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Abstract. Call graph construction for object-oriented programs is often
difficult and expensive. Most sound and precise algorithms analyze the
whole program including all library dependencies. The separate compi-
lation assumption makes it possible to generate sound and reasonably
precise call graphs without analyzing libraries. We investigate whether
the separate compilation assumption can be encoded universally in Java
bytecode, such that all existing whole-program analysis frameworks can
easily take advantage of it. We present and evaluate AVERROES, a tool
that generates a placeholder library that overapproximates the possible
behaviour of an original library. The placeholder library can be con-
structed quickly without analyzing the whole program, and is typically
in the order of 80 kB of class files (comparatively, the Java standard
library is 25 MB). Any existing whole-program call graph construction
framework can use the placeholder library as a replacement for the ac-
tual libraries to efficiently construct a sound and precise application call
graph. AVERROES improves the analysis time of whole-program call graph
construction by a factor of 4.3x to 12x, and reduces memory require-
ments by a factor of 8.4x to 13x. In addition, AVERROES makes it easier
for whole-program frameworks to handle reflection soundly in two ways:
it is based on a conservative assumption about all behaviour within the
library, including reflection, and it provides analyses and tools to model
reflection in the application. The call graphs built with AVERROES and
existing whole-program frameworks are as precise and sound as those
built with Cac. While Cac is a specific implementation of the separate
compilation assumption in the Doop framework, AVERROES is universal
to all Java program analysis frameworks.

1 Introduction

Constructing sound and precise call graphs for object-oriented programs is of-
ten difficult and expensive. The key reason is dynamic dispatch: the target of
a call depends on the runtime type of the receiver. One approach, Class Hier-
archy Analysis (CHA) [8], is to conservatively assume that the receiver could
be any object admitted by the statically declared type of the receiver. Because
call graphs constructed with this assumption are imprecise, most call graph con-
struction algorithms attempt to track the flow of potential receivers through the



program [1,6,12,13,24]. Since the receiver might be created anywhere in the
program, these algorithms generally analyze the whole program. However, mod-
ern programs have large library dependencies (e.g., the Java standard library).
This makes it very expensive to construct a call graph even for a small program.
Even if the algorithm itself is cheap, just reading all of the library dependencies
of a program takes a long time. Moreover, in many cases, the whole program
may not even be available for analysis.

Previously, we defined and evaluated the separate compilation assumption [2],
which enables a sound and reasonably precise call graph to be constructed for a
program without analyzing its library dependencies. In the rest of this paper, we
will use the singular “library” to mean all of the libraries that a program depends
on. The assumption states that the library is developed and can be compiled
without the client program that uses it. This is true of most real programs and
their dependencies. The properties that follow from the assumption and from the
Java type system effectively limit the imprecision that would otherwise result
from conservatively assuming arbitrary behaviour for the unanalyzed library
code. We have evaluated the separate compilation assumption in Cac [2], a
prototype implementation in Datalog based on the DOOP framework [6]. Our
experiments have shown that with the separate compilation assumption, the
sound call graphs constructed without analyzing the library can be nearly as
precise as those constructed by whole-program analysis. However, implementing
the constraints that follow from the assumption in popular analysis frameworks
such as DooP [6], SOOT [24], and WALA [12] is difficult, and would complicate
the frameworks significantly and make them more difficult to maintain.

In this paper, we investigate whether the constraints that follow from the
separate compilation assumption can be encoded in a form that is universal to
all Java program analysis frameworks, the Java bytecode. Our goal is to enable
any existing whole-program analysis framework to take advantage of the separate
compilation assumption without modifications to the framework. To accomplish
this, we present AVERROES, a Java bytecode generator that, for a given program,
generates a replacement for the program’s library that embodies the constraints
that follow from the separate compilation assumption. An existing, unmodified
whole-program analysis framework needs only to read the replacement library
instead of the original library to automatically gain the benefits of the separate
compilation assumption. For example, instead of going through all of the work
that was necessary to implement CGC, one can now achieve the same effect
automatically by running AVERROES followed by DooP. Moreover, the same
adaptation can be applied automatically not only to DOOP, but to any other
whole-program call graph construction framework.

We evaluate the performance improvements that the use of AVERROES en-
ables over the whole-program analysis frameworks SPARK and Doop. The im-
provements are very significant because the replacement library is much smaller
than the original library: for example, even version 1.4 of the Java standard li-
brary contains 25 MB of class files, whereas the AVERROES replacement library
contains in the order of only 80 kB of class files. Depending on the size of the ana-



lyzed client program, AVERROES improves the running time of SPARK and DoopP
by a factor of 4.7x and 3.7x, respectively, and reduces memory requirements by
a factor of 13x and 8.4x, respectively.

AVERROES also enables other benefits in addition to performance. One such
benefit is generality. For example, many whole-program analysis frameworks are
designed to soundly model some specific version of the Java standard library.
However, the replacement library constructed by AVERROES soundly overap-
proximates all possible implementations of the library that have the interface
used by the client application. Therefore, AVERROES makes any existing whole-
program analysis framework independent of the Java standard library version.
A related benefit is the handling of difficult features such as reflection and na-
tive methods. A whole-program analysis must correctly model in detail all such
unanalyzable behaviour within the library in order to maintain soundness. On
the other hand, AVERROES is automatically sound for such behaviour because it
already assumes that the library could “do anything”. That said, the generated
library must still model reflective effects of the library on the client application
(e.g., reflective instantiation of classes of the application). However, this issue is
also made easier by AVERROES. Any tools or analyses that provide information
about such reflective effects (e.g., analysis of strings passed to reflection methods
or dynamic traces summarizing actual reflective behaviour) can be implemented
once and for all in AVERROES. Whole-program analysis frameworks can then
take advantage of these effects without modification.

