
Breaking the Negative Cycle: Exploring the Design
Space of Stratification for First-Class Datalog
Constraints
Jonathan Lindegaard Starup #

Department of Computer Science, Aarhus University, Denmark

Magnus Madsen #

Department of Computer Science, Aarhus University, Denmark

Ondřej Lhoták #

David R. Cheriton School of Computer Science, University of Waterloo, Canada

Abstract
The λDat calculus brings together the power of functional and declarative logic programming in one
language. In λDat, Datalog constraints are first-class values that can be constructed, passed around
as arguments, returned, composed with other constraints, and solved.

A significant part of the expressive power of Datalog comes from the use of negation. Stratified
negation is a particularly simple and practical form of negation accessible to ordinary programmers.
Stratification requires that Datalog programs must not use recursion through negation.

For a Datalog program, this requirement is straightforward to check, but for a λDat program, it
is not so simple: A λDat program constructs, composes, and solves Datalog programs at runtime.
Hence stratification cannot readily be determined at compile-time.

In this paper, we explore the design space of stratification for λDat. We investigate strategies to
ensure, at compile-time, that programs constructed at runtime are guaranteed to be stratified, and
we argue that previous design choices in the Flix programming language have been suboptimal.

2012 ACM Subject Classification Theory of computation → Constraint and logic programming

Keywords and phrases Datalog, first-class Datalog constraints, negation, stratified negation, type
system, row polymorphism, the Flix programming language

Digital Object Identifier 10.4230/LIPIcs.ECOOP.2023.31

1 Introduction

Datalog is an expressive and powerful declarative logic programming language. A Datalog
program consists of facts and rules. Facts represent knowledge (e.g. “an owl is a bird”)
whereas rules allow one to infer new facts from existing facts (e.g. “if x is a bird and x is not
a penguin then x can fly.”). The facts and rules imply a minimal model, a unique solution to
every Datalog program [18] (e.g. “an owl is a bird” and “an owl can fly”).

Datalog has been used in a diverse set of applications including big-data analytics [20,
39, 41], social network analysis [39, 40], machine learning [32, 34], bio-informatics [25, 38],
disassembly [15], micro-controller programming [46], networking and distributed systems [1,
10, 29], program analysis [7, 42, 43], and smart contract security [44].

Over the years, a plethora of Datalog extensions have been developed, adding support
for object types [4], logic formulas [6], decidable arithmetic functions [23], disjunctive rule
heads [13], distributed evaluation [24], and more. Many Datalog solvers have also been
developed, including DLV [2], Soufflé [22], LogicBlox [3], QL [4], Formulog [6], and Flix [31].

A significant part of both the theoretical and practical expressive power of Datalog
comes from the use of negation. However, negation also brings challenges: ensuring a
meaningful semantics for logic programming with negation is a historically well-studied
problem [14, 16, 17, 27, 36, 37]. Stratified negation has emerged as a simple and practical

© Jonathan Lindegaard Starup, Magnus Madsen, and Ondřej Lhoták;
licensed under Creative Commons License CC-BY 4.0

37th European Conference on Object-Oriented Programming (ECOOP 2023).
Editors: Karim Ali and Guido Salvaneschi; Article No. 31; pp. 31:1–31:28

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:jls@cs.au.dk
https://orcid.org/0000-0002-0931-7878
mailto:magnusm@cs.au.dk
https://orcid.org/0000-0002-7510-8724
mailto:olhotak@uwaterloo.ca
https://doi.org/10.4230/LIPIcs.ECOOP.2023.31
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

31:2 Breaking the Negative Cycle

semantics that is accessible to ordinary programmers [48]. Informally, a Datalog program
is stratified when there is no recursion through negation, i.e. no predicate symbol can
negatively depend on itself. Stratification splits a Datalog program D into a sequence of
Datalog programs D1, · · · , Dn where the “output facts” of Di become the “input facts” of
Di+1. Computing whether a Datalog program is stratified, and if so, computing its strata, is
straightforward, e.g. using Ullman’s algorithm [45].

The λDat calculus extends the lambda calculus with first-class Datalog constraints [30].
In λDat, Datalog constraints, or programs, are values that can be constructed, passed as
arguments to functions, returned from functions, composed with other Datalog program
values, and have their minimal model computed. The minimal model is itself a set of
facts, hence a Datalog value. This makes it possible to construct pipelines of Datalog
computations. The type system of λDat is based on Hindley-Milner [12, 47] extended with
row polymorphism [28]. The type system permits Datalog constraints to be polymorphic,
while ensuring type safety [30]. The λDat calculus and its type system has been implemented
in the Flix programming language.

For a λDat program, we cannot readily determine whether the Datalog values constructed
at runtime are stratified. We can defer stratification until runtime, but this has two significant
downsides: (1) we must perform the stratification repeatedly, and worse, (2) we have to
abort execution if a non-stratified Datalog program is ever constructed.

In this paper, we explore the design space of compile-time techniques, which ensure that
λDat programs never construct non-stratified Datalog values at runtime. We also show that
these techniques enable stratification of Datalog programs with lattice semantics.
In summary, the paper makes the following contributions:

(Design Space) We explore the design space of compile-time stratification in the presence
of first-class Datalog constraints.
(Framework) We formulate the design space in a mathematical framework that allows
us to express each design point as a specific instantiation of the framework. We introduce
the notion of a labelled dependency graph and discuss how it can be used to soundly
over-approximate the dependency edges of a Datalog expression.
(Comparison) We identify the current state-of-the-art, i.e. the technique currently used
in the Flix programming language, in the design space and illustrate that some of its
design choices have been sub-optimal.
(Implementation) We extend the Flix programming language with different design
choices that admit more programs (i.e. allow more safe programs to pass the type checker).
In particular, our extension uses rule-level granularity (choice 1c), and uses predicate
arity and predicate term types in the labelled dependency graph (choice 2b and 2c).
(Case Study) We conduct a case study of a graph library that we implement in Flix.
The study shows that use of stratified negation and lattice semantics is prevalent.

This paper is structured as follows: We motivate our work in Section 2. In Section 3 we
present background material on Datalog, on stratified negation, and on the λDat calculus.
We explore the design space of stratification for λDat in Section 4, Section 5, and Section 6.
In Section 7 we discuss the design choices that we have made and our implementation in
the Flix programming language. We use this implementation for a graph library case study
in Section 8. Section 9 presents related work and Section 10 concludes. To ensure that the
paper is self-contained, the background section has to cover a lot of material. Readers who
are already familiar with Datalog, stratified negation, or the λDat calculus are encouraged to
skip the background material.

J. L. Starup, M. Madsen, and O. Lhoták 31:3

1

2

7

5 3

6

4

8

Figure 1 An undirected graph. We want to compute the connected components of the graph and
introduce edges that connect them. The components are indicated by thick gray lines. The edges
we want to compute are indicated by dashed lines. The double circled nodes are the representatives
of each connected component.

2 Motivation

We motivate our work with an example. Consider the following problem:

Given an undirected graph, compute its connected components and introduce an edge
between each component.

Figure 1 illustrates the problem with an example. The graph has nodes numbered one to
eight. The connected components are {1, 2, 7}, {3, 5}, and {4, 6, 8}. We want to compute
the three (undirected) edges: {1, 2, 7} ↔ {3, 5}, {1, 2, 7} ↔ {4, 6, 8}, and {3, 5} ↔ {4, 6, 8},
as shown in Figure 1.

We can use the Flix programming language, with its support for first-class Datalog
constraints, to elegantly solve this problem. Figure 2 shows a Flix program that does so.
The program consists of two functions: connectedComponents and connectGraph.

The connectedComponents function computes the connected components (CCs) of the
given (undirected) graph. The graph is represented as a set of nodes (of type Set[Int32]) and
a set of edges (of type Set[(Int32, Int32)]). First, the function converts the nodes and edges
into Node and Edge facts. Next, the function defines a local variable r which is a Datalog
program value. The Datalog program defines Reachable as the (undirected) transitive closure
of the Edge relation. Using Reachable, it computes the representative of each node in a CC
as follows: Every node in a CC is associated with the lexicographically largest node in the
same CC (ReachUp). The representative of a CC is then the node which is the largest in
each CC, i.e. has no larger parent. Finally, the connectedComponents function composes the
node (ns) and edge (es) facts with the Datalog program (r), computes its minimal model,
and extracts all the ComponentRep facts. The polymorphic row extension in the return type
#{· · · | r} allows the caller to type the returned Datalog program with additional predicates.

The connectGraph function computes a set of edges that connect CCs in a graph. That is,
the function returns a set of edges that connect sets of nodes. The connectGraph function takes
a graph as input (using the same representation as before), and calls the connectedComponents
function to compute the CCs, specifically the ComponentRep relation which holds the
representative of each node in the graph. The function defines the local variable d which
is a Datalog program value. The Datalog program uses the ComponentRep to build a map
Component which maps each representative to the set of nodes it represents. The rule:
1 Component (rep; Set #{n}) :- ComponentRep (n, rep).

states that if there is a ComponentRep(n, rep) fact, for some n and rep, then we infer a
Component(rep; Set#{n}) lattice fact where rep is mapped to the singleton set {n}. The
Component lattice implicitly combines facts using the ordering on Set[Int32], which is subset

ECOOP 2023

31:4 Breaking the Negative Cycle

1 /// Given an undirected graph represented by nodes and edges ,
2 /// computes its connected components and returns a relation
3 /// that maps each node to its representative .
4 def connectedComponents (nodes: Set[Int32], edges: Set [(Int32 , Int32)]):
5 #{ ComponentRep (Int32 , Int32) | r } =
6 let ns = inject nodes into Node;
7 let es = inject edges into Edge;
8 let r = #{
9 // Reachable (n1 , n2) captures that n1 can reach n2.

