Faster Alias Set Analysis Using Summaries

Nomair A. Naeem and Ondfej Lhotak

University of Waterloo, Canada
{nanaeem ol hot ak}@wat er | 0o. ca

Abstract. Alias sets are an increasingly used abstraction in sitogtighich re-
quire flow-sensitive tracking of objects through differgmints in time and the
ability to perform strong updates on individual objectseThterprocedural and
flow-sensitive nature of these analyses often make thenculiffio scale. In this
paper, we use two types of method summaries (callee and)ctlénprove the
performance of an interprocedural flow- and context-seesdtlias set analysis. We
present callee method summaries and algorithms to comipeite. fThe computed
summaries contain sufficient escape and return value irftiomto selectively re-
place flow-sensitive analysis of methods without affectinglysis precision. When
efficiency is a bigger concern, we also use caller method saneswhich provide
conservative initial assumptions for pointer and aliagielgtions at the start of a
method. Using caller summaries in conjunction with calleesharies enables the
alias set analysis to flow-sensitively analyze only mettramgaining points of in-
terest thereby reducing running time. We present reswalts &mpirically evaluating
the use of these summaries for the alias set analysis. Addlty, we also discuss
precision results from a realistic client analysis for fygng temporal safety proper-
ties. The results show that although caller summaries étieatly reduce precision,
empirically they do not. Furthermore, on average, usinigealnd caller summaries
reduces the running time of the alias set analysis by 27% &¥%d 8espectively.

1 Introduction

Inferring properties of pointers created and manipulategrbgrams has been the subject
of intense research [12, 24]. A large spectrum of pointelyaea, from efficient points-to
analyses to highly precise shape analyses, have been gestefouseful tradeoff between
the two extremes, and an increasingly used abstractidme islias set analysis. This static
abstraction represents each runtime object with the sdltlotal pointers that point to it,
and no others. The abstraction is neither a may-point-tamaust-point-to approximation
of runtime objects. Instead, each alias set representsligxacse pointers that reference
the particular runtime object. As a result, like in a shap&traetion [26], every alias set
(except the empty one) corresponds to at most one concrget @b any given point in
time during program execution. This ability to staticallppoint a runtime object enables
strong updates which makes the abstraction suitable fdysemthat track individual
objects [6,10, 18,21]. We discuss the alias set analysisiremietail in Section 2.

Unlike a shape analysis which emphasizes the preciseaethiips between objects,
and is expensive to model, an alias set analysis, like a godtistraction, focuses on lo-
cal pointers to objects. This makes computing the aliastsstaction faster than shape
analyses. However, since the analysis is flow-sensitivargedprocedural it is still con-
siderably slower than most points-to analyses. In this pajgepropose two ways to fur-
ther speed-up the alias set analysis; callee summariegdprg\effect and return value
information and caller summaries that make conservatiseraptions at method entry.

Flow sensitive analyses take into account the order ofuostns in the program
and compute a result for each program point. Although tyfyicaore precise than those

that are insensitive to program flow, flow-sensitive anadysiéen have longer execution
times than their insensitive counterparts. Computing qureltise information for each
program point is often overkill; clients of the analysis dgeecise results only at specific
places. Long segments of code might exist where a cliehereiueries the analysis nor
cares about its precision. As an example, consider a stiitcation tool that determines
whether some property of lists and iterators is violated lty ¢ode in Figure 1. The
verification tool is a client of the alias set analysis asqjuiees flow-sensitive tracking of
individual objects to statically determine runtime obgettvolved in operations on lists
and iterators. Notice that precise alias sets are requimgdvchen operations of interest
occur. For the example, these are the two calle¢at at lines 7 and 10 and the call
to add at line 11. On the other hand, a typical alias set analysigces flow-sensitive
results for all program points irrespective of the fact thé likely to be queried only at
a few places.