The rest of this paper is organized as follows. Section 2 provides background
information about call graph construction and the separate compilation assump-
tion. Section 3 describes how AVERROES encodes the constraints that follow from
the separate compilation assumption in the Java bytecode. Section 4 discusses
the performance improvements gained by using the placeholder library gener-
ated by AVERROES instead of the original library code. Section 5 presents related
work, and Section 6 concludes this paper.

2 Background

2.1 Call Graph Construction

A static call graph is an overapproximation of the method calls that may occur in
a program at run time. For every method invocation instruction in the program
(a call site), the call graph contains an edge to every target method that might be
invoked by that instruction. In Java, as well as other object-oriented languages,
the targets of method calls are selected using the run-time type of the receiver
object. Therefore, call graph construction requires a combination of two static
analyses: calculating the sets of possible receiver types (i.e., points-to analysis),
and determining the targets of method calls. The two analyses are inter-related:
receiver types decide the targets of calls, and the calling relationships between
methods determine how objects of specific types flow through the program to
the call sites. A precise call graph construction algorithm computes these two
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Fig. 1. Conservative assumptions that a sound partial-program analysis must make.

inter-dependent analyses concurrently until it reaches a mutual least fixed point.
This is sometimes called on-the-fly call graph construction.

If the whole program is not available for analysis, a sound call graph con-
struction algorithm must conservatively assume that the unanalyzed code could
do “anything”. In particular, the unanalyzed code could call any method, assign
any value to any field, and create new objects of any type, as summarized in
Figure 1. Due to the mutual dependencies between the two analyses that make
up any call graph construction algorithm, imprecise results in one analysis can
quickly pollute the other. Therefore, without any assumptions about the un-
analyzed part of the code, a sound algorithm generates a call graph that is so
imprecise that it is useless. However, it is frequently the case that the unanalyzed
code is a library that is developed separately and can be compiled without access
to the rest of the program. This separate compilation assumption [2] enables the
construction of a precise and sound call graph for the part of the program that
is analyzed (the application) without analyzing the library.

2.2 The Separate Compilation Assumption

The key assumption underlying both Cac [2] and AVERROES is that the library
can be compiled separately without the client application program. From this
assumption, more specific constraints are inferred that bound the possible be-
haviours of the unanalyzed library code. In CGc, the call graph construction
algorithm is extended to conservatively assume that the library can have any
behaviour that satisfies the constraints that follow from the separate compila-
tion assumption. AVERROES, on the other hand, constructs a placeholder library
that exercises all those behaviours. Any unmodified whole-program call graph
analysis can then analyze the application with the placeholder library to achieve
a similar result as Ccc. The rest of this section briefly summarizes the con-
straints that follow from the separate compilation assumption and that underlie



AVERROES. A thorough discussion of the justification of each of these constraints
is found in [2].

Constraint 1 [class hierarchy]
A library class cannot extend or implement an application class or interface.
Constraint 2 [class instantiation]
An allocation site in a library method can instantiate an object whose run-
time type is:
— a library class, or
— an application class whose name is known to the library (i.e., through
reflection).
Constraint 3 [local variables]
Local variables in the library can point to the following objects:
— objects instantiated by the library,
— objects instantiated by the application and passed to the library due to
interprocedural assignments,
— objects stored in fields accessible by the library code, or
— objects whose run-time type is a subtype of java.lang.Throwable.
Constraint 4 [method calls|
A call site in the library can invoke:
— any method in any library class visible at this call site, or
— a method m in an application class ¢, but only if:
1. m is non-static and overrides a (possibly abstract) method of a li-
brary class, and
2. a local variable in the library points to an object of type ¢ or a
subclass of c.
Constraint 5 [field access]
A statement in the library can access (i.e., read or modify):
— any field in any library class visible at this statement, or
— a field f of an object o of class ¢ created in the application code, if:
1. f is originally declared in a library class, and
2. a local variable in the library points to the object o.
In the case of a field write, the object being stored into the field must also
be pointed to by a local variable in the library.
Constraint 6 [array access|
The library can only access array objects pointed to by its local variables. If
the library has access to an array, it can access any of its elements through
its index. Similar to field writes, objects written into an array element must
be pointed to by a local variable in the library.
Constraint 7 [static initialization]
The library causes the loading and static initialization (i.e., execution of the
method <clinit>()) of classes that it instantiates (according to the class
instantiation constraint).
Constraint 8 [exception handling]
The library can throw an exception object e if:
— e is instantiated by the library, or
— e is instantiated by the application and passed to the library (as discussed
in the local variables constraint).
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Fig. 3. The context of a whole-program analysis using AVERROES.

3 AVERROES Overview

This section presents the context in which AVERROES is used, and defines in
detail the contents of the placeholder library that it generates.

The usual context of a whole-program analysis tool is depicted in Figure 2.
The tool expects to analyze all of the classes of the program, including any li-
braries that it uses. The tool does not necessarily distinguish between application
and library classes. Optionally, the tool may also make use of additional infor-
mation about the uses of reflection in the program. This information could be
provided by the user or collected during execution of the program being analyzed
with a tool such as TAMIFLEX [5].