10 // All nodes can reach themselves .
11 Reachable (n, n) :- Node(n).
12 // n1 can reach n2 directly .
13 Reachable (n1 , n2) :- Edge(n1 , n2).
14 // n2 can reach n1 directly , since the graph is undirected .
15 Reachable (n2 , n1) :- Edge(n1 , n2).
16 // n1 can reach n3 by transitivity .
17 Reachable (n1 , n3) :- Reachable (n1 , n2), Reachable (n2 , n3).
18 // ReachUp contains nodes that can reach at least one other node
19 // with a higher value. That is , ReachUp contains all nodes which
20 // are not a representative of their connected component .
21 ReachUp (n1) :- Reachable (n1 , n2), if n1 < n2.
22 // The representative , rep , of a node , n, in a connected component
23 // is any reachable node that is not contained in ReachUp .
24 ComponentRep (n, rep) :- Reachable (n, rep), not ReachUp (rep).
25 };
26 solve ns , es , r project ComponentRep
27
28 /// Given an undirected graph represented by nodes and edges ,
29 /// connects all connected components . The returned edges are
30 /// between components , i.e. they are edges between *sets* of nodes.
31 def connectGraph (nodes: Set[Int32], edges: Set [(Int32 , Int32)]):
32 #{ Edge(Set[Int32], Set[Int32]) | r } =
33 let d = #{
34 // Component (rep; c) captures that the node rep is the
35 // representative of the component c which is a set of nodes. The
36 // semicolon makes c use lattice semantics which aggregates all
37 // the nodes represented by rep into one set.
38 Component (rep; Set #{n}) :- ComponentRep (n, rep).
39 // Introduce an edge between every pair of components sets.
40 // The fix keyword ensures that the Component relation is fully
41 // materialized before this rule is evaluated , i.e. that a
42 // component contains all its nodes.
43 Edge(c1 , c2) :- fix Component (_; c1), fix Component (_; c2).
44 };
45 solve connectedComponents (nodes , edges), d project Edge
46
47 def main (): Unit \ IO =
48 let connectedGraph = connectGraph (Set.range (1, 9),
49 Set #{ (1, 2), (2, 7), (5, 3), (8, 6), (6, 4), (4, 8)});
50 let result = query connectedGraph select (c1 , c2) from Edge(c1 , c2);
51 println (result)

Figure 2 Flix program that connects an undirected graph using Datalog.

inclusion. In other words, if there are multiple ComponentRep facts with the same rep then
every set is union’ed together. The last rule introduces edges between the components:

1 Edge(c1 , c2) :- fix Component (_; c1), fix Component (_; c2).

The fix keyword ensures that the Component lattice is fully computed before the rule is
evaluated. We will explain the full details in Section 6.

J. L. Starup, M. Madsen, and O. Lhoták 31:5

2.1 Stratified Negation
The Flix program in Figure 2 uses negation in the following rule:

ComponentRep (n, rep) :- Reachable (n, rep), not ReachUp (rep).

where the ReachUp predicate symbol occurs negated.
Datalog has the theoretically interesting and practically useful property that every Datalog

program has a unique solution; the minimal model. However, in the presence of negation, an
additional side condition is necessary to ensure the existence of the minimal model.

To understand why, consider a Datalog program with the two rules:

WinBlack(x)⇐ not WinWhite(x). WinWhite(x)⇐ not WinBlack(x).

The rules try to capture the idea that “if x is not a winning move for white then x is a
winning move for black” and “if x is not a winning move for black then x is a winning move
for white”. The problem is that this Datalog program has two models, neither of which is
minimal: {WinBlack(p)} and {WinWhite(p)} for some p. We want to avoid such situations.

Stratified negation overcomes this problem by imposing a simple restriction: A predicate
symbol cannot negatively depend on itself. This requirement is sometimes expressed as
“no recursion through negation”. It is straightforward to determine if a Datalog program is
stratified: We simply compute the dependency graph of the program and determine if it
contains a cycle with a negative edge.

Returning to Figure 2, if we look at all the rules, we can see the following negative cycle:

Edge←−× Component← ComponentRep←−× ReachUp← Reachable← Edge

But does the Flix program in Figure 2 actually construct a Datalog value with a negative
cycle at runtime? Fortunately this is not the case. The reason is as follows: the Edge,
Reachable, and ReachUp predicates are used to compute the ComponentRep relation. This
Datalog program is fully solved before ComponentRep is used to compute a new set of Edges.

We can now describe the problem this paper aims to solve:

In Flix, in the presence of first-class Datalog values, how can it be statically guaranteed
that every Datalog value that may be constructed at runtime will be stratified?

In the example above, we used very ad-hoc reasoning to justify that a negative cycle cannot
occur. While a very powerful and precise control– and data-flow analysis may be able to
provide similar justification, in this paper we are interested in simpler and more light-weight
techniques. We want to build on the type system of the λDat calculus and of Flix. In the
dependency Edge← ComponentRep, the type of Edge is (Set[Int32], Set[Int32]), whereas in the
dependency Reachable← Edge, the type of Edge is (Int32, Int32). The type system ensures
that predicate symbols with different types cannot occur in the same Datalog program value.
This means that we can exclude the existence of edges based solely on the type information.
Interestingly, we could also use the type system in a different way to exclude the negative
cycle. The rule using negation mentions three predicate symbols: ComponentRep, Reachable,
and ReachUp. The rule which closes the supposed cycle mentions two predicate symbols:
Component and Edge. Since the program has no expression with a type that contains all
these predicate symbols, we know that the cycle cannot occur.

We can now summarize the overall goal of this paper:

We want to explore the design space of type-based techniques that can statically ensure
that Flix programs, in the presence of first-class Datalog constraints, are stratified.

ECOOP 2023

31:6 Breaking the Negative Cycle

3 Background

We begin with an introduction to Datalog and stratified negation before we move on to
describe the λDat calculus [30]. This paper contains a lot of background material. Readers
who are already familiar with Datalog are encouraged to jump to Section 3.3.

3.1 Datalog
We give a brief introduction to Datalog. A comprehensive introduction is available in [9, 18].

3.1.1 Syntax
A Datalog program D is a set of constraints C1, · · · , Cn. A constraint is of the form
A0 ⇐ B1, · · · , Bn where A0 is the head atom and each Bi is a body atom. A head atom
p(t1, · · · , tn) consists of a predicate symbol p and a sequence of terms t1, · · · , tn. A body
atom is similar to a head atom, except that it can be negated, which is written with “not” in
front of the predicate symbol. A constraint without a body is called a fact. A constraint
with a body is called a rule. A term is either a variable x or a literal constant c. An atom
without variables is said to be ground. A fact or rule with only ground atoms is said to be
ground. Figure 3 shows the grammar of Datalog.

D ∈ Programs = C1, · · · , Cn

C ∈ Constraints = A0 ⇐ B1, · · · , Bn.

A ∈ Head Atoms = p(t1, · · · , tn)
B ∈ Body Atoms = p(t1, · · · , tn)

| not p(t1, · · · , tn)

t ∈ Terms = x | c
c ∈ Literals = a set of literal constants.

x, y ∈ VarSym = a set of variable symbols.
p, q ∈ PredSym = a set of predicate symbols.

Figure 3 Syntax of Datalog.

A Datalog program must satisfy three syntactic properties that are not naturally captured
by the grammar in Figure 3: (i) every fact must be ground, (ii) every variable that occurs
in the head of a rule must also occur in its body, and (iii) every variable that occurs in a
negated body atom must also occur in at least one positive body atom of the rule. If a
program satisfies these properties it is said to be well-formed. In addition, every Datalog
program which uses negation must be stratified, as we will explain in Section 3.2.

3.1.2 Semantics
The meaning of a Datalog program is usually defined in terms of the minimal model: the
smallest interpretation (i.e. set of facts) that satisfy all the constraints (i.e. rule instantiations)
of the program [18]. While the semantics of Datalog – and logic programs in general – is an
interesting subject worthy of study, in this paper our focus is on stratification.

3.2 Stratified Negation
A significant part of the expressive power of Datalog comes from the use of negation, but
unrestricted use of negation poses problems. Recall the Datalog program from Section 2:

WinBlack(x)⇐ not WinWhite(x). WinWhite(x)⇐ not WinBlack(x).

J. L. Starup, M. Madsen, and O. Lhoták 31:7

If the program contains the constant 42, then the program has two solutions (models):

M1 = {WinBlack(42)} and M2 = {WinWhite(42)}

Neither model is a subset of the other. Hence neither model is minimal. This breaks one of
the fundamental properties of Datalog: that every program has a unique solution. Defining
a consistent semantics for logic programming languages with negation has long been studied
and many proposals have been made [14, 16, 17, 27, 36, 37]. Stratified negation has emerged
as a particularly simple semantics that can be mastered by ordinary programmers [48].

Informally, a Datalog program is said to be stratified if its predicate symbols can be
partitioned into a sequence of strata such that a predicate symbol in a stratum only depends
on predicate symbols in the same or lower strata. Intuitively, stratification splits a Datalog
program D into a sequence of sub-programs D1, · · · , Dn such that the output of Di becomes
the input of Di+1.

We can determine if a Datalog program is stratified by computing its dependency graph:

▶ Definition 1 (Dependency Graph). The dependency graph (also called the precedence graph)
of a Datalog program D is a directed graph of predicate symbols that contains:

a positive edge a ← b if D contains a rule where a is the predicate symbol of the head
atom and b is a predicate symbol of a positive body atom, and
a negative edge a←−× b if D contains a rule where a is the predicate symbol of the head
and b is a predicate symbol of a negative body atom.

We write dependency edges as a← b and a←−× b since this matches the “direction” of
Datalog rules. We say that a depends on b. If a ←−× b we say that b must be computed
before a. We write DG(D) for the dependency graph of the Datalog program D. Note that
the dependency graph of a Datalog program D is unique.

We can now formally state when a Datalog program is stratified:

▶ Definition 2 (Stratified). A Datalog program D is stratified if its dependency graph contains
no cycles with a negative edge.

▶ Example 3. We will use the following running example. Consider the following Datalog
program and its dependency graph:

Cold(x)⇐ Kettle(x), Off(x).
Warm(x)⇐ Kettle(x), not Cold(x). Warm

Cold

Kettle

Off

which does not contain a cycle with a negative edge. The strata of this program are:

s1 = {Cold, Kettle, Off} s2 = {Warm}

which means that the Cold, Kettle, and Off relations must be computed before we compute
the Warm relation.

▶ Example 4. Consider a modification of the previous Datalog program with its new
dependency graph:

Cold(x)⇐ Kettle(x), not Warm(x).
Warm(x)⇐ Kettle(x), not Cold(x). Warm

Cold

Kettle

ECOOP 2023

31:8 Breaking the Negative Cycle

v ∈ Val = c | λx. e | #{C1, · · · , Cn}
e ∈ Exp = x | v | e e | let x = e in e

| e <+> e | solve e | project p e

c ∈ Literals = a set of literal constants.
x, y ∈ VarSym = a set of variable symbols.

p, q ∈ PredSym = a set of predicate symbols.

C ∈ Constraints = A0 ⇐ B1, · · · , Bn.

A ∈ Head Atoms = p(t1, · · · , tn)
B ∈ Body Atoms = p(t1, · · · , tn)

| not p(t1, · · · , tn)
| fix p(t1, · · · , tn)

t ∈ Terms = x | c

Figure 4 Syntax of λDat.

τ ∈ Type = α | ι | τ1 → τ2 | r
r, s ∈ Row = ρ | { } | { p = (τ1, · · · , τn) | r }

ι = a set of base types.

