.

We experimented with three different setups. Setup 1 used the
defaultSet implementation of theScala programming language.
The sets are “immutable” in the sense that an update returns anew
set object rather than modifying the existing set object. Usually,
the implementations of the original and updated set share some of

Benchmark Methods CFG Nodes SSA CFG Nodes
antlr 4452 89442 96225
bloat 5955 95586 101179
chart 14912 241208 256367
fop 27408 410460 433249

hsqldb 11418 184201 198125
jython 14437 221215 234469
luindex 7358 113815 122447
lusearch 7821 114822 123674

pmd 9344 148101 155284
xalan 14961 227510 242788

Figure 8. Benchmark sizes: Column 2 gives the number of reach-
able methods for each benchmarks. Columns 3 and 4 give the total
number of nodes in the control flow graphs (CFGs) of the reach-
able methods for each benchmark in non-SSA and SSA form re-
spectively.

their data. The standard library provides customized implementa-
tions for sets of size 0 to 4 elements. For larger sets, a hash table im-
plementation is used. According to theScala documentation [18],
the hash table-based implementation is optimized for sequential ac-
cesses where the last updated table is accessed most often. Access-
ing previous versions of the set is also made efficient by keeping a
change log that is regularly compacted. In setup 2, theTreeSet
data structure from theScala API was used. This implementation
uses balanced trees to store the set. An updated set reuses subtrees
from the representation of the original set. Both setup 1 and2 com-
pute the alias sets on a program in non-SSA form and use the trans-
fer functions from Figure 1. We also tried to apply setups 1 and 2 to
programs in SSA form, but found them to run slower and use more
memory than on the original, non-SSA IR. The third setup usedthe
sorted list data structure with hash consing proposed in this paper.
The analysis is computed on a program in SSA form and uses the
transfer functions from Figure 7.

The following sections present the time and memory require-
ments of the three setups.

5.1 Running Time

Figure 9 compares the running times for the three setups; thewhite,
grey and black bars represent running times for the first, second and
third setup, respectively.

In all cases butantlr, the Set-based representation runs
faster than theTreeSet-based representation. The maximum
performance difference is in the case ofluindex: the Set-
based representation runs in 58% less time. On average (geometric
mean), theSet-based representation runs in 28% less time than
theTreeSet-based representation.

We compare theSet-based representation to ourHCList rep-
resentation. In all cases theHCList abstraction is faster. On av-
erage, theHCList representation runs in 58% less time than the
Set-based representation. The largest speedup is achieved on the
bloat benchmark, on which theHCList representation runs in
72% less time than theSet-based representation.

Although the conversion to SSA form increased the size of
control flow graphs by 6.6% on average (Figure 8), the analysis
is faster even on the larger control flow graphs.

5.2 Memory Consumption

Figure 10 shows the memory consumed by the different setups
while computing the object abstraction. The reported memory use
includes the memory required by the interprocedural objectanal-
ysis, but excludes memory needed to store the intermediate repre-
sentation and the control flow graph.
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Figure 9. Running time for different data structures used in computing alias sets.

In all cases theSet-based representation uses less memory
than theTreeSet-based representation of alias sets; the average
reduction is 18% with the maximum of 40% forhsqldb. The
HCList representation with hash consing uses even less memory
than theSet-based representation. The average reduction is 44%
and the maximum reduction is 74% in the case ofxalan.

Even though the alias sets in theHCList-based representa-
tion may contain more variables than in theSet or TreeSet-
based representation, theHCList-based representation requires
less memory thanks to sharing of common tails of the linked lists.

6. Related Work
6.1 Alias Sets and Related Heap Abstractions

Jonkers [13] presented a storeless semantic model for dynamically
allocated data. He noticed that in the store-based heap model that
maps pointer variables to abstract locations, the abstractlocations
do not represent any meaningful information. Instead he defined an
equivalence relation on the set of all heap paths. Deutsch [6] pre-
sented a storeless semantics of an imperative fragment of Standard
ML. He used a right-regular equivalence relation on access paths to
express aliasing properties of data structures. Alias setsare a spe-
cial case of access path sets: they are sets of access paths with zero
dereferences. Whereas an access path begins at a local variable and
specifies a list of fields to be followed to reach the object, analias
set contains only the local variables pointing directly to the object.

Our inspiration to use sets of variables to represent abstract ob-
jects comes from the work of Sagiv et. al. [23]. This work presents
a shape analysis that can be used to determine properties of heap-
allocated data structures. For example, if the input to a program
is a list (respectively, tree), is the output still a list (respectively,
tree)? The shape analysis creates a shape graph in which eachnode
is the set of variables pointing to an object. Pointer relationships
between objects are represented by edges between the nodes.The
graph is annotated with additional information; a predicate is asso-
ciated with each node which indicates whether the particular node
(abstract object) might be the target of multiple pointers emanating
from different abstract objects. This is crucial for distinguishing
between cyclic and acyclic data structures. Later work of Sagiv et
al. [24] generalizes this idea by allowing the analysis designer to

separate objects according to domain-specific user-definedpredi-
cates. Because our analysis computes the nodes of Sagiv’s shape
graph, it is possible to extend our analysis to Sagiv’s analysis by
keeping track of edges between the nodes. The SSA propertiesthat
we exploited and the ordered data structure that we employ can also
be used in the shape analysis algorithm.