We have implemented AVERROES, a tool that intends to provide the same
input environment to the whole-program analysis, but without analyzing any
actual code of the original library classes. We have made AVERROES available
at http://plg.uwaterloo.ca/ karim/projects/averroes/. Figure 3 depicts
the context in which AVERROES is used. Given any Java program, AVERROES
generates an alternative placeholder library that models the constraints that
follow from the separate compilation assumption. To achieve that, AVERROES
uses SOOT [24] to consult the classes of the input program. Unlike a whole-
program analysis, AVERROES does not inspect all classes, and does not analyze



any Java bytecode instructions. For each application class, AVERROES examines
only the constant pool to find all references to library classes, methods, and fields.
Among library classes, AVERROES consults only the classes that are directly
referenced by the application and their superclasses and superinterfaces. Within
this restricted set of classes, AVERROES examines only the constant pool. AVER-
ROES uses this information in order to build a model of the class hierarchy and
the overriding relationships between methods in the program. Since AVERRO-
ES examines only a small fraction of classes and only a small fraction of each
class file, the execution of AVERROES can be much faster than a whole-program
analysis that reads and analyzes the code of the whole program. In addition, if
the library code itself calls other dependent libraries, AVERROES can process the
library even if those dependencies are not available for analysis, assuming they
are not directly referenced from the application code. AVERROES also, optionally,
reads in the reflection facts generated by TAMIFLEX [5] for the input program.

The output of AVERROES is a placeholder library. AVERROES again uses SOOT
to generate this library. Moreover, AVERROES uses the Java bytecode verification
tools offered by BCEL 7] to verify that the generated library satisfies the spec-
ifications of valid Java bytecode. The placeholder library contains stubs of all of
the library classes, methods, and fields referenced by the application, so that the
application could be compiled with the placeholder library instead of the original
library. As a consequence, the application classes together with the generated
placeholder library make up a self-contained whole program that can be given
as input to any whole-program analysis. The placeholder library is designed to
be as small as possible, while still being self-contained, such that the whole-
program analysis can analyze it much more efficiently than the original library.
In addition, the placeholder library overapproximates all possible behaviours of
the original library, so that the call graph analysis produces a sound call graph
when analyzing the placeholder library instead of the original library. The rest
of this section defines in detail the contents of the generated placeholder library.

3.1 Library Classes

The AVERROES placeholder library contains three kinds of classes: referenced
library classes, concrete implementation classes, and the AVERROES library class.
We define the structure of these classes first, and we define the contents of their
methods in Section 3.2.

Referenced Library Classes. The AVERROES placeholder library contains
every library class directly referenced by the application and their superclasses
and superinterfaces. In addition, it contains a small fixed set of basic classes that
are mentioned explicitly in the Java Language Specification [14] and expected by
whole-program analyses (e.g., java.lang.0bject and java.lang.Throwable).

Each such referenced class contains placeholders for all of the methods and
fields that are referenced by the application. A method m is considered to be
referenced by the application if:



— a reference to m appears in the constant pool of an application class,
— m is a constructor or a static initializer in the original library class, or
— a call to some method m’ referenced by the application may resolve to m.

A field f of type t is considered to be referenced by the application if a
reference to f appears in the constant pool of an application class. If an included
library method is native in the original library, its placeholder is made non-
native. This is because the generated placeholder library should stand alone and
not depend on other code, including native code. Furthermore, the throws clause
of a generated placeholder library method can only contain exception classes that
are referenced by the application. To ensure that every library class has at least
one accessible constructor, AVERROES adds a default constructor (i.e., a public
constructor that takes no arguments) to every included library class.

Concrete Implementation Classes. The class instantiation constraint of
the separate compilation assumption states that the library code can create
an object of any library type. This includes types that are not referenced by
the application. The object of an unreferenced type could still be accessed by
the application through one of its super-types. For the purpose of constructing
an application-only call graph, the exact run-time type of the object is not
important, since any calls on the object will just resolve to the library summary
node. However, the call graph construction algorithm must be aware that an
object of such an unknown type could be the receiver of a call.

Figure 4(a) shows a sample Java program that calls the method java.-
util.Vector.elements(). The return type of the method is java.util.Enu-
meration, which is an interface. If the application then calls a method such as
hasMoreElements () or nextElement () on the value returned from java.util.-
Vector.elements(), the call should resolve to the library. Therefore, the call

class Main { class EnumerationConcrete

1 1
2 void foo() { 2 implements Enumeration {
3 Vector v = new Vector(); 3 boolean hasMoreElements() {
4 4 return true;
5 Enumeration e = v.elements(); 5 }
6 while(e.hasMoreElements()) { 6
7 7 Object nextElement() {
8 } 8 return (Object) libraryPointsTo ;
9 } 9
0} 0}

(a) (b)

Fig.4. An example illustrating the concept of concrete implementation classes in
AVERROES: (a) sample application Java code that uses the class java.util.Enumer-
ation, (b) the concrete implementation class that AVERROES creates for java.util.-
Enumeration in the placeholder library.



graph construction analysis must be aware that the receiver of the call could be
some object that implements the java.util.Enumeration interface. However,
if the application does not implement the interface itself, and if it does not
reference any library class that implements it, then the whole-program analysis
would not know about the existence of any concrete class that implements the
interface. In this case, AVERROES adds to the placeholder library a concrete class
that implements the interface, so that the call graph construction algorithm can
resolve the call on this class. Figure 4(b) illustrates the contents of the concrete
implementation class that AVERROES generates for java.util.Enumeration in
the placeholder library.

Specifically, AVERROES creates a concrete implementation class for each in-
terface and abstract class in the library that is referenced by the application,
but is not implemented by any concrete class already in the placeholder library.
If the original library contains a concrete class implementing the given interface
or abstract class, that concrete class would already be in the placeholder library
only if the application references that concrete class. Each concrete implemen-
tation class contains implementations of all abstract methods in the interface
or abstract class that caused the concrete implementation class to be created,
including abstract methods inherited from superclasses and superinterfaces.