σ ∈ Scheme = ∀α ∀ρ. τ

α ∈ TypeVar = a set of type variables.
ρ ∈ RowVar = a set of row variables.

Figure 5 Type System of λDat.

The graph contains a negative cycle between the Cold and Warm predicate symbols hence
the program is not stratified and should be rejected. In this case, the negative cycle involves
two predicate symbols and two negative dependencies, but in general a negative cycle consist
of any number of dependency edges with at least one negative dependency edge.

3.3 First-Class Datalog Constraints
We now describe the λDat calculus, a minimal lambda calculus with first-class Datalog
constraints, originally introduced by [30]. We use a slightly simplified version of the calculus
that illustrates the challenges posed by stratified negation.

3.3.1 Syntax
The grammar of λDat is shown in Figure 4. The language includes the usual constructs from
the lambda calculus: constants, variables, lambda abstractions, function applications, and let-
bindings. Let-bindings support Hindley-Milner-style parametric polymorphism [11, 21, 33].
The values of λDat include constants c, lambda abstractions λx. e, and Datalog values
#{C1, · · · , Cn}. A Datalog value is a collection of Datalog facts and rules. The grammar of
Datalog values mirrors that of Figure 3. The fix body atom will be explained in Section 6. The
expressions of λDat include variables x, values v, function applications e e, and let-bindings
let x = e in e. The calculus has three expressions for working with Datalog values:

(i) a composition expression e1 <+> e2 to compute the union of two Datalog values,
(ii) a project expression project p e to extract all p facts from a Datalog value, and
(iii) a solve expression solve e to compute the minimal model of a Datalog value.

The Flix programming language, which implements the λDat calculus, supports a richer
set of operations for working with Datalog values. However, for our purposes, the above
calculus is sufficient to illustrate the challenges. For the full details on the λDat calculus, we
refer the reader to [30].

3.3.2 Type System
The λDat type system is based on Hindley-Milner [12, 47] extended with row polymorph-
ism [28]. Each row type tracks the predicate symbols (and the types of the term parameters
of each predicate) of a Datalog expression. The type system is sound; satisfying the usual
progress and preservation theorems [30].

J. L. Starup, M. Madsen, and O. Lhoták 31:9

The type system splits types into mono- and poly types as shown in Figure 5. The mono
types consist of type variables α, a set of base types denoted by ι (e.g. Bool), function types
τ1 → τ2, and row types r. A row type is either a row type variable ρ, an empty row {}, or a
row extension {p = (τ1, · · · , τn) | r}. A row type describes the type of a Datalog expression.

▶ Example 5. The following Datalog expression is typeable with the shown row type:

#{Bird(“Eagle”)., Flying(x)⇐ Bird(x), not Penguin(x).} :
{Bird = String | {Flying = String | {Penguin = String | ρ}}}

The order of predicate symbols within a row is immaterial. Hence the same row is equivalent
to (written as ∼=):

{Penguin = String | {Flying = String | {Bird = String | ρ}}}

Figure 5 shows the poly types (or type schemes) of λDat. A poly type is of the form
∀α1, · · · , αn ∀ρ1, · · · , ρm. τ . Thus, the λDat calculus separates regular type variables α from
row type variables ρ.

▶ Example 6. The following Datalog expression is typeable with the shown poly type:

#{Path(x, z)⇐ Path(x, y), Edge(y, z).} : ∀α1, α2 ∀ρ. {Path = (α1, α2), Edge = (α2, α2) | ρ}

This expression is polymorphic in the types of the terms of the Edge and Path atoms (α1
and α2) and row polymorphic in the type of the rest of the row (ρ). As can be seen from the
rule, the variables y and z must share the same type (α2) because of their occurrences in
the Path atoms. The two types of polymorphism serve two different purposes: the regular
polymorphism allows the expression to be used with terms of different types (e.g. Edge and
Path facts over integers, strings, etc) whereas the row polymorphism allows the expression to
be composed with other Datalog expressions that may have additional predicate symbols.

The type system of λDat has three mutually inductive typing judgments: one for expressions
(Γ ⊢ e : τ), one for constraints (Γ ⊢c C : r), and one for atoms (Γ ⊢p p(t1, · · · , tn) : r).

3.3.2.1 Type Rules

We briefly describe the (T-Head-Atom) and (T-Constraint) type rules of λDat.
The typing judgement Γ ⊢p p(t1, · · · , tn) : r captures that the head or body atom

p(t1, · · · , tn) can be typed with row type r under the type environment Γ. In particular, the

∀i. Γ ⊢ th
i : τi

Γ ⊢p p(th
1 , · · · , th

n) : {p = (τ1, · · · , τn) | r}
(T-Head-Atom)

rule states that a head atom can be typed as a row type in which the predicate symbol p is
mapped to a tuple type whose elements are the types of the head terms th

1 , · · · , th
n. The type

rules for body atoms are similar. What is important, for our purposes, is that to type a head
or body atom, its predicate symbol and term types must be part of the row type.

The typing judgement Γ ⊢c C : r captures that the constraint C can be typed as r under
the type environment Γ. In particular, the
Γ, x1 : τ1, · · · , xm : τm ⊢p A0 : r ∀i. Γ, x1 : τ1, · · · , xm : τm ⊢p Bi : ri ∀i. r ∼= ri

Γ ⊢c ∀(x1 : τ1, · · · , xm : τm). A0 ⇐ B1, · · · , Bn. : r
(T-Constraint)

ECOOP 2023

31:10 Breaking the Negative Cycle

type rule states that to type an entire constraint, the row type of the head atom and all the
body atoms must be equivalent, i.e. contain the same predicate symbols mapped to the same
term types, modulo the order of predicate symbols. In λDat, the unbound Datalog variables
are explicitly quantified.

We refer the reader to [30] for a complete description of the type system. We will use the
type system when we define soundness of labelled dependency graphs in Section 5.

3.4 The Problem: Stratification and First-Class Constraints
We are now ready to define what it means for a λDat program to be stratified:

▶ Definition 7 (Stratification for λDat). A λDat calculus program P is stratified if every
Datalog value constructed during evaluation of P is stratified.

The challenge is to statically determine when that is the case. Consider the λDat program:

f = λc1. λc2. let r = #{P (x)⇐ A(x), not Q(x).} in c1 <+> c2 <+> r

To determine whether f returns a stratified program we must know at least:
whether the argument c1 is itself stratified,
whether the argument c2 is itself stratified,
whether the composition of c1 and c2 is stratified, and finally,
whether the composition of c1, c2 with the rule r is stratified.

At run time, the values of c1, c2, and r are known and we can use Ullman’s algorithm [45] to
compute their stratification. But again, moving the stratification check to run time would
force the program to crash if it ever encounters a Datalog value that cannot be stratified!

Before we explore the design space of techniques to ensure compile-time stratification of
λDat calculus programs, let us pause and reflect on what makes a design “good”. As discussed,
we are interested in techniques that are fully automatic, hence imposes no additional burden
on the programmer. In addition, we want a system that: (i) has high precision (i.e. few
programs are unfairly rejected), (ii) is fast (i.e. can be run continuously during program
development), (iii) offers understandable error messages (i.e. does not require too much
knowledge from the programmer “when things to wrong”), and (iv) is robust under refactoring
(i.e. harmless refactorings should not break stratification). As is often the case, some of these
goals are conflicting.

4 Dependency Graph Types: A Purely Type-based Approach

We now present a type system that captures the entire dependency graph in the type system
itself. This type system is expressive, precise, and its types can be fully inferred. As we shall
discuss, it is also impractical, since each type may be quadratic in the number of predicates.

We extend the λDat type system to track the entire dependence graph of every Datalog
expression in the type system. The key idea is straightforward: We represent a dependency
edge p← q or p←−× q as a single “label” and then use row polymorphism to track a row of
all these labels. The type system does not concern itself with the types of terms and should
be understood as being in addition to the existing type system.

The new row types are given by the grammar:

r = ρ | { } | { p← q | r } | { p←−× q | r }

J. L. Starup, M. Madsen, and O. Lhoták 31:11

The type rule for a Datalog constraint is straightforward:
A0 = ph(t, · · · , t) E = {ph ← pi

b | Bi = pi
b(t, · · · , t)} ∪ {ph ←−× pi

b | Bi = not pi
b(t, · · · , t)}

Γ ⊢c ∀(x1 : τ1, · · · , xm : τm). A0 ⇐ B1, · · · , Bn. : {E ∥ r}

where {E ∥ r} is the row type with all be labels in the set E, e.g. {{x, y} ∥ r} = {x | {y | r}}.
Intuitively, the type rule states that if we have a constraint A0 ⇐ B1, · · · , Bn where the
head predicate symbol is ph and there is a positive body atom Bi = pi

b(t, · · · , t), then
the row contains the positive edge ph ← pi

b. Similarly, if there is a negative body atom
Bi = not pi

b(t, · · · , t), then the row contains the negative edge ph ←−× pi
b.

For this type system, we conjecture the important property:

▶ Theorem 8 (Soundness). Let Γ ⊢ e : r and define e′ to be e where all the free variables
have been substituted for values of the types given in Γ. If e′ →⋆ v then the dependency graph
of v is a subset of g, i.e. DG(v) ⊆ g, where g is the graph defined by the edges present in the
row type of v.

We now give two examples of how the type system works. We will use the abbreviations
Warm (W), Kettle (K), Cold (C), and Off (O) moving forward:

▶ Example 9. The left expression is typeable with the abbreviated type on the right:
let p = #{

Cold(x) :- Kettle (x), Off(x).
Warm(x) :- Kettle (x), not Cold(x).

}

∀ρ. {C← K, C← O,

W← K, W←−× C, | ρ}

▶ Example 10. Consider the expressions on the left and their abbreviated types on the right:
let p1 = #{

Cold(x) :- Kettle (x), not Warm(x).
};
let p2 = #{

Warm(x) :- Kettle (x), not Cold(x).
};

p1 :∀ρ1. {C← K, C←−× W | ρ1}

p2 :∀ρ2. {W← K, W←−× C, | ρ2}

The composition of p1 and p2 has the following row type which contains a negative cycle
between W and C and is rejected.

∀ρ3. {C← K, C←−× W, W← K, W←−× C, | ρ3}

4.1 Discussion
The type system has several advantages:

it captures the dependency graph of each Datalog expression in its type,
it supports row polymorphism, and
it has complete type inference.

The type system is a simple and straightforward application of row types. But the strength
of the type system is also its weakness: The type of each expression needs to store the whole
dependency graph between all pairs of predicate symbols in the expression. The amount of
information to be stored in each type is quadratic in the number of predicate symbols.