Hackett and Rugina [11] use a two layered heap abstraction to
perform shape analysis that is scalable to large C programs.The
first abstraction uses a flow-insensitive context-sensitive analysis to
break the heap into chunks of disjoint memory locations called re-
gions. Many regions are single variables; other regions represent ar-
eas of the heap. The second abstraction builds on top of the region-
based memory partition, breaking the heap into small independent
configurations. Each configuration represents a single heap loca-
tion and keeps track of reference counts from other regions that
target this location. Also, each configuration (abstract object) con-
tains field access paths known to definitely reach (hit) or definitely
not reach (miss) the object. Since in typical cases each region is a
local variable the abstraction provides the same information as Sa-
giv’s abstraction. Orlovich and Rugina [19] apply the analysis to
detect memory leaks in C programs. Cherem and Rugina [3] adapt
the abstraction to Java to perform compile-time deallocation of ob-
jects i.e. freeing the memory consumed by an object as soon asall
references to it are lost. They useconfigurationsto represent ab-
stract objects and implement an efficient abstraction in theform
of a Tracked Object Structure(TOS). A TOS maintains a compact
representation of equivalent expressions making modifications to
the heap abstraction efficient since each node in the data structure
is an equivalence class. The efficiency of the abstraction could be
further improved by maintaining the equivalence class representing
the set of local variables that point to a particular concrete object as
a sorted list using the total order imposed by a preorder traversal of
the dominance tree.

In their work on typestate verification, Fink et. al. [8, 9] use a
staged verifier to prove safety properties of objects. The most pre-
cise of these verifiers keeps track of which local variables must and
must not point to the object along with similar information regard-
ing incoming pointers (access paths) from other objects that must
or must-not point to the object. Information about the allocation
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Figure 10. Memory consumed by different data structures used in computing alias sets.

site of the object is also maintained. This information is used to
perform strong updates in the case when it can be proved that the
points-to set of a receiver contains a single abstract object and that
this single abstract object represents a single concrete object.

In earlier work [16, 17], we extend static typestate verification
techniques for single objects to verify temporal specifications of
multiple interacting objects. Whereas typestate verification typi-
cally associates a state with each abstract object, this is not possible
when dealing with a state associated with multiple objects.We de-
fine two abstractions: a storeless heap abstraction based onalias
sets and a second abstraction that associates a state with groups of
related abstract objects.

A common technique used to precisely handle uncertainty due
to heap loads is that ofmaterializationor focus[3, 8, 9, 11, 17, 23].
Focus is important to regain the precision lost when an object is
no longer referenced from any local variables, in which casethe
alias set analysis lumps it together with all other such objects.
Focus splits the abstract object representation into two alias sets,
one representing the single concrete object that was loaded, and the
other representing all other objects previously represented by the
alias set. The transfer functions in Figure 1 use focus for a heap load
(v ← e) by splittingo♯ into two alias setso♯ \ {v} ando♯ ∪ {v}.
The focus operation in the transfer functions of Figures 6 and 7
no longer requires removing the variablev from the resulting alias
sets. As discussed in Section 4.1, the set difference operation is
redundant in SSA form, since the original alias seto♯ is guaranteed
to not containv.

6.2 Static Single Assignment (SSA) Form

Static Single Assignment form [1,26] has been used as an interme-
diate representation since the late 1980s. Rosen et. al. [21] took ad-
vantage of SSA form to define a global value numbering algorithm.
Cytron et al. [5] developed the now-standard efficient algorithm for
converting programs to SSA form using dominance and dominance
frontiers.

Hack et. al. [10] showed that the interference graph for regis-
ter allocation of a program in SSA form is always chordal (i.e.,
its chromatic number equals the size of the largest clique).Such
graphs can be optimally colored in quadratic time. The chordality

of the interference graph is due to the SSA property that if the vari-
ables in some setS are simultaneously live at some program point
p, then they are all totally ordered by dominance, they are alllive at
the definition of the variablev ∈ S dominated by all the others, and
on every control flow path ending atp, the variable fromS defined
last isv. Thus any relationship that holds between the variables at
p already holds at the definition ofv. The abstraction presented in
this paper is intuitively based on the same idea. Suppose theset of
variables pointing to some concrete objecto at program pointp is
S. Then those variables are totally ordered by dominance, andthey
all already pointed too when the variable inv ∈ S dominated by
the others was last defined. Thus ifS is represented by a linked
list ordered by dominance, the transfer function for the instruction
definingv needs only to addv to the head of the list. The only place
where variables need to be removed fromS is an edge leading to a
node no longer dominated by the definitions of those variables.

7. Conclusion
This paper focused on the core abstraction of an alias set used by
numerous static analyses to infer properties about the pointers cre-
ated and manipulated in a program. We presented a data structure
implementing the alias set abstraction for programs in SSA form.
The data structure consists of linked lists ordered by the preorder
numbering of the dominance tree of the procedure. We showed
that with this ordering, the transfer functions only apply local up-
dates to the head of each list. Since the lists are ordered, common
tails of different lists representing different alias setscan be shared.
We implemented an interprocedural context-sensitive analysis us-
ing this representation of the abstraction. Our experimental results
show that the ordered list representation is faster and requires less
memory than standard set data structures. Running time decreased
by 58% on average and by as much as 72% on one of the bench-
marks. Memory requirements decreased by 44% on average, and
by as much as 74% on one of the benchmarks.
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