AVERROES Library Class. All of the conservative approximations of the possi-
ble behaviours of the library defined by the constraints listed in Section 2.2 are
implemented in one class in the placeholder library, AverroesLibraryClass. In
particular, this class models the following library behaviours: object instanti-
ation, callbacks to application methods, array writes, and exception handling.
The AverroesLibraryClass has two members:

1. The field 1ibraryPointsTo is a public, static field of type java.lang.0b-
ject. It represents all local variables in the original library code. Every object
that could be assigned to a local variable in the original library is assigned
to this field. The points-to set of the 1ibraryPointsTo field corresponds to
the LibraryPointsTo set in CGC.

2. The method doItA11() is a public, static method. It is the main AVERROES
method that models all of the potential side effects that the original library
code could have.

3.2 Library Methods

Referenced Library Method Bodies. Each placeholder method in the refer-
enced library classes and in the concrete implementation classes is an entry point
from the application into the library, and should conservatively implement the
behaviours specified in Section 2.2. Most of these behaviours are implemented
just by calling the doItA11() method of the AverroesLibraryClass. In addi-
tion, each placeholder method stores all of its parameters to the libraryPoints-
To field. The return value of the method is also taken from libraryPointsTo.



<modifiers> T method(T:, ..., Tn) {

T1 r1 := @parameter;: Ti;

Identity
T, rn := @parameter,: Tu; Statements
C ro = @this: C;
Averroes.libraryPointsTo = ry;
Averrces.libraryPointsTo = r;; Parameter

e Assignments
Averroces.libraryPointsTo

= Tnrs
Averroes.doItAll () ; Method
return (T) Averroes.libraryPointsTo; Footer

Only for non-static methods

Fig.5. The Jimple template used by AVERROES to generate bodies for referenced
library methods.

More specifically, the body of each placeholder method is constructed ac-
cording to the template shown in Figure 5. The template is shown in the Jimple
intermediate language of the SOOT framework [24], which is used by AVERROES
to generate the placeholder library. The template has three code regions:

1. Identity statements define the variables that will hold the method parame-
ters. Non-static methods have an additional identity statement for the im-
plicit this parameter.

2. Parameter assignment statements assign the parameters to the library-
PointsTo field in order to model the interprocedural flow of objects from
the application through parameters into the library (the local variables con-
straint).

3. The method footer contains two statements. The first statement is a call
to the doItA11() method in the AverroesLibraryClass to model the side
effects of the library. The second statement is the return statement of the
method. The method can return any object from the library whose type is
compatible with the return type of the method. This is modelled by reading
the libraryPointsTo field and casting its value to the method return type.
This completes the implementation of the local variables constraint. If the
return type of the method is primitive, the constant value 1 is returned.
Methods with return type void will just have an empty return statement.

The bodies of constructors of placeholder library classes are generated us-
ing the same Jimple template. However, a call to the default constructor of
the direct superclass is generated before accessing the this parameter in the
constructor body. Moreover, AVERROES generates statements that initialize the



instance fields of the declaring class. Each instance field is initialized by assign-
ing it the value of the 1ibraryPointsTo field after casting it to the appropriate
type (the field access constraint).

The bodies of library static initializers are simpler. Since static initializers
have no parameters or return value, no identity statements or parameter assign-
ment statements are generated for them. In addition, they have an empty return
statement (i.e., one that does not return any value). Moreover, for each static
initializer, AVERROES initializes the static fields of its declaring class with the
value from the libraryPointsTo field through the appropriate cast (the field
access constraint).

AVERROES doItAll1() Method Body. The doItAl1() method implements
most of the conservative approximation of the behaviour of the whole library. It
is a static method with no parameters, and therefore does not have any iden-
tity statements. The body of the doItA11() method implements the following
behaviours:

1. Class instantiation (Constraints 2 and 7): According to the class instantiation
constraint, the library can create an object of any concrete class in the library
or any application class that is instantiated by reflection. For each such class
¢, two statements are generated: a new instruction to allocate the object,
and a special invocation instruction (corresponding to the invokespecial
bytecode) to an accessible constructor of the class. Finally, if the class ¢
declares a static initializer, AVERROES generates a call to it.

2. Library callbacks (Constraints 3 and 4): Following the method calls con-
straint, the doItAl1l() method contains calls to all methods of the library
that are overridden by some method of the application, since at run time,
any such call could dispatch to the application method. In addition, the
doItAl1() method calls all application methods known to be invoked by re-
flection. The receiver of all of these calls is taken from the libraryPointsTo
field, as are all arguments to the method. The values from the library-
PointsTo field are cast to the appropriate types as required by the method
signature. Additionally, the local variables constraint states that objects may
flow from the application to the library due to interprocedural assignments.
Therefore, in AVERROES, if the target method of a library call back has a
non-primitive return type, its return value is assigned to the field 1ibrary-
PointsTo.

3. Array element writes (Constraint 5): The library could store any object
reference that it has into any element of any array to which it has a reference.
Two statements are generated to simulate this. The first statement casts the
value of the 1ibraryPointsTo field to an array of java.lang.0Object, which
is a supertype of all arrays of non-primitive types. The second statement
assigns the value of the libraryPointsTo field to element 0 of the array.

4. Exception handling (Constraint 8): The library code could throw any excep-
tion object to which it has a reference. To model this, AVERROES generates



code that casts the value of the 1libraryPointsTo field to the type java.-
lang.Throwable, and throws the resulting value using the Jimple throw
statement (which corresponds to the athrow bytecode instruction).

In the current implementation of AVERROES, the doItA11l () method is a sin-
gle straight-line piece of code with no control flow. If AVERROES were to be used
with a flow-sensitive analysis, control flow instructions should be added to all li-
brary methods, including the doItA11 () method. This allows the instructions to
be executed in an arbitrary order for an arbitrary number of times. This enables
a sound overapproximation for all possible control flow in the original library.
Although this would be easy to implement, we have not done it because all of
the call graph construction frameworks for Java that we are aware of mainly do
flow-insensitive analysis.