To understand why a type needs to store, for each pair of predicate symbols A and B,
whether or not A is reachable from B in the dependency graph, consider the Datalog value
#{A(x)⇐ not B(x).}. If this value is composed with another Datalog value v, the resulting
Datalog program is stratified if and only if B does not depend on A in v. Since A and B

could be arbitrary predicate symbols, the type of v needs to store, for every possible pair

ECOOP 2023

31:12 Breaking the Negative Cycle

of predicate symbols (A, B), whether or not there is a dependence in v. While we have not
implemented the system, this complexity leads to concerns about efficiency of type inference.
In particular, the rows used to track all dependency edges are now very long. Instead, we
want to explore the design space of a hybrid approach: We keep the original type system of
[30] and we combine it with global information about the constraints in the entire program.

5 Labelled Dependency Graph: A Hybrid Approach

We now describe a hybrid approach that combines local information from the type system with
global information about the λDat program. As it turns out, the choice of what information
to collect about the entire program opens up a large design space.

General Framework
We want to statically ensure that a λDat program is stratified in the sense of Definition 7.
To do so, we take the following overall approach:

For each Datalog expression e in a well-typed λDat program P (i.e. we have Γ ⊢ e :
r), we want to construct a dependency graph D̂G(e : r,LG(P)) that soundly over-
approximates the dependency graph(s) of every Datalog value v that e could evaluate
to at runtime. In other words, define e′ to be e where all the free variables have been
substituted for values of the types given in Γ. These values must be chosen from
compositions of the Datalog literals in the program. If e′ →⋆ v then D̂G(e : r,LG(P))
over-approximates DG(v). The role of the parameter LG(P) will be discussed shortly.

If the dependency graph D̂G(e : r,LG(P)) for the expression e is stratified, then every Datalog
value v that the expression e could evaluate to must also be stratified: if the over-approximate
dependency graph does not contain a negative cycle then any sub-graph cannot contain a
negative cycle. If this is true for every expression e in a program P , then the entire program
must be stratified in the sense of Definition 7.

We construct the over-approximate graph D̂G(e : r,LG(P)) using two types of information:
Local information about the expression e (the e : r part).
Global information about the entire program P (the LG(P) part).

We call the data structure that records the global information the labelled dependency
graph LG(P). The graph records all (positive and negative) dependencies between predicate
symbols in all Datalog rules appearing anywhere in λDat the program. The dependency
edges are annotated with labels that record various constraints about each dependency.
When constructing a specific dependency graph D̂G(e : r,LG(P)) for a specific expression e

of type r, local information about the expression recorded in the type r will be combined
with the constraints recorded in the edge labels to determine that certain edges represent
global dependencies that are incompatible with some characteristics of the local expression e.
These edges from the global dependency graph are removed to construct a more precise local
dependency graph D̂G(e : r,LG(P)) specific to the local expression e.

Formally, we define the labelled dependency graph as:

▶ Definition 11 (Labelled Dependency Graph). The labelled dependency graph LG(P) of a
λDat program P is a directed graph between predicate symbols where each edge is labelled with
information that is used to determine if that edge is possible w.r.t. to a specific row type.

and we require that the LG and D̂G functions satisfy the following important property:

J. L. Starup, M. Madsen, and O. Lhoták 31:13

▶ Definition 12 (Soundness Criterion). Given a well-typed λDat program P , assume that e is a
sub-expression of P and that Γ ⊢ e : r. Define e′ to be e where all the free variables have been
substituted for values of the types given in Γ. These values must be chosen from compositions
of the Datalog literals in P . If e′ →⋆ v then the dependency graph D̂G(e : r,LG(P)) is a
sound over-approximation of the dependency graph of v, i.e. DG(v) ⊆ D̂G(e : r,LG(P)).

The choice of what information to record in the labelled dependency graph opens a large
design space. For example, it could include information about the constraints that occur
in the program, their predicate symbols, and the types of their terms. The design space
contains various choices of possible constraints that can be recorded in the labels of the
global dependency graph.

5.1 Design Choice 1: Granularity of the Labelled Dependence Graph
We now turn to the choice of which labels to use on the labelled dependency graph LG(P).

5.1.1 Degenerate
The simplest choice is to leave the labelled dependency graph unlabelled. This is a degenerate
choice which corresponds to the most pessimistic assumption: that all Datalog values could
be composed into one big Datalog value. We include it for completeness.

▶ Example 13. Consider the Datalog expression on the left:
let p = #{

Cold(x) :- Kettle (x), Off(x).
Warm(x) :- Kettle (x), not Cold(x).

} W

C

K

O

which gives rise to the labelled dependency graph on the right. The dependency edges
carry no additional information and hence any local information about the type of a specific
Datalog expression cannot help narrow down the set of possible edges. We have to consider
all edges as possible.

5.1.2 Source and Destination Granularity
A straightforward improvement is to label each dependency edge with its source and destina-
tion predicate. This is information that is already represented by the graph itself.

▶ Example 14. Consider again the Datalog expression:

let p = #{
Cold(x) :- Kettle (x), Off(x).
Warm(x) :- Kettle (x), not Cold(x).

}
W

C

K

O

{W
,C
}d4

{W, K}
d3

{C,K}

d1
{C, O}

d2

which now has the labelled dependency graph on the right. Each edge is now labelled with
its source and destination predicate symbols. We can use this information as follows.

Suppose we are given an expression e with type r:

r = {· · · | Cold = · · · | Off = · · · |Warm = · · · | · · · }

where r does not contain the Kettle predicate symbol. If so, we know that e cannot evaluate
to a Datalog value v which would give rise to the dependency edges d1 and d3 (because these

ECOOP 2023

31:14 Breaking the Negative Cycle

edges are labelled with the Kettle predicate symbols and the type system guarantees that e

cannot evaluate to a Datalog value with a Kettle predicate). On the other hand, we cannot
exclude the d2 and d4 edges because their labels occur in the type.

5.1.3 Rule-level Granularity
A more interesting design choice is to label each dependency edge with all predicate symbols
that occur in the rule from which the edge originates.

▶ Example 15. Consider again the Datalog expression:

let p = #{
Cold(x) :- Kettle (x), Off(x).
Warm(x) :- Kettle (x), not Cold(x).

}
W

C

K

O

{W
,C

,K
}d4

{W, K, C}
d3

{C,K
,O}

d1
{C, O, K}

d2

which now has the labelled dependency graph on the right. Each dependency edge is now
labelled with all the predicate symbols that occur in the rule from where the edge originates.

For example, the edge C
{C,K,O}← K represents that Cold depends on Kettle but it can only

occur if Cold, Kettle, and Off can occur in the Datalog value.
Suppose, as before, that we are given an expression e with type r:

r = {· · · | Cold = · · · | Off = · · · |Warm = · · · | · · · }

where r does not contain the Kettle predicate. We are now able to exclude all dependency
edges because they are all labelled with Kettle. Intuitively, the Datalog expression on the left
uses the Kettle predicate in both rules. Thus, if a Datalog expression does not contain the
Kettle predicate then neither rule can contribute to its dependency graph.

Suppose, on the other hand, that we are given an expression e2 with type r2:

r2 = {· · · | Cold = · · · | Kettle = · · · |Warm | · · · }

where r2 does not contain the Off predicate. If e2 evaluates to a Datalog value v2, we can
exclude the dependency edges d1 and d2 from its dependency graph, but we cannot exclude
d3 nor d4. This is because we are able to exclude the dependency edges from the first rule,
but not from the second.

5.1.4 Datalog Value-level Granularity
The last and most powerful option is to label each dependency edge with all predicate
symbols that occur within the same Datalog literal.

▶ Example 16. Consider one last time the Datalog expression:

let p = #{
Cold(x) :- Kettle (x), Off(x).
Warm(x) :- Kettle (x), not Cold(x).

}

W

C

K

O

{C
,K

,O
,W
}

d4

{C, K, O, W}
d3

{C,K
,O

,W
}

d1

{C, K, O, W}
d2

which now has the labelled dependency graph on the right. Each dependency edge is labelled
with all the predicate symbols that occur in the same Datalog literal. For example, the edge
C

{C,K,O,W }← K represents that Cold depends on Kettle but only if all the predicates Warm,
Cold, Kettle, and Off can occur in the Datalog value.

J. L. Starup, M. Madsen, and O. Lhoták 31:15

Suppose we are given an expression e with type r:

r = {· · · | Cold = · · · | Kettle = · · · |Warm = · · · | · · · }

which does not contain the Off predicate symbol. If so, we know that e cannot evaluate to a
Datalog value v with any of the four dependency edges. Note, in particular, that we are able
to exclude the dependency edge W ←−× C even though the predicate symbol Off has nothing
to do with Warm or Cold or even the rule from which the edge arises.

While this design choice is very powerful, it suffers from the problem that a simple
refactoring can break stratification. For example, if we take the same program and refactor
it to:

let p1 = #{
Cold(x) :- Kettle (x), Off(x).

};
let p2 = #{

Warm(x) :- Kettle (x), not Cold(x).
};
let pr = p1 <+> p2 W

C

K

O

{W
,C

,K
}d4

{W, K, C}
d3

{C,K
,O}

d1
{C, O, K}

d2

then it is no longer the case that the rule in p1 must occur together with p2. Consequently, if
we have an expression e with the type r (as above), we can no longer exclude the dependency
edges d3 and d4. Thus, while this design choice is powerful, it is also brittle under refactoring.

5.1.5 Summary
In summary, the four design choices are:

Choice 1a: The degenerate case where LG(P) is unlabelled.
Choice 1b: Label the LG(P) with the source and destination predicate symbols from
which the dependency edge arises.
Choice 1c: Label the LG(P) with all the predicate symbols that occur in the same rule
from where the dependency edge originates.
Choice 1d: Label the LG(P) with all the predicate symbols that occur in the same
Datalog literal from where the dependency edge originates.

For the purpose of exposition, we assume choice 1c for the next subsections.

5.2 Design Choice 2: Enriched Labelling and Type Filtering
We can increase precision by including information about the types of the predicate symbols
in the labelled dependency graph.

5.2.1 Predicate Symbol Arity
We can include the arity of the predicate symbols in the labelled dependency graph to add
precision. We define the labels to be a set of pairs (p, n) of predicate symbols and their arity.
We then define D̂G(e : r,LG(P)) to include an edge a

ℓ→b when the arities in ℓ agree with the
arities in the row type r.

▶ Example 17. Consider a λDat program P that contain the two Datalog expressions:
#{ Path(x, y) :- Road(x, l, y).