class Foo { @ @ @
void foo(){ void bar(List a, List b){
1 Lista=new .. 6 lterator it = a.iterator ® /,—\'
2 addElements(a) 7 x= it.next()/\
3 Listb=new ... 8 method3(x)a— \ ®
4 9 method7(b) -/
5 1

bar(a,b) ¥——
\ 2 ---=“-”ex‘0‘\:| |<1 11 b.addg |
} } ©

}

Fig. 1. Sample code illustrating the use of callee and caller sunesar

In such situations, we propose the use of a selectively flengitive alias set analysis
that uses callee method summaries as a cheaper option. @ttipds that contain a point
of interest (which we cakthadows), or transitively call methods containing shadows, are
analyzed flow-sensitively. For all other methods, calleamaries providing effect infor-
mation for the parameters of a method invocation and theilpes®turn value are used.
If callee summaries were available, only methods 1, 2, 7 dfindr8 Figure 1 would have
to be analyzed flow-sensitively since they contain shadawsath methods containing
shadows. For the entire segment of code represented by ds8i6, flow-sensitive in-
formation is not required and callee summaries can be ustead. In particular, while
analyzing method 2 the alias set analysis need not prop#uasnalysis into method 3
at line 8 and instead its callee summary can be used. Fronligm's perspective this
is acceptable since it does not query any program point mithethods 3-6. In fact, as
long as callee summaries contain sufficient informationhsa toregoing flow-sensitive
analysis of methods without shadows does not affect aliggrseision in methods with
shadows, the client’s precision will be unaffected. Dstail the construction of callee
summaries and their use in the alias set analysis are givdadtion 3.

The advantage any static analysis derives from interproedlgt analyzing a program
is that the analysis need not make conservative worst casenasions at method entry.
This certainly holds true for the alias set analysis. At dsial the analysis ensures an
appropriate mapping from the caller scope arguments todheecscope parameters so
that alias sets in the callee precisely represent aliasitig atart of the method. However,
when efficiency is a bigger concern, we propose the use adrcslimmaries which are
conservative and sound approximations of incoming aliés gedirect benefit of using

such summaries at method entries is that methods that wev@psly analyzed flow-

sensitively only to obtain precise entry mappings for mdthoontaining shadows no
longer require flow-sensitive analysis. For example, smethods 1 and 7 in Figure 1
were analyzed flow-sensitively only because they contdis tamethods 2 and 8, with
the added use of caller summaries this is no longer requdaly. methods 2 and 8 will

be analyzed flow-sensitively with caller summaries use@é&uigheir initial alias sets and
callee summaries used at all callsites.

Unlike callee summaries, caller summaries can affect teeigion of the alias set
abstraction since important aliasing information avdéadt a particular callsite might
not be propagated into the callee and instead some conseraasumption is made. The
degree to which the use of caller summaries affects precisidependent on the choice
of caller summary as well as the client analysis.

This paper makes the following three contributions:

—We describe callee method summaries for the alias set asmaigch provide suffi-
cient information at a method callsite to forego flow-sewsitinalysis of the callee
without a loss of precision in the caller. We present algons to compute such sum-
maries and a transfer function that employs the computedrgumn (Section 3)

—We present the simplest caller summary as a proof of congeysing such summaries
to flow-sensitively analyze even fewer methods. A trangfecfion for the alias set
abstraction that uses both callee and caller summariesagpatsented. (Section 4)

—We empirically evaluate the effect of caller summaries anphecision of a realistic
client analysis and present precision metrics for the a@sabstraction. The effect
on the running time of different incarnations of the aliat a®alysis is discussed.
(Section 5)

2 Alias Set Analysis

The alias set abstraction employs abstract interpretedisammarize all possible runtime
environments. The abstraction contains an alias set fayeancrete object that could
exist at run time at a given program point. The merge oparasi@ union of the sets of
alias sets coming from different control flow paths. A givéiasset is exactly the set of
local variables that point to the corresponding concrejeatiat run time. Individual alias
sets do not represent may- or must- points-to approximatbruntime objects, although
the abstraction subsumes these relationships. If two @@nmust point to the same object
at a program point, then all alias sets in the abstractiothiatr point will either contain
both pointers or neither. Similarly, if two pointers poiotdistinct objects at a program
point then the abstraction at that point will not contain afigs sets containing both
pointers.