Similarly, the doItA11() method writes only to element 0 of every array.
If a framework attempts to distinguish different array elements, this should be
changed to a loop that writes to all array elements. Again, we are not aware of
any call graph construction frameworks for Java that distinguish different array
elements.

3.3 Modelling Reflection

AVERROES models reflective behaviour in the library in two ways. First, whenever
a call site in the application calls a library method, AVERROES assumes that any
argument of the call that is a string constant could be the name of an application
class that the library instantiates by reflection. For every such string constant
that is the name of an application class, AVERROES generates a new instruction
and a call to the default constructor of the class in the doItA11() method.

Second, AVERROES reads information about uses of reflection in the format
of TAMIFLEX [5]. TAMIFLEX is a dynamic tool that observes the execution of
a program and records the actual uses of reflection that occur. AVERROES then
generates the corresponding behaviour in the doItA11() method. Alternatively,
a programmer who knows how reflection is used in the program could write
a sound reflection specification by hand in the TAMIFLEX format. AVERROES
generates the following code in the doItA11() method to model the reflective
behaviour recorded in the TAMIFLEX format:

1. For every class that the TAMIFLEX file specifies as instantiated by java.-
lang.Class.newInstance(), or even just loaded by java.lang.Class.-
forName (), the doItA11() method allocates an instance of the class using
a new instruction, and calls its default constructor.

2. For every unique appearance of java.lang.reflect.Constructor.newIn-
stance () in the TAMIFLEX file, the doItA11 () method allocates an instance
of the specified class and calls the specified constructor on it.

3. For every unique appearance of java.lang.reflect.Array.newInstance()
in the TAMIFLEX file, the doItA11() method allocates an array of the spec-
ified type.



4. For every unique appearance of java.lang.reflect.Method.invoke() in
the TAMIFLEX file, the doItA11() method contains an explicit invocation
of the appropriate method.

Even though these behaviours are triggered by reflection in the original li-
brary, the AVERROES placeholder library implements all of them explicitly (non-
reflectively) using standard Java bytecode instructions. Therefore, even if the
whole-program analysis that follows AVERROES does not itself handle reflection,
it will automatically soundly handle the reflective behaviour that AVERROES
knows about. This is because AVERROES encodes the behaviour explicitly in the
placeholder library using standard bytecode instructions known to every analysis
framework.

In addition, the placeholder library still contains the methods that implement
reflection in the Java standard library. The doItA11() method also contains
calls to java.lang.Class.forName() and java.lang.Class.newInstance()
on the value of libraryPointsTo cast to java.lang.String. Therefore, if the
whole-program framework knows about the special semantics of these reflec-
tion methods, or if it knows about some reflective behaviour that is unknown
to AVERROES, the whole-program framework can still model the additional re-
flective behaviour in the same way as if it were processing the original library
instead of the AVERROES placeholder library.

3.4 Code Verification

The placeholder library that is generated by AVERROES is intended to be stan-
dard, verifiable Java bytecode that can be processed by any Java bytecode anal-
ysis tool. To guarantee this, AVERROES verifies the generated placeholder library
classes using the BCEL [7] verifier. BCEL closely follows the class file verifi-
cation process defined in the Java Virtual Machine Specification [14, Section
4.9]. BCEL ensures the validity of the internal structure of the generated Java
bytecode, the structure of each individual class, and the relationships between
classes (e.g., the subclass hierarchy).

4 Evaluation

We evaluate how well AVERROES achieves the goal of enabling whole-program
analysis tools to construct sound and precise call graphs without analyzing the
whole library. First, we quantify the improvements in performance when AVER-
ROES is used with both SPARK and DoOOP. Second, we compare the resulting call
graphs with dynamically observed call graphs to provide partial evidence that
the static call graphs are sound. Third, we compare the call graphs constructed
using AVERROES to those constructed using CGC to support the claim that
AVERROES enables existing whole-program analysis implementations to perform
the kind of analysis that is prototyped in CcGc.



We conducted our experiments on two benchmark suites: the DaCapo bench-
mark programs version 2006-10-MR2 [4], and the SPEC JVM98 benchmark pro-
grams [20]. All of these programs are analyzed with the Java standard library
from JDK 1.4 (jrel.4.2_11). We ran all of the experiments on a machine with
four dual-core AMD Opteron 2.6 GHz CPUs (running in 64-bit mode) and 16
GB of RAM.

We created an artifact for the experiments that we conducted to evaluate
AVERROES. The artifact includes a tutorial with detailed instructions on how
to use AVERROES to generate the placeholder libraries for each program in our
benchmark suites. It then shows how to reproduce all of the statistics we discuss
in this section. We have made the artifact available at http://plg.uwaterloo.
ca/"karim/projects/averroes/tutorial.php. The artifact has been success-
fully evaluated by the ECOOP Artifact Evaluation Committee and found to
meet expectations.

4.1 Performance

To evaluate how much work a whole-program analysis saves by using AVERROES,
we first compare the size of the generated placeholder library with the size of the
original Java standard library. We then measure the reductions in execution time
and memory requirements of both SPARK and DOOP when using AVERROES.

AVERROES Placeholder Library Size. Over all of the benchmark programs
that we have experimented with, the average size of the input library is 25
MB (min: 25 MB, max: 30 MB, geometric mean: 25 MB), while the average
size of the generated AVERROES library is only 80 kB (min: 20 kB, max: 370
kB, geometric mean: 80 kB). Additionally, the average number of methods in
the original input library is 36,000 (min: 19,462, max: 48,610, geometric mean:
35,615), while the average number of methods in the generated AVERROES library
is only 600 (min: 137, max: 3,327, geometric mean: 570). That means that the
number of methods in the placeholder library is smaller by a factor of 62x (min:
13x, max: 286x, geometric mean: 62x). As we will see, this reduction in the
library size significantly reduces the time and memory required to do whole-
program analysis.