Path(x, z) :- Path(x, y), Road(y, l, z).}
#{ Unconnected (x, y) :-

..., not Road(x, y).}

In the Datalog expression on the left, the Road predicate symbol has three terms whereas
in the Datalog expression on the right, the Road predicate has two terms. The labelled
dependency graph, LG(P), is:

ECOOP 2023

31:16 Breaking the Negative Cycle

Unconnected

Path

Road

d1

{(Path, 2), (Road, 3)}

d2

{(Path, 2), (Road, 3)}

d3

{(Unconnected, 2), (Road, 2)}

which includes the arity of each predicate in the labels on the edges. Suppose the program
contains an expression e with the row type r:

r = {Road = (Int32, Int32) | Unconnected = (Int32, Int32) | · · · }

If the e evaluates to a Datalog value v, then the type system guarantees that every atom
in v with the predicate symbol Road must have two terms, both of which are of type Int32.
Thus we can exclude the two dependency edges d1 and d2 because the arities on the labels
do not match.

5.2.2 Predicate Term Types
We can increase precision even further by including the term types of predicate symbols in the
labelled dependency graph. We define labels to be pairs (p, τ) of a predicate symbol and the
types of its terms, also written p(τ) on the labelled graphs. We then define D̂G(e : r,LG(P))
to include an edge a

ℓ→b when the term types in ℓ unify with term types in the row r.

▶ Example 18. Consider a λDat program P that contain the two Datalog expressions:
#{ Road("Lyon", 120, "Paris").

Path(x, z) :- Path(x, y),
Road(y, l, z).}

#{ Road("Lyon", "Icy", "Paris").
Path(x, z) :- Path(x, y),

Road(y, l, z).}

In each Datalog expression, the Road predicate has arity two. In the expression on the
left, the label on a Road fact represents the current weather (type String), whereas in the
expression on the right, the label represents the current speed limit (type Int32).

The labelled dependency graph, omitting the Path predicate in labels, is:

Path Road

{Road(String, Int32, String)}

{Road(String, String, String)}

{Road(String, Int32, String)}

{Road(String, String, String)}

5.2.3 Relational and Lattice Predicate Symbols
In Flix, as we shall discuss further in Section 6, every predicate symbol is given either a
relational or a lattice interpretation. The type system ensures that relational and lattice
predicate symbols cannot be mixed. That is, within a Datalog value every predicate symbol
has exactly one interpretation. Similarly to how we extended the labelled dependency graph
with arity and term types, we can also extend it to account for this information.
In summary, the four options are:

Option 2a: Enrich LG(P) to track the arity of the predicates.
Option 2b: Enrich LG(P) to track term types of the predicates.
Option 2c: Enrich LG(P) to distinguish between relations and lattices.
Option 2d: Do not enrich LG(P).

These options are not mutually exclusive and can be combined.

J. L. Starup, M. Madsen, and O. Lhoták 31:17

5.3 Choice 3: Stratify With or Without Monomorphization
We have shown how local information, i.e. information about the row type of an expression,
enables us to filter the labelled dependency graph. An orthogonal design choice, which affects
precision, is whether to perform stratification with or without monomorphization.

Monomorphization is a compile-time transformation that replaces polymorphic functions
by copies that are specialized to their concrete type arguments. For example, if List.map
is used with both integer and string lists, then monomorphization generates two copies
of List.map: one specialized to integers and one specialized to strings. While the primary
purpose of monomorphization is to avoid boxing, monomorphization can also be used to
improve the precision of stratification.

Monomorphization improves precision in two ways:
(i) by specializing polymorphic Datalog expressions to concrete types, boosting the precision

of type-based filtering, and
(ii) by eliminating unreachable Datalog expressions.

▶ Example 19. Consider the Flix program fragment:
def f(): #{A(t), B(t)} =

#{ A(x) :- B(x). }

def g(): #{A(t), B(t)} =
{ B(x) :- B(x), not A(x). }

def main (): Unit =
let c1 = f() <+> A (123).;
let c2 = g() <+> A("hello").;
solve c1

The functions f and g return Datalog values with row types that contain the predicate symbols
A and B, which are polymorphic in the type parameter t. The two Datalog constraints form
a negative cycle between A and B. Because the types of the two expressions are

∀α1,∀ρ1. {A = α1 | {B = α1 | ρ1}} and ∀α2,∀ρ2. {A = α2 | {B = α2 | ρ2}}

we cannot exclude that these two types could occur in the same Datalog value and consequently
we cannot exclude that the overall program might construct a non-stratified Datalog program
at runtime. However, if we monomorphize the program first, i.e. specialize f and g to their
concrete type arguments whenever they are used in the program, then we obtain the program:

def f1 (): #{A(Int32), B(Int32)} =
#{ A(x) :- B(x). }

def g1 (): #{A(String), B(String)} =
{ A(x) :- A(x), not B(x). }

def main (): #{A(Int32), B(Int32)} =
let c1 = f1() <+> A (123).;
let c2 = g1() <+> A("hello").;
solve c1

where f1 and g1 are no longer polymorphic and the types of their Datalog expressions are:

{A = Int32 | B = Int32} and {A = String | B = String}

We can now use the types to determine that the two rules cannot occur in the same Datalog
value and consequently the program is stratified.

Monomorphization increases precision, but has two practical downsides: the labelled
dependency graphs are larger and consequently more costly to stratify, and intertwining
monomorphization and stratification may make it difficult for programmers to understand
why or when a program fails to be stratified.
In summary, the two design choices are:

Choice 3a: Stratify without monomorphization.
Choice 3b: Stratify with monomorphization.

ECOOP 2023

31:18 Breaking the Negative Cycle

6 The Fix Modifier, Lattice Semantics, and Stratification

We now explain the role of the fix modifier and its semantics. Intuitively, the fix modifier
enables us to safely use lattice values in relations. Given the rule:

A(x)⇐ fix B(x), C(x).

The use of “fix” in front of the atom B(x) forces the relation B to be fully computed before
the rule is applied. Therefore, A must belong to a stratum strictly greater than B. Thus, the
fix modifier has the same effect on stratification as negation. For a normal Datalog program,
fix does not change the minimal model, only the evaluation order. However, for Datalog
programs with lattice semantics [31], the fix construct solves a long-standing problem.

In Flix, every predicate symbol is associated with a relational or lattice interpretation. We
will write p for a predicate symbol that has a relational interpretation and pℓ for a predicate
symbol that has a lattice interpretation. We syntactically distinguish between relational
and lattice predicates by writing a relational predicate as A(t1, · · · , tn), whereas we write a
lattice predicate as A(t1, · · · , tn; t), with a semi-colon before the last term.

▶ Definition 20 (Key and Lattice Positions). Given an atom p(t1, · · · , tn) where p has
relational interpretation, we say that the terms t1, · · · , tn are in key position. Given atom
pℓ(t1, · · · , tn; t) where pℓ has a lattice interpretation, we say that the terms t1, · · · , tn are in
key position and t is in lattice position.

▶ Definition 21 (Key and Lattice Variables). We split variables into key and lattice variables.
A variable is a key variable if all its occurrences are in key positions. Otherwise it is a lattice
variable.

As the definition states, a variable that occurs in both a key and lattice position is
considered a lattice variable. The original version of Flix disallows such “dual-use” of
variables; enforcing that lattice variables cannot be used in key position.

▶ Example 22. To better understand key and lattice variables, consider the Datalog rules:
A(k1 , k2; l) :- B(kl , k2; l), C(k1 , k2; l). // legal
A(k1 , k2 , l) :- B(kl , k2; l), C(kl , k2; l). // illegal
A(k1 , k2; l) :- B(kl , k2; l), C(k1 , k2 , l). // illegal
A(k1 , l; k2) :- B(kl , k2; l), C(kl , k2; l). // illegal

In each rule, the variable l is a lattice variable because it occurs in at least one lattice position.
The first rule is legal since the lattice variable l only occurs lattice positions. The second rule
is illegal since the lattice variable l occurs in a key position in the head of the rule (where A

has a relational interpretation). The third rule is illegal since the lattice variable l occurs in
a key position in the body of the rule (where C has a relational interpretation). The fourth
rule is illegal since the lattice variable l occurs in a key position in the head of the rule.

Formally, the original version of Flix enforces the lattice range restriction:

▶ Definition 23 (Lattice Range Restriction). Every lattice variable must occur in a lattice
position.

To understand the lattice range restriction, let us revisit the example from Section 2.

▶ Example 24. Figure 2 contains the Datalog rule:
Edge(c1 , c2) :- fix Component (_; c1), fix Component (_; c2).

J. L. Starup, M. Madsen, and O. Lhoták 31:19

Assume that the rule did not use fix and that we ignore the lattice range restriction. Suppose
we have the following lattice facts:

Component(7; {1}). Component(7; {2}). Component(7, {7}).
Component(5, {3}). Component(5, {5}).

The minimal model has two facts: Component(7; {1, 2, 7}) and Component(5; {3, 5}). We
would thus assume that the above rule would compute the undirected edge fact: {1, 2, 7} ↔
{3, 5}. But this is not what the program computes! It derives nonsensical facts such as
{1} ↔ {3}, {1} ↔ {3, 5}, and all other edges between intermediate lattice values. The lattice
range restriction avoids this problem by banning the program. We propose to allow the
program as long as the lattice is fix’ed, i.e. fully computed, before it is used in a relation.

As the example shows, the lattice range restriction is overly strict. We can allow lattice
variables to be used in key positions in head atoms provided that we ensure that the head
predicate symbol occurs in a strictly higher stratum than every body atom in which the
lattice variable occurs. This ensures that the lattice predicates are fully computed before
they are used as keys. We introduce the extended dependency graph to capture this notion:

▶ Definition 25 (Extended Dependency Graph). The extended dependency graph of a Datalog
program D with lattice semantics is a directed graph of predicate symbols that contains:

a weak edge a← b if D contains a rule where a is the predicate symbol of the head atom
and b is a predicate symbol of a positive body atom, and
a strong edge a ←−× b if D contains a rule where a is the predicate symbol of the head
and b is a predicate symbol of a fixed or negative body atom.

We use the word strong to represent either a fixed or a negative dependency.

We also update the range restriction:

▶ Definition 26 (Extended Lattice Range Restriction). If every occurrence of a lattice variable
is under a fix in the body of a rule, then the variable may be treated as a key in the head of
the rule.

Finally, we update our definition of stratification for the λDat calculus and for Flix:

▶ Definition 27 (Extended Stratification). A Datalog program DL, enriched with lattice
semantics, is stratified if the extended dependency graph does not contain a cycle with a
strong edge. A λDat calculus program PL, enriched with lattice semantics, is stratified if
every Datalog value constructed during evaluation of PL is stratified.

▶ Example 28. We conclude with a small example of how the fix construct can be used1:

Degree ("Kevin Bacon"; Down (0)).
Degree (x; n + Down (1)) :- Degree (y; n), StarsWith (y, x).
Layer(n; Set #{x}) :- fix Degree (x; n).
Count(n, Set.size(s)) :- fix Layer(n; s).