2.1 Intermediate Representation and Control Flow Graph

We assume that the program has been converted into an S®4-lvesrmediate repre-
sentation containing the following kinds of instructions:
s = Copy(x < y) | Store(y.f < x) | Load(x < y.f) |
Null(z <+ null) | New(x < new) | Call(m(po - - pk))
The instructions copy pointers between variables, stode@ad objects to and from
fields, assign null to variables, create new objects anchaakéthodn. For method calls,
the receiver is specified as the first argumanfollowed by the argumentg; to py. ¢

instructions, introduced during SSA conversion, act ag/ éogtructions with a different
multi-variable copy for each incoming control flow edge.

The interprocedural control flow graph is created in theddat way; nodes represent
instructions and edges specify predecessor and succesatonmships. Each procedure
begins with a uniqu&tart node and ends at a unigié&:it node. By construction, a call
instruction is divided into two nodes; call and return. Alege connects the call node
in the caller with the start node in the callee. A return edgenects the exit node in
the callee with the return node in the callerCallFlow edge connects a call node to its
return node completely bypassing the callee (Figure 2)s €dpe is parameterized with
the method it bypasses and the variable the return from this @ssigned to.

calll
New(y)
void foo(X v
y =new ...
y = x.bar(y)

} call(bar(x,y))

Load(z,x.f)
Copy(ret,z)
Object bar(Object y){ CallFlowjbar.y]
z =x.f ”

, return

Fig. 2. Interprocedural control flow graph wittall, return andCallFlow edges.

Start o,

v

}

2.2 Intra-procedural Alias Set Analysis

Flow-sensitivity enables the alias set analysis to préctsack abstract objects through
different points in time. The analysis mimics the effect ofgram instructions in chang-
ing the targets of pointers and accordingly updates the séits representing each runtime
object. For example, consider the instructiorxnew. At runtime an objecd is allocated

in the heap and x points to that object. Correspondinglystagc abstraction creates the
alias sef{x} representing the object’s abstractign Since a pointer can only point to one
concrete object at a time, x points to the newly created ¢lajed none other. If a copy
instructiony < x creates a new reference to the runtime objettte analysis mimics
this effect by updating the alias set{®,y}. Hence, at all times each concrete object is
represented by some alias set, though due to the consermativre of the analysis there
may be alias sets which represent no runtime object. Forimgistictions in the program,
given an alias set representing some runtime oljeitis possible to compute the exact
set of pointers which will point te after the execution of the instruction.

An exception to this is the load from the heap 4 €). Since the abstraction only
tracks local variables, the analysis is uncertain whethmeiobject being loaded is repre-
sented by a given alias sét before the instruction, and whether the destination végiab
v should therefore be addeddt To be conservative, the analysis accounts for both pos-
sibilities and creates two alias sets, one containifg U {v}) and one not containing
(of \ {v}). At this point a straightforward optimization can be apglionly objects that
had previously escaped to the heap via a Store can be loadelda¥¥ implemented this
optimization in the alias set abstraction. At each programtpthe abstraction computes

two sets of alias-seis! andh? with the condition thah! C p* and thath* contains only
those alias sets which are abstractions of run time objeat$ive escaped into the heap.
In previous work [18] we presented the intra-proceduraigfar functions for the alias
set abstraction which we reproduce in Figure 3. The coreetridgnsfer function is the
helper function[s],: which, depending on the instruction, updates an existiias alet.
For a copy instructiond; < wv9) any alias set that contains the source variablés
modified by adding the target variahle, since after the instruction the source and target
both point to the same location. Since a pointer can onlytdoione location at a time,
instructions that overwrite a variablemodify an existing alias set by removings after
the instructiorw no longer points to the runtime object abstracted by thisdet store
instruction € <— v) has no effect on an alias set since alias sets by definitipntack
local variables. Théocus operator in Figure 3 handles the uncertainty due to heagsload

of U{vi}if s =v1 «— va Ao € 0F
oﬁ\{vl} if s =wv1 «— va Ava gou
[s]l:(0") 2 { of \ {v} if s € {v — null,v — new}
o ifs=e—w
undefined ifs = v «— e
{oﬁ\{v}} if of & h¥
{ {o*\ {v},0" U {v}} if of € A

(1>

focus[h®] (v, o)

s, (o if s# v«
[sJos [17](07) £ { Uogif%izgs]%ﬁ%]((v,)o”) e
[s15 (6°, h*) £ [sgenU [s]5x[h7) (%)
1 a [{{v}}ifs=v—new
[slgen = { 0 otherwise

Rru{ofept:veod}ifs=e—n
1 gty A # p
[,) = [slos 0] { K Moo

[s0ns (0%, 1) 2 (Ll (o,), Islihe (o, 1))

Fig. 3. Transfer functions on individual alias sets.The supepsciilentifies the version of the trans-
fer function; we will present modified versions of the traardunctions later in the paper.