Finding 1: The placeholder library generated by AVERROES
is very small compared to the original Java standard library.

Execution Time. We have compared the execution times of both SPARK and
DooP when analyzing each benchmark with the AVERROES placeholder library
and the original Java standard library. We break the total time required to
construct a call graph into three components. First, the AVERROES library gen-
eration time is the time required for AVERROES to inspect the application for
references to the library and to generate the placeholder library. Second, the
overhead time is the time required for SPARK or DOOP to prepare for call graph
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Fig. 6. The execution time of whole-program tools (SPARK and DooP) compared to
AVERROES-based tools (SPARK vz and DOOPaye).

construction analysis. In the case of SPARK, this preparation includes reading
the whole program from disk and constructing internal data structures. In the
case of DOOP, this preparation additionally includes generating the constraints
required for the analysis and encoding them in Datalog relations. Third, the
analysis time is the time required for SPARK or DOOP to solve the constraints
and generate a call graph.

Figure 6 compares the times required for call graph construction by SPARK
and DooP with the original Java library (denoted SPARK and DoOP) and with
the AVERROES placeholder library (denoted SPARKayz and DOOPAyy:). AVER-
ROES reduces the analysis time of SPARK by a factor of 12x (min: 4x, max: 62x,
geometric mean: 12x) and of DOOP by a factor of 4.3x (min: 0.7x, max: 9.3x,
geometric mean: 4.3x). In general, whole-program analysis is expensive not only
because of the analysis itself, but also due to the overhead of reading a large
whole program from disk and pre-processing it. Replacing the large Java library
with the much smaller AVERROES placeholder library reduces the time that



SPARK executes (including overhead and analysis time) by a factor of 6.8x (min:
3.3x, max: 17x, geometric mean: 6.8x), and the time that DOOP executes by a
factor of 4.3x (min: 1.7x, max: 7.7x, geometric mean: 4.3x). When the AVERROES
library generation time is added to the time taken by SPARK or DOOP to finish,
the total overall time to execute SPARKayy is faster than SPARK by a factor of
4.7x (min: 2.5x, max: 10.3x, geometric mean: 4.7x), and the total overall time
to execute DOOP ayy is faster than DOOP by a factor of 3.7x (min: 1.5x, max:
6.5x, geometric mean: 3.7x).

Finding 2: AVERROES enables whole-program tools to con-
struct application call graphs faster.

Memory Requirements. SPARK and DOOP store their intermediate results
in different ways. SPARK does all the calculations in memory, while DOOP stores
intermediate facts in a LogicBlox [15] database on disk. Therefore, we use differ-
ent methods of calculating the memory requirements of each tool. We compare
the maximum amount of heap space used during call graph construction by
SPARKAyx and SPARK. On the other hand, we compare the on-disk size of the
database of relations computed by DOOP ay; and DOOP.

Figure 7 compares the memory usage of SPARKay; against SPARK, and
DooPaye against DooP. Overall, SPARK oy requires 13x less heap space than
SPARK (min: 4.8x, max: 35x, geometric mean: 13x), and DOOP o,y uses 8.4x less
disk space than DOOP (min: 2.6x, max: 24, geometric mean: 8.4x).

Finding 3: Using AVERROES reduces the memory require-
ments of whole-program analysis tools.

4.2 Call Graph Soundness

Static call graph construction is made difficult in Java by dynamic features such
as reflection, and features that are difficult to analyze such as native methods.
AVERROES makes it much easier to construct a sound call graph in the presence
of these features in two ways. First, whereas whole-program analysis frameworks
try to model all behaviour of the whole program precisely, AVERROES uses the
conservative assumption that the library could have any behaviour consistent
with the separate compilation assumption. Therefore, a whole-program analysis
must model every detail of dynamic behaviour or risk becoming unsound. On
the other hand, an analysis using AVERROES remains sound without having to
precisely reason about dynamic behaviour within the library. Second, AVERRO-
ES contains analyses that model how the library affects the application using
reflection. These analyses make use of information about strings passed into the
library, as well as information about reflection generated by TAMIFLEX [5]. A
whole-program analysis that uses AVERROES can automatically benefit from the
results of these analyses without having to implement the analyses themselves.

We have evaluated the soundness of static call graphs by comparing them
against dynamic call graphs collected by *J [10]. Since a dynamic call graph
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pared to AVERROES-based tools (SPARK vk and DOOPavs).

results from only a single execution, it may miss edges that could execute in
other executions. Therefore, such a comparison does not guarantee that the static
call graph is sound for all executions. Nevertheless, the comparison can detect
soundness violations, and the lack of detected violations provides at least partial
assurance of soundness. The results of this comparison are shown in Table 1.
The DYNAMIC line shows the number of call edges in the application portion
of the dynamic call graph. The remaining lines show how many of these edges
are missing in the static call graphs generated by SPARK and DoOOP with and
without using AVERROES. When using AVERROES, only two edges are missing
from all of the call graphs. In lusearch, a NullPointerException is thrown
and the dynamic call graph records a call edge from the virtual machine to
the constructor of this exception class. This behaviour is not modeled by either
SPARK or DooOP. In xalan, a call edge to java.lang.ref.Finalizer.regis-
ter () from the application is missing from the call graph generated by SPARK g



Table 1. Comparing the soundness of AVERROES-based tools to the whole-program
tools with respect to the dynamic call graphs.