This program computes the number of people who are separated by n-degrees from Kevin
Bacon. For example, the 2nd-degree is the number of people who have starred in a movie
where someone in that movie has also starred in another movie with Kevin Bacon.

1 Here, the Down constructor defines a lattice with the reverse ordering of the underlying type.

ECOOP 2023

31:20 Breaking the Negative Cycle

7 Implementation

We now describe where the original version of Flix, and our proposed future version of Flix,
reside in the design space.

7.1 The Original Flix Implementation
The original Flix implementation and its associated paper [30] do not use the terminology of
this paper. Nevertheless, we can recast their design choices in our framework.

Flix uses a labelled dependency graph constructed from the entire program and filtered
based on the type of each Datalog expression, the hybrid approach. The labels are predicate
symbols where each dependency edge is annotated with its source and destination (choice 1b).
No enriched labelling or types are used (choice 2d). Stratification is performed without
monomorphization (choice 3a).

7.2 Our Flix Extension
While all design choices are valid, in our view, choice 1b and choice 2d are sub-optimal.

For choice 1b, by only using the predicate symbols that are the source and destination
of each dependency edge, we lose the important information that most dependency edges
arise from rules where multiple predicate symbols are involved and thus where all of
these predicate symbols must be present for the edge to be relevant. Instead, choice 1c
or choice 1d offer increased precision with little downside.
For choice 2d, ignoring the arity and term types of each predicate symbol loses important
contextual information. In other logic programming languages, such as Prolog, predicate
symbols are often overloaded and use the arity as part of their name, e.g. spawn/2

and spawn/3. Given that λDat and Flix are statically typed, it seems like a missed
opportunity not to use types to distinguish predicate symbols, e.g. Path(Int32, Int32) vs.
Path(String, String).

For these reasons, in our proposed extension, we settled on choice 1c and choice 2b
combined with choice 2c. We chose choice 1c because of its increased precision while still
remaining explainable to the programmer. For choice 2b and choice 2c, we think that
incorporating types and the distinction between relational and lattice predicates into the
dependence graph increases precision significantly while also remaining understandable to
the programmer.

We keep the rest of the design choices the same. We explored the idea of moving
the stratifier after monomorphization choice 3b, which would boost precision. However,
monomorphization is a relatively expensive compiler phase that is traditionally not part of
the Flix compiler frontend. Thus, if stratification depends on monomorphization, then it
becomes part of the frontend and must be run whenever the program is “type checked” by
an IDE. We were worried that this would have unacceptable performance implications2.
In summary, our Flix extension makes the following design choices:

We use the hybrid approach based on the labelled dependency graph.
Choice 1c: We use rule-level granularity.
Choice 2b: We enrich the graph with term types.
Choice 2c: We enrich the graph with relation and lattice information.
Choice 3a: We stratify without monomorphization.

2 This frontend versus backend problem is not unique to stratification. For example, many C or C++
compilers will report additional compilation warnings or errors when expensive backend optimizations
are enabled. This might seem counter-intuitive, but the reason is that expensive program analysis
enables the compiler to know more about the program and thus to report more warnings or errors.

J. L. Starup, M. Madsen, and O. Lhoták 31:21

7.3 Implementation Details
We have implemented the above design choices in an extension of the Flix compiler.

Flix is a functional-first, imperative, and logic programming language that supports
algebraic data types, pattern matching, higher-order functions, parametric polymorphism,
type classes, higher-kinded types, polymorphic effects, extensible records, first-class Datalog
constraints, channel and process-based concurrency, and tail call elimination [30, 31].

The Flix compiler project, including the standard library and tests, consists of 161,000
lines of Flix and Scala code. We re-wrote the Stratifier compiler phase which required ~1,000
lines of code and added support for the “fix” construct which required ~700 lines of code.

Flix, with our extensions, is ready for use, open source, and freely available at:

https://flix.dev and https://github.com/flix/flix

7.4 When a Program Does Not Stratify
When Flix programmers encounter a stratification error, there are essentially two possibilities:

The program contains an actual stratification error.
The type system is too imprecise to rule out the possibility of a stratification error.

We want to support the programmer in both scenarios. First, this means giving the
programmer useful error messages such that they can accurately identify which of the two
cases is applicable. Second, we want to give the programmer the ability to refactor their
program such that it passes the stratification.

If a programmer should encounter a stratification error due to imprecision, they can:
1. Rename a predicate symbol to avoid a clash with a conceptually different predicate

symbol. For example, instead of Node, a more suitable name could be City.
2. Introduce an extra predicate symbol in a rule to exclude the clash.
3. Change the arity of a predicate symbol, for example by recording more or less information.
4. Enrich the types of the terms in a predicate; for example, the programmer could introduce

a new type Celsius instead of Int32 or a new type City instead of String.
We think these are flexible and reasonable strategies that a Flix programmer will be able to
use. Of course these strategies cannot necessarily resolve all stratification issues, but the
space of accepted programs is much larger than in the original version of Flix where only
strategy (1) is available.

7.5 The Motivating Example, Revisited
We now revisit the motivating example from Section 2. Figure 6 shows the labelled dependency
graph for the program in Figure 2. The graph reflects our design choices:

(i) the dependency edges are labelled with all predicate symbols from the rule that gives
rise to the dependency, and

(ii) the labels carry the term types of each predicate symbol.
The braces and commas of the label sets are omitted. Inspecting the graph, we see two
potential negative cycles. However, no expression in the program in Figure 2 has a type
where the cycles cannot be excluded.

As an example, on line 26, the composition of the expressions ns, es, and r has the type:

{ComponentRep = (Int32, Int32), Reachable = (Int32, Int32),
Node = (Int32), Edge = (Int32, Int32), ReachUp = (Int32)}

ECOOP 2023

https://flix.dev
https://github.com/flix/flix

31:22 Breaking the Negative Cycle

ReachUp ComponentRep Component

EdgeReachableNode

ReachUp(Int32)
ComponentRep(Int32, Int32)
Reachable(Int32, Int32)

ComponentRep(Int32, Int32)
Component(Int32; Set[Int32])

Component(Int32;
Set[Int32])

Edge(Set[Int32],
Set[Int32])

Edge(Int32, Int32)
Reachable(Int32, Int32)

Reachable(Int32, Int32)
ComponentRep(Int32, Int32)
ReachUp(Int32)

Reachable(Int32, Int32)
ReachUp(Int32)

Reachable(Int32, Int32)

Node(Int32)
Reachable(Int32, Int32)

Figure 6 The labelled dependency graph of the program in Figure 2 based on the design decisions
of Section 7.2. The gray dashed lines are the edges that are filtered out when looking at the union
of ns, es, r on line 26.

This excludes the dashed dependency edges shown in gray in Figure 6. For example, the
edge between Component and Edge is ruled out since the term types of Edge do not match
and since Component is not present. The resulting graph, shown with solid arrows, does not
contain any negative cycles. Hence the expression is stratified. This is true for all expressions
in the program, hence Flix is able to statically determine that the program is stratified.

8 Case Study: A Small Graph Library in Flix

We have implemented a small open-source graph library for Flix3. The graph library provides
a range of queries on graphs, as shown in Table 1. Each query is implemented as a Flix
function that internally uses Datalog. The purpose of the case study is to explore how a
graph library can be implemented using first-class Datalog constraints in Flix and to check
that the proposed stratification strategy is practical.

Table 1 shows an overview of the functions that we have implemented in the graph library.
In total, we have implemented 24 functions in 450 lines of code. The columns of the table
are as follows: The Function and Lines columns give the name and number of source code
lines for a specific function. The Lattices column indicates whether the Datalog program uses
lattice semantics. The Stratified Negation column indicates whether the Datalog program
uses stratified negation. The Fix Construct column indicates whether the Datalog program
uses the fix construct.

To look at a specific example, the table shows that the stronglyConnectedComponents
function consists of 26 lines of code, it uses lattice semantics and the fix construct, but it
does not use stratified negation. To give an idea of how the library is implemented, the
complete source code for the stronglyConnectedComponents function is shown in Figure 7. As
the code shows, each query is implemented using first-class Datalog constraints and there is
some code-reuse in the form of the nodes and reachability functions which return Datalog
program values.

3 https://github.com/flix/flix/blob/master/main/src/library/Graph.flix

https://github.com/flix/flix/blob/master/main/src/library/Graph.flix

J. L. Starup, M. Madsen, and O. Lhoták 31:23

Table 1 Overview of the Flix Graph Library. The line count includes the number of lines of
helper functions. The features used in a function also include features used in helper functions.

Features Used

Function Lines Lattices Stratified Negation Fix Construct
boundedDistances 20 Y N Y
closure 17 N N N
cutPoints 30 Y Y Y
degrees 19 Y N Y
distance 16 Y N Y
distances 49 Y N Y
distancesFrom 15 Y N Y
flipEdges 10 N N N
frontiersFrom 29 Y N Y
inDegrees 18 Y N Y
invert 12 N Y N
isCyclic 15 N N N
outDegrees 18 Y N Y
reachable 16 N N N
reachableFrom 15 N N N
stronglyConnectedComponents 26 Y N Y
toGraphviz 11 N N N
toGraphvizWeighted 11 N N N
topologicalsort 28 Y Y N
toUndirected 4 N N N
toUndirectedWeighted 4 N N N
unreachableFrom 20 N Y N
withinDistanceOf 14 Y N Y
withinEdgesOf 14 Y N Y

In total, the library contains 31 distinct predicate symbols and 64 rules. The library was
developed using our extended Flix compiler. During development, we never encountered
a spurious stratification error. However, if we compile the library with the original Flix
compiler, it is unfairly rejected due to a spurious negative cycle.

In summary, Table 1 shows that: (i) we have 24 functions that co-exist, using overlapping
predicate names from the same domain, without spurious stratification errors, (ii) the majority
of functions (15/24) require stratification via not, fix, or both, (iii) many functions use lattice
semantics (13/24), (iv) the fix construct is used more often than the not construct, and
(v) the library is accepted by our extended Flix compiler, but is rejected by the original Flix
compiler due to a spurious negative cycle in the dependency graph.

Flix is a whole-program optimizing compiler. When the graph library is compiled together
with the standard library, the stratification is computed in 0.16 seconds whereas the total
compilation time is 7.3 seconds. In particular, compilation time is dominated by the cost of
type inference. In conclusion, we find the stratification does not unfairly reject our library
and that the cost of computing the stratification is low.