As discussed earlier, only objects that were previouslgestin the heap can be loaded.
Therefore, for alias-sets not irf, focus(v, o) removes from of since the loaded object
cannot possibly be representedddyand after the assignmenho longer points tef. On
the flip side, ifof represents an escaped object, then it is split into two, epeesenting
the single concrete object that may have been loaded, amadhiiberepresenting all other
objects previously represented by

Two additional special cases are handled. First, for a $&ore v), all abstract objects
that contain the variable are added t&*. Second, for an allocation instruction, a new
alias set containing only the destination variabis created and added té.

Figure 4 graphically shows the effect of a sequence of tm&eLictions on the alias set
abstraction. For illustration we assume that before theifissruction,pf andh? already
contain an alias s€,z} i.e. an abstraction of an object that is pointed to by locakides
2 andz and might also have external references from the heap. Nsut¢hee presence of a
single empty alias set which represents all runtime objhetisare not referenced through

any local variables. This keeps the abstraction finite. Whth allocation instruction, a
new alias-se{x} is added top*. At the same time[s]% removesz from the alias set
{x,z} sincex no longer points to this runtime object. After the copy iostion both

y andz point to the same runtime object. The heap load highlightsraber of analysis
features. First, note that the analysis determines thdd#ued object cannot be the newly
created object from instruction 1. Second, sifigg} was inh¥, so is{y,z}. The analysis
applies théocusoperator. Third, notice the creation of the alias{sgtwhich represents a
loaded object that previously had no local variable refeesnFigure 4 illustrates the two
key properties of alias set analysis (i) the abstractiondiastinguish individual objects
i.e. each alias set represents at most one runtime objectiiutide transfer functions
flow-sensitively track the effect of instructions on poisteEach column represents what
happens to a particular concrete object as different ingtnus execute; all that changes
is the set of pointers pointing to the object at differentgreonm points.

¥ <
<
o @9%@

Fig. 4. An illustration of the transfer functions for computing thiéas set abstraction.

X «<—new

ye—2z

2.3 Inter-procedural Alias Set Analysis

The intra-procedural transfer function can be extendecetmter-procedural by defining
the transfer functions focall andreturn. The overall effect of calling a functiom is
[return] o [m] o [call] for each possible callee. To determine the callees posailelach
call site, we used a call graph computed using the defaulietthiased points-to analy-
sis implemented in Spark [16]. The functifell],: is straightforward to define; actual
arguments in each alias set are replaced by the corresgppdimameters and all other
variables are removed. Given a substitutiadinat maps each argument to its correspond-
ing parameter, the function is defined in Figure 5.

[call]l; (o%) & {r(v) cvedn dom(r)}

ok if p does not return a value
=

rv(og, 05

of U{ve} vs € of

0f \ {vr} v ¢ of
[return]ls (0f) 2{rv(of, %) : o’ € [m] o [call]}

Fig. 5. Transfer functions fofcall] ; and[return],;.

Defining the return from a functiom is more challenging since any object that might
be returned bymn is abstracted by some alias set containing variables lacal.tOn
its own this is insufficient to map variables from a calleeslset to one in the caller
since it is unknown which caller variables, if any, pointedthe object before the call.

Instead, the analysis uses a function that, given a calésitehe computed flow function
[m] o [call], computes the appropriate caller-side alias sets aftduttaion returns. For
the [return],: function in Figure 5o is the caller-side abstraction of an object existing
before the call and the sft:] o [call] contains all possible callee-side alias sef$ that
could be returned. The functian takes each such paiv(o%), whereu, is the callee
variable being returned and is the caller variable to which the return value is assigned.
Intuitively, if the object that was representeddsyin the caller before the call is returned
from the callee (i.ev, € of), thenv, is added taf. If some other object is returned,
thenv; is removed fromaﬁ, sincev; gets overwritten by the return value. In the case of
an object newly created within the callee, the empty set listiwted forof, since no
variables of the caller pointed to the object before the €erall, [return] yields the
set of possible caller-side alias sets of the object afterctdl. We refer the interested
reader to our previous work [20] for more details.