‘ ‘antlr ‘bloat ‘chart ‘ hsqldb‘ luindex‘ lusearch ‘ pmd ‘xalan‘ compress‘ db ‘jack‘javac ‘jess ‘raytrace‘

Dynamic 3,449|4,257| 657 | 1,627 726 539  |2,087|2,953 43 541596 2,538 | 13 330
DyNAMIC-SPARK 0 0 0 61 4 185 3 96 0 0] 0 0 0 0
DyNAMIC-SPARKAve| 0O 0 0 0 0 1 0 1 0 0] 0 0 0 0
Dynamic-Doop 0 0 0 331 303 241 225 | 349 0 00 0 0 0
DyNnamic-DoopPave | 0 0 0 0 0 1 0 0 0 0|0 0 0 0

since SPARK does not handle calls to this library method. On the other hand,
the call graphs generated by SPARK and DOOP without using AVERROES are
missing a significant number of dynamically observed edges in benchmarks that
make heavy use of reflection. This is despite the immense effort that has been
expended to make these analysis frameworks handle reflection soundly.

Finding 4: AVERROES reduces the difficulty of constructing
sound static call graphs in the presence of reflection.

4.3 Comparison with Cac

We previously evaluated the soundness and precision of call graphs constructed
by Cac [2]. Our empirical evaluation showed that the static call graphs from
Cac are sound when compared against the corresponding dynamic call graphs.
Our results also showed that CGC generates precise static call graphs when
compared against those generated by SPARK and DoOOP, for most programs
in our benchmark suite. However, there are spurious edges in the call graphs
generated by Cac. Further investigation showed that most of these spurious
edges are due to spurious library callback edges. A library callback edge is an
edge from a call site in the library back to a method in the application. Those
spurious library callback edges eventually cause a small number of spurious call
edges within the application and from the application to the library.

The design goal of AVERROES is to enable existing whole-program analysis
frameworks to build call graphs without analyzing the library in the manner of
Cac. We validate this claim by comparing the call graphs constructed by CGc
with those constructed by DoOP with AVERROES, since CGC is more similar to
Doop than to SPARK. Since the separate compilation assumption overapprox-
imates the targets of call sites in the library, we focus our comparison on the
library callback edges in the call graph.

Table 2 shows the number of library callback edges in the call graph generated
by CGcC but missing from the call graph generated by DOOPay (denoted by
CGC-DOOPAyg), and vice versa (denoted by DOOPay-CGC). The table also
shows the percentage of those missing edges with respect to the total number of
edges in the call graph from DOOP a,;. The biggest difference is 2% of the edges,
in the chart benchmark. All of the edges missing in DOOP oy and present in CGC
(i.e., DOOPay-CaGC) are due to more precise handling of reflective constructor
calls in AVERROES than in CGC. When the library reflectively creates an object



Table 2. Comparing DooPay: with Ccc with respect to library callback edges.

antlr |bloat |chart|hsqldb|luindex|lusearch| pmd |xalan{compress| db |jack|javac|jess|raytrace

Cacc-DooPave 2 0 0 16 0 0 5 44 0 0 0 0 0 0
Cac-DooPave (%)[0.03%| 0% | 0% | 0.15% 0% 0% 0.1% |0.35% 0% 0% [ 0% | 0% |0% 0%
Dooraye-Cac 7 13 54 8 10 17 9 10 0 1 0 4 0 0

Doorave-Cac (%) 0.1% [0.08%]2.02%| 0.08% | 0.83% | 0.68% ]0.17%]0.08% 0% 1.33%]| 0% [0.05%]| 0% 0%

of an application class C'; CGC considers the library to potentially call all public
constructors of C. On the other hand, AVERROES generates a call edge only to
the specific constructor that is actually invoked according to TAMIFLEX. Further
investigation shows that some edges are missing in CGC and present in DOOP py
(i.e., CaC-DOOPAy;) due to calls of java.lang.reflect.Constructor.newIn-
stance (). Whereas CGC ignores these calls (and handles only calls to java.-
lang.Class.newlInstance()), AVERROES models calls to both newInstance()
methods.

Finding 5: AVERROES matches and slightly exceeds CGcC
in both precision and soundness.

5 Related Work

5.1 Call Graph Construction

A distinguishing feature of different whole-program call graph construction algo-
rithms is how they approximate the targets of dynamically dispatched method
calls. This affects how they approximate the run-time types of the receivers of
those calls.

Early work on call graph construction used simple approximations of run-
time types. Dean et al. [8] formulated class hierarchy analysis (CHA), which
uses the assumption that the run-time type of a receiver could be any subtype
of its statically declared type at the call site. Thus, CHA uses only static type
information, and does not maintain any points-to sets of the possible run-time
types of objects. Bacon and Sweeney [3] defined rapid type analysis (RTA),
which refines the results of CHA by restricting the possible run-time types only
to classes that are instantiated in the reachable part of the program.

Diwan et al. [9] presented more precise call graph construction algorithms for
Modula-3 that remain simple and fast. Rather than maintaining a single set of
possible run-time types in the whole program, as in RTA, they compute separate
sets of run-time types for individual local variables.

Sundaresan et al. [21] introduced wariable type analysis (VTA). VTA gen-
erates subset constraints to model the possible assignments between variables
within the program. It then propagates points-to sets of the specific run-time
types of each variable along these constraints. Unlike the analyses of Diwan et
al. [9], VTA computes these points-to sets for heap-allocated objects in addition
to local variables.



Tip and Palsberg [22] studied a range of call graph construction algorithms
in which the scope of the points-to sets was varied between a single set for the
whole program (like RTA) and a separate set for each variable (like VTA). Their
implementation was later used by Tip et al. [23] to implement Jax, a practical
application extractor for Java.