ECOOP 2023

31:24 Breaking the Negative Cycle

1 /// Returns the strongly connected components of the directed
2 /// graph ‘g‘. Two nodes are in the same component if and only
3 /// if they can both reach each other.
4 pub def stronglyConnectedComponents (g: m[(t, t)]): Set[Set[t]]
5 with Foldable [m], Boxable [t] = {
6 let edges = inject g into Edge;
7 let connected = #{
8 // If ‘n1 ‘ can reach ‘n2 ‘ and ‘n2 ‘ can reach ‘n1 ‘ then they are
9 // part of the same strongly connected component .

10 Connected (n1; Set #{n2}) :- Reachable (n1 , n2), Reachable (n2 , n1).
11 };
12 let components = #{
13 // After the full computation of ‘Connected ‘, duplicates are
14 // removed by checking that ‘n‘ is the minimum in the strongly
15 // connected component .
16 Components (s) :- fix Connected (n; s), if Some(n) == Set. minimum (s).
17 };
18 let res = query edges , nodes (), reachability (), connected , components
19 select x
20 from Components (x);
21 List.toSet(res)
22 }

Figure 7 The stronglyConnectedComponents function from the graph library case study.

9 Related Work

9.1 First-class Datalog

Magnus and Lhoták present the λDat calculus which is the foundation for the current work [30].
The authors briefly discuss stratified negation and propose a simple solution based on type
filtering similar to choice 1b without any information on the labels (choice 2d). As we
have seen, some of these choices are sub-optimal.

9.2 Negation and Aggregation Semantics

There are many proposed semantics for Datalog with negation but stratified negation is
the most prevalent one. Kolaitis and Papadimitriou present inflationary semantics that
produce facts in such a way that a fixpoint exists for all programs using negation. The
fixpoint is not guaranteed to be minimal [26]. There are also variations in the realm of
stratification. Negation can be restricted to guarded negation, which in broad terms means
that all first-order variables in negated atoms exist in a single atom. This makes additional
questions like query containment decidable [5]. Local stratification stratifies the program on
instances of rules instead of the quantified rules. This is a property that is hard to verify,
but in its most expressive form, it allows deducing even(i + 1) from ¬even(i), since this is
not circular reasoning for any instantiations of i [36].

Aggregation is non-monotone like negation, which is why it has been studied using many
of the same ideas. Aggregation can naturally be stratified like negation but another option
is group-stratification based on the standard group-by operation. This means that a group
of the predicate should not depend on itself [35]. Zaniolo et al. studies both negation and
aggregation with a syntactically restricted form of local stratification that essentially tracks
the dynamic strata on the facts [48].

J. L. Starup, M. Madsen, and O. Lhoták 31:25

9.3 Datalog Extensions
There have been many efforts to increase the expressive power and usability of Datalog
while maintaining practical feasibility. One extension is the existential quantification of
variables in the rule head. This was motivated by the ontological reasoning that is needed in
web-standards for databases [19]. Datalog∃ is undecidable, so a family of languages called
Datalog± [8] makes restrictions that reduce the complexity to classes ranging from AC0 to
EXPTIME. One of these is Warded Datalog± [19], which has a syntactic restriction on the
usage of variables that may be bound to non-constant variables in evaluation and flow into
the rule head. They must be within a single predicate, the “ward”. It uses stratified negation
and negative constraints that restrict the inclusion of certain facts.

10 Conclusion

Flix is a functional, imperative, and logic language with support for first-class Datalog
constraints. In Flix, Datalog constraints are values that can be constructed, passed as
arguments to functions, returned from functions, composed with other Datalog values, and
solved. Flix is based on the λDat calculus which itself builds on the Hindley-Milner type
system extended with row polymorphism. A significant part of the expressive power of
Datalog comes from the use of negation. Stratified negation is a particular simple form
of negation that prohibits recursion through negation and is easily accessible to ordinary
programmers. While it is straightforward to determine if a Datalog program is stratified,
it is much more difficult to statically determine if a λDat program is stratified. In this
paper, we have explored the design space of stratification for λDat. We have proposed several
improvements to stratification in Flix and we have implemented these. With our extension,
Flix accepts a much broader range of programs that use stratified negation. Finally, we
have also extended Flix with a new “fix” construct that enables lattice values to be used as
relational values.

References
1 Peter Alvaro, William R. Marczak, Neil Conway, Joseph M. Hellerstein, David Maier, and

Russell Sears. Dedalus: Datalog in time and space. In Oege de Moor, Georg Gottlob, Tim
Furche, and Andrew Sellers, editors, Datalog Reloaded, pages 262–281, Berlin, 2011. Springer
Berlin Heidelberg.

2 Mario Alviano, Wolfgang Faber, Nicola Leone, Simona Perri, Gerald Pfeifer, and Giorgio
Terracina. The disjunctive Datalog system DLV. In Oege de Moor, Georg Gottlob, Tim
Furche, and Andrew Sellers, editors, Datalog Reloaded, pages 282–301, Berlin, 2011. Springer
Berlin Heidelberg.

3 Molham Aref, Balder ten Cate, Todd J. Green, Benny Kimelfeld, Dan Olteanu, Emir Pasalic,
Todd L. Veldhuizen, and Geoffrey Washburn. Design and implementation of the logicblox
system. In Proc. of the 2015 ACM SIGMOD International Conference on Management of
Data, SIGMOD ’15, pages 1371–1382, New York, NY, USA, 2015. Association for Computing
Machinery. doi:10.1145/2723372.2742796.

4 Pavel Avgustinov, Oege de Moor, Michael Peyton Jones, and Max Schäfer. QL: Object-oriented
queries on relational data. In Shriram Krishnamurthi and Benjamin S. Lerner, editors, 30th
European Conference on Object-Oriented Programming (ECOOP 2016), volume 56 of Leibniz
International Proc. in Informatics (LIPIcs), pages 2:1–2:25, Dagstuhl, Germany, 2016. Schloss
Dagstuhl–Leibniz-Zentrum fuer Informatik. doi:10.4230/LIPIcs.ECOOP.2016.2.

5 Vince Bárány, Balder ten Cate, and Martin Otto. Queries with guarded negation. Proc. VLDB
Endow., 5(11):1328–1339, July 2012. doi:10.14778/2350229.2350250.

ECOOP 2023

https://doi.org/10.1145/2723372.2742796
https://doi.org/10.4230/LIPIcs.ECOOP.2016.2
https://doi.org/10.14778/2350229.2350250

31:26 Breaking the Negative Cycle

6 Aaron Bembenek, Michael Greenberg, and Stephen Chong. Formulog: Datalog for SMT-
based static analysis. Proc. ACM Program. Lang., 4(OOPSLA), November 2020. doi:
10.1145/3428209.

7 Martin Bravenboer and Yannis Smaragdakis. Strictly declarative specification of sophisticated
points-to analyses. In Proc. of the 24th ACM SIGPLAN Conference on Object Oriented
Programming Systems Languages and Applications, OOPSLA ’09, pages 243–262, New York,
NY, USA, 2009. Association for Computing Machinery. doi:10.1145/1640089.1640108.

8 Andrea Calì, Georg Gottlob, and Thomas Lukasiewicz. A general Datalog-based framework
for tractable query answering over ontologies. In Proc. of the Twenty-Eighth ACM SIGMOD-
SIGACT-SIGART Symposium on Principles of Database Systems, PODS ’09, pages 77–86, New
York, NY, USA, 2009. Association for Computing Machinery. doi:10.1145/1559795.1559809.

9 Stefano Ceri, Georg Gottlob, and Letizia Tanca. Logic Programming and Databases: An Over-
view, pages 1–15. Springer Berlin Heidelberg, Berlin, 1990. doi:10.1007/978-3-642-83952-8_
1.

10 Neil Conway, William R. Marczak, Peter Alvaro, Joseph M. Hellerstein, and David Maier.
Logic and lattices for distributed programming. In Proc. of the Third ACM Symposium on
Cloud Computing, SoCC ’12, New York, NY, USA, 2012. Association for Computing Machinery.
doi:10.1145/2391229.2391230.

11 Luis Damas. Type assignment in programming languages. PhD thesis, The University of
Edinburgh, 1984.

12 Luis Damas and Robin Milner. Principal type-schemes for functional programs. In Proc.
of the 9th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
POPL ’82, pages 207–212, New York, NY, USA, 1982. Association for Computing Machinery.
doi:10.1145/582153.582176.

13 Thomas Eiter, Georg Gottlob, and Heikki Mannila. Disjunctive Datalog. ACM Trans. Database
Syst., 22(3):364–418, September 1997. doi:10.1145/261124.261126.

14 Melvin Fitting. Fixpoint semantics for logic programming a survey. Theoretical Computer
Science, 278(1):25–51, 2002. Mathematical Foundations of Programming Semantics 1996.
doi:10.1016/S0304-3975(00)00330-3.

15 Antonio Flores-Montoya and Eric Schulte. Datalog disassembly. In 29th USENIX Security
Symposium (USENIX Security 20), pages 1075–1092, Berkeley, California, USA, August 2020.
USENIX Association.

16 Michael Gelfond and Vladimir Lifschitz. The stable model semantics for logic programming.
In Robert Kowalski, Bowen, and Kenneth, editors, Proc. of International Logic Programming
Conference and Symposium, pages 1070–1080, Cambridge, MA, USA, 1988. MIT Press.

17 Michael Gelfond and Vladimir Lifschitz. Classical negation in logic programs and disjunctive
databases. New Generation Computing, 9(3):365–385, August 1991. doi:10.1007/BF03037169.

18 G. Gottlob, S. Ceri, and L. Tanca. What you always wanted to know about Datalog (and
never dared to ask). IEEE Transactions on Knowledge and Data Engineering, 1(01):146–166,
1989. doi:10.1109/69.43410.

19 Georg Gottlob and Andreas Pieris. Beyond SPARQL under OWL 2 QL entailment regime:
Rules to the rescue. In Proc. of the 24th International Conference on Artificial Intelligence,
IJCAI’15, pages 2999–3007, Palo Alto, California, USA, 2015. AAAI Press.

20 Daniel Halperin, Victor Teixeira de Almeida, Lee Lee Choo, Shumo Chu, Paraschos Koutris,
Dominik Moritz, Jennifer Ortiz, Vaspol Ruamviboonsuk, Jingjing Wang, Andrew Whitaker,
Shengliang Xu, Magdalena Balazinska, Bill Howe, and Dan Suciu. Demonstration of the Myria
big data management service. In Proc. of the 2014 ACM SIGMOD International Conference
on Management of Data, SIGMOD ’14, pages 881–884, New York, NY, USA, 2014. Association
for Computing Machinery. doi:10.1145/2588555.2594530.