Several static analysis frameworks for Java now include call graph construc-
tion implementations with a range of algorithms that can be configured for the
desired trade-off between precision and analysis cost. The SOOT [24], WALA [12],
and DooP [6] frameworks all construct call graphs as prerequisites to the other
interprocedural analyses that they perform. All three frameworks use whole-
program analysis to build the call graph. However, SOOT and WALA can be
configured to ignore parts of the input program and generate an unsound par-
tial call graph only for the part of the program that is analyzed. AVERROES
enables these and other whole-program frameworks to construct sound partial
call graphs.

5.2 Partial-Program Analysis

The excessive cost of analyzing a whole program has motivated various efforts
to construct call graphs while analyzing only part of the program.

The analysis of Tip and Palsberg [22] analyzes partial programs by defining
a special points-to set, Sg. This set summarizes the objects passed into the
unanalyzed external code (i.e., the library). Similar to Cac [2] and AVERROES,
the analysis assumes that the external library code can call back an application
method if: the application method overrides a library method; and the set Sg
contains an object on which dynamic dispatch would resolve to that application
method.

The main challenge of analyzing the application part of a program while
ignoring the library is determining objects that may escape from the predefined
application scope to the library, and vice versa. This directly affects the points-to
sets of the local variables in the application and the library (or the summarized
library points-to set in the case of partial-program analyses). Grothoff et al. [11]
presented Kacheck/J, a tool that is capable of identifying accidental leaks of
heap object abstractions by inferring the confinement property [25-27| for Java
classes. Kacheck/J considers a Java class to be confined when objects of its type
do not escape its defining package. A partial-program analysis then needs only to
analyze the defining package of the input Java classes to infer their confinement
property.

Rountev and Ryder [18] proposed a novel whole-program call graph construc-
tion analysis for C. Although the analysis requires the whole program, it analyzes
each module of the program separately. A C program can take the address of
a function, and later invoke it by dereferencing the resulting function pointer.
Therefore, the function that is invoked depends on the target of the function
pointer. The analysis proceeds in two steps. First, conservative assumptions are
made about all possible applications that could use a given library. The analy-
sis then builds up a set of constraints that model the precise behaviour of the



library. Second, these constraints are used to model the library in an analysis
of a specific application. Rountev et al. [17] then adapted the approach to Java.
Like AVERROES, their implementation encodes the constraints collected from the
library in executable placeholder code. However, unlike AVERROES, this place-
holder code is a precise and detailed summary of the exact effects of the library,
and its construction requires the entire library to be analyzed. Moreover, some of
the constraints require changes to the application code in addition to the place-
holder library. In contrast, the purpose of AVERROES is to generate a minimal
library stub that enables a sound analysis of the original application code.

Rountev et al. [16] applied a similar approach to summarize the precise ef-
fects of Java libraries for the purpose of the interprocedural finite distributive
subset (IFDS) and interprocedural distributive environment (IDE) algorithms.
Although these algorithms already inherently construct summaries of callees to
use in analyzing callers, they had to be extended in order to deal with the library
calling back into application code. This is done by splitting methods into the
part before and after an unknown call. Summaries are then generated for each
part rather than the whole method. When the target of the unknown call later
becomes available, the partial summaries are composed. Rountev et al. [19] eval-
uated the approach on two instances of IDE, a points-to analysis and a system
dependence graph construction analysis.

AVERROES builds on our work on CGc¢ [2], which defined the separate com-
pilation assumption and derived from it specific constraints that conservatively
model all possible behaviours of the library. These constraints were implemented
in CGC as an extension of an existing whole-program call graph construction
tool. Experimental results showed that the resulting call graphs are sound and
quite precise compared to those constructed by a whole-program analysis that
analyzes the whole library precisely. Whereas CGC required significant imple-
mentation effort to extend the whole-program framework, AVERROES enables
the same approach to be implemented directly by any existing whole-program
call graph construction framework without requiring extensions.

6 Conclusions

We have shown that the separate compilation assumption can be encoded in the
form of standard Java bytecode. This enables any existing whole-program call
graph construction framework to easily make use of it. Our AVERROES generator,
given an input program, automatically generates a conservative replacement for
the program’s library that embodies the constraints that follow from the separate
compilation assumption (i.e., a placeholder library).

Constructing the placeholder library is fast and does not require analyzing
the whole program. Moreover, the resulting placeholder library is very small,
especially when compared to the size of the Java standard library. We have em-
pirically shown that using AVERROES with an existing whole-program analysis
framework reduces the cost of call graph construction by a factor of 4.3x to 12x
in analysis time and 8.4x to 13x in memory requirements. AVERROES also makes



it easier for a whole-program framework to soundly handle reflection. That is
because AVERROES makes a conservative approximation of all library behaviour,
including reflection. Additionally, AVERROES provides support for modelling uses
of reflection in the application. Finally, we have shown that the call graphs gener-
ated with AVERROES and an existing, unmodified, whole-program framework are
as precise and sound as those obtained by explicitly implementing the separate
compilation assumption in some specific framework.

We plan to extend this work to generate placeholder libraries for various
widely-used Java frameworks (e.g., Android, J2EE, Eclipse Plug-in) using AVER-
ROES. We hope that this will lead to an easier means of analyzing client applica-
tions developed in these frameworks without the need to analyze the framework
itself. Like a library, a framework typically satisfies the separate compilation
assumption because it is developed without knowledge of the client applications
that will be developed within it. One major difference is that in a framework,
the main entry point to the program resides in the framework rather than in the
client application. The application is then reflectively started by the framework
code. We expect that with only minor changes, AVERROES will be applicable to
these and other Java frameworks.
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