21 R. Hindley. The principal type-scheme of an object in combinatory logic. Transactions of the
American Mathematical Society, 146:29–60, 1969. doi:10.2307/1995158.

https://doi.org/10.1145/3428209
https://doi.org/10.1145/3428209
https://doi.org/10.1145/1640089.1640108
https://doi.org/10.1145/1559795.1559809
https://doi.org/10.1007/978-3-642-83952-8_1
https://doi.org/10.1007/978-3-642-83952-8_1
https://doi.org/10.1145/2391229.2391230
https://doi.org/10.1145/582153.582176
https://doi.org/10.1145/261124.261126
https://doi.org/10.1016/S0304-3975(00)00330-3
https://doi.org/10.1007/BF03037169
https://doi.org/10.1109/69.43410
https://doi.org/10.1145/2588555.2594530
https://doi.org/10.2307/1995158

J. L. Starup, M. Madsen, and O. Lhoták 31:27

22 Herbert Jordan, Bernhard Scholz, and Pavle Subotić. Soufflé: On synthesis of program
analyzers. In Swarat Chaudhuri and Azadeh Farzan, editors, Computer Aided Verification,
pages 422–430, Cham, 2016. Springer International Publishing.

23 Mark Kaminski, Bernardo Cuenca Grau, Egor V. Kostylev, Boris Motik, and Ian Horrocks.
Foundations of declarative data analysis using limit Datalog programs. In Proc. of the
Twenty-Sixth International Joint Conference on Artificial Intelligence, IJCAI-17, pages 1123–
1130, California, USA, 2017. International Joint Conferences on Artificial Intelligence. doi:
10.24963/ijcai.2017/156.

24 Bas Ketsman, Aws Albarghouthi, and Paraschos Koutris. Distribution policies for Datalog. In
Benny Kimelfeld and Yael Amsterdamer, editors, 21st International Conference on Database
Theory (ICDT 2018), volume 98 of Leibniz International Proc. in Informatics (LIPIcs), pages
17:1–17:22, Dagstuhl, Germany, 2018. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.
doi:10.4230/LIPIcs.ICDT.2018.17.

25 Ross D. King. Applying inductive logic programming to predicting gene function. AI Mag.,
25(1):57–68, March 2004.

26 Phokion G. Kolaitis and Christos H. Papadimitriou. Why not negation by fixpoint? In
Proc. of the Seventh ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database
Systems, PODS ’88, pages 231–239, New York, NY, USA, 1988. Association for Computing
Machinery. doi:10.1145/308386.308446.

27 Kenneth Kunen. Negation in logic programming. The Journal of Logic Programming, 4(4):289–
308, 1987. doi:10.1016/0743-1066(87)90007-0.

28 Daan Leijen. Extensible records with scoped labels. Trends in Functional Programming,
5:297–312, 2005.

29 Boon Thau Loo, Tyson Condie, Minos Garofalakis, David E. Gay, Joseph M. Hellerstein, Petros
Maniatis, Raghu Ramakrishnan, Timothy Roscoe, and Ion Stoica. Declarative networking.
Commun. ACM, 52(11):87–95, November 2009. doi:10.1145/1592761.1592785.

30 Magnus Madsen and Ondřej Lhoták. Fixpoints for the masses: Programming with first-
class Datalog constraints. Proc. ACM Program. Lang., 4(OOPSLA), November 2020. doi:
10.1145/3428193.

31 Magnus Madsen, Ming-Ho Yee, and Ondřej Lhoták. From Datalog to Flix: A declarative
language for fixed points on lattices. In Proc. of the 37th ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI), PLDI ’16, pages 194–208, New
York, NY, USA, 2016. Association for Computing Machinery. doi:10.1145/2908080.2908096.

32 Hongyuan Mei, Guanghui Qin, Minjie Xu, and Jason Eisner. Neural Datalog through time:
Informed temporal modeling via logical specification. In International Conference on Machine
Learning, pages 6808–6819, Madison, WI, USA, 2020. PMLR, Omnipress.

33 Robin Milner. A theory of type polymorphism in programming. Journal of Computer and
System Sciences, 17(3):348–375, December 1978. doi:10.1016/0022-0000(78)90014-4.

34 Raymond J. Mooney. Inductive logic programming for natural language processing. In Stephen
Muggleton, editor, Inductive Logic Programming, pages 1–22, Berlin, 1997. Springer Berlin
Heidelberg.

35 Inderpal Singh Mumick, Hamid Pirahesh, and Raghu Ramakrishnan. The magic of duplicates
and aggregates. In Proc. of the Sixteenth International Conference on Very Large Databases,
pages 264–277, San Francisco, CA, USA, 1990. Morgan Kaufmann Publishers Inc.

36 Teodor C. Przymusinski. Chapter 5 - on the declarative semantics of deductive databases and
logic programs. In Jack Minker, editor, Foundations of Deductive Databases and Logic Program-
ming, pages 193–216. Morgan Kaufmann, USA, 1988. doi:10.1016/B978-0-934613-40-8.
50009-9.

37 Kenneth A. Ross. Modular stratification and magic sets for DATALOG programs with negation.
In Proc. of the Ninth ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database
Systems, PODS ’90, pages 161–171, New York, NY, USA, 1990. Association for Computing
Machinery. doi:10.1145/298514.298558.

ECOOP 2023

https://doi.org/10.24963/ijcai.2017/156
https://doi.org/10.24963/ijcai.2017/156
https://doi.org/10.4230/LIPIcs.ICDT.2018.17
https://doi.org/10.1145/308386.308446
https://doi.org/10.1016/0743-1066(87)90007-0
https://doi.org/10.1145/1592761.1592785
https://doi.org/10.1145/3428193
https://doi.org/10.1145/3428193
https://doi.org/10.1145/2908080.2908096
https://doi.org/10.1016/0022-0000(78)90014-4
https://doi.org/10.1016/B978-0-934613-40-8.50009-9
https://doi.org/10.1016/B978-0-934613-40-8.50009-9
https://doi.org/10.1145/298514.298558

31:28 Breaking the Negative Cycle

38 Jiwon Seo. Datalog extensions for bioinformatic data analysis. Annu Int Conf IEEE Eng Med
Biol Soc, 2018:1303–1306, July 2018.

39 Jiwon Seo, Stephen Guo, and Monica S. Lam. SociaLite: Datalog extensions for efficient social
network analysis. In 2013 IEEE 29th International Conference on Data Engineering (ICDE),
pages 278–289, Manhattan, New York, USA, 2013. IEEE. doi:10.1109/ICDE.2013.6544832.

40 Jiwon Seo, Jongsoo Park, Jaeho Shin, and Monica S. Lam. Distributed Socialite: A Datalog-
based language for large-scale graph analysis. Proc. VLDB Endow., 6(14):1906–1917, September
2013. doi:10.14778/2556549.2556572.

41 Alexander Shkapsky, Mohan Yang, Matteo Interlandi, Hsuan Chiu, Tyson Condie, and Carlo
Zaniolo. Big data analytics with Datalog queries on Spark. In Proc. of the 2016 International
Conference on Management of Data, SIGMOD ’16, pages 1135–1149, New York, NY, USA,
2016. Association for Computing Machinery. doi:10.1145/2882903.2915229.

42 Yannis Smaragdakis and Martin Bravenboer. Using Datalog for fast and easy program analysis.
In Oege de Moor, Georg Gottlob, Tim Furche, and Andrew Sellers, editors, Datalog Reloaded,
pages 245–251, Berlin, 2011. Springer Berlin Heidelberg.

43 Tamás Szabó, Gábor Bergmann, Sebastian Erdweg, and Markus Voelter. Incrementalizing
lattice-based program analyses in Datalog. Proc. ACM Program. Lang., 2(OOPSLA), October
2018. doi:10.1145/3276509.

44 Petar Tsankov. Security analysis of smart contracts in Datalog. In Tiziana Margaria and
Bernhard Steffen, editors, Leveraging Applications of Formal Methods, Verification and Valid-
ation. Industrial Practice, pages 316–322, Cham, 2018. Springer International Publishing.

45 Jeffrey D. Ullman. Principles of database and knowledge-base systems, 1988.
46 Mario Wenzel and Stefan Brass. Declarative programming for microcontrollers - Datalog on

Arduino. In Declarative Programming and Knowledge Management: Conference on Declarative
Programming, DECLARE 2019, Unifying INAP, WLP, and WFLP, Cottbus, Germany,
September 9–12, 2019, Revised Selected Papers, pages 119–138, Berlin, 2019. Springer-Verlag.
doi:10.1007/978-3-030-46714-2_9.

47 Andrew K Wright and Matthias Felleisen. A syntactic approach to type soundness. Information
and computation, 115(1):38–94, 1994.

48 Carlo Zaniolo, Natraj Arni, and Kayliang Ong. Negation and aggregates in recursive rules:
the LDL++ approach. In Stefano Ceri, Katsumi Tanaka, and Shalom Tsur, editors, Deductive
and Object-Oriented Databases, pages 204–221, Berlin, 1993. Springer Berlin Heidelberg.

https://doi.org/10.1109/ICDE.2013.6544832
https://doi.org/10.14778/2556549.2556572
https://doi.org/10.1145/2882903.2915229
https://doi.org/10.1145/3276509
https://doi.org/10.1007/978-3-030-46714-2_9

	1 Introduction
	2 Motivation
	2.1 Stratified Negation

	3 Background
	3.1 Datalog
	3.1.1 Syntax
	3.1.2 Semantics

	3.2 Stratified Negation
	3.3 First-Class Datalog Constraints
	3.3.1 Syntax
	3.3.2 Type System

	3.4 The Problem: Stratification and First-Class Constraints

	4 Dependency Graph Types: A Purely Type-based Approach
	4.1 Discussion

	5 Labelled Dependency Graph: A Hybrid Approach
	5.1 Design Choice 1: Granularity of the Labelled Dependence Graph
	5.1.1 Degenerate
	5.1.2 Source and Destination Granularity
	5.1.3 Rule-level Granularity
	5.1.4 Datalog Value-level Granularity
	5.1.5 Summary

	5.2 Design Choice 2: Enriched Labelling and Type Filtering
	5.2.1 Predicate Symbol Arity
	5.2.2 Predicate Term Types
	5.2.3 Relational and Lattice Predicate Symbols

	5.3 Choice 3: Stratify With or Without Monomorphization

	6 The Fix Modifier, Lattice Semantics, and Stratification
	7 Implementation
	7.1 The Original Flix Implementation
	7.2 Our Flix Extension
	7.3 Implementation Details
	7.4 When a Program Does Not Stratify
	7.5 The Motivating Example, Revisited

	8 Case Study: A Small Graph Library in Flix
	9 Related Work
	9.1 First-class Datalog
	9.2 Negation and Aggregation Semantics
	9.3 Datalog Extensions

	10 Conclusion