3 Callee Summaries

Although precise, the alias set analysis in its originahfas expensive to compute. Us-
ing efficient data structures [19] and algorithms [20, 22lyamproves the efficiency to
some extent. In situations where a faster running time igettsve propose the use of
method summaries. In this section, we discuss the use @fecsllimmaries that decrease
the computation load, without any effect on a client analysi

The key insight is that clients of a flow-sensitive whole peog analysis often need
precise information at a small subset of program points. @ndther hand, a flow-
sensitive program analysis computes precise informatiait program points and there-
fore computes a lot more information than required. Cormguthis unnecessary infor-
mation is wasteful and should be avoided. We use callee suiesrta achieve this.

Before we explain the contents of a callee summary let us eeehre alias set anal-
ysis can use such summaries. Consider a callsite, with attaxgthodm. If an oracle
predicts that a client of the alias set analysis never gsi@rg program point withim or
any methods transitively called by, then computing flow-sensitive alias results for all
methods in the transitive closure of is unnecessary. Instead a callee summary, which
provides information regarding the parameters and retaluney could be used. For many
client analyses such an oracle exists. In Section 5 we dismus such client analysis that
leverages alias sets in proving temporal properties ofaddjd he points of interest for
this analysis i.e. the shadows, are operations that chéieggtdte an object is in and are
statically known ahead of time. Additionally, callee suntima can be used for methods
in the standard library; the alias set analysis can be setedeske callee summaries for
all chains of calls into the library. Analyses such as thostecting memory leaks and
automatically deallocating objects [6, 21], that alreadg alias sets, could benefit from
such summaries to only analyze application code.

The key requirement we put on a callee summary is that it shendble the analysis
to bypass flow-sensitively analyzing a method without intipgcprecision in the caller.
Table 1 provides a summary of the contents of such a summhaeysimmary is divided
into escapede...) and return valued..;) information.

To determine the contents of a callee summary one must uaddrthe effect of a
method call on the alias set abstraction. First, the calleghihescape the receiver or
arguments of the call. This might ocadirectly, when a callee’s parameter is stored in a
field, orindirectly, when a parameter is copied to a local reference which isstogad. In

Escape Informationccs.)
params set of parameters (including receiver) that may be stortedthe heap by
m or procedures transitively called by

Return Value Informationd(;..¢)

params set of parameters (including receiver) that might be retdioy .

heap might an object loaded from the heap be returned?

fresh might a newly created object be returned?

escaped might a newly created object be stored in the heap beforglvetnrned?
null might a null reference be returned?

Table 1.Callee Summary for a callsite with target methad

Figure 6 the functioffi oo escapes both its parameterglirectly via a store to field of
classFoo andq indirectly by first copying the reference foand then storing irf'oo. f.
Therefore, a callee summary analysis must track such capigsltimately provide a list
of all parameters that might have escaped.

Second, the return value from the callee might be assignadefterence in the caller.
To see how this might affect aliasing in the caller considezeoagain the example in
Figure 6. The functiorf oo returns the pointey which is a copy ofg, one off oo’ s
parameters. Therefore, the returned reference is the amuwhich is mapped to g, in
this case variablé. At run time, the effect of calling oo is that after the callg andb
must point to the same object. Let us examine the effect oaltkraction at the callsite
if the interprocedural transfer functions from Figure 5 esed][call] determines that
b andq point to the same location arffloo] determines tha¢ andy point to the same
location. This lead§return] to infer that sincé andy point to the same location and
y Is assigned ta, b anda must point to the same location after the call; an alias set
containing bothy andb is created in the caller. In order to forego flow-sensitivalgsis
of f oo in favour of a callee summary, the summary must specify wbictne callee’s
parameters might be returned so that similar updates canable at the callsite. Other
possible returned references include references to newtexd objects or those loaded
from the heap.

bar(X foo(Object p, Object)X
Object a = new ... Foo.f = p;
Object b = new ... y=q;

a =foo(a,b) =— Foo.f =y;
‘\ return y;
} }

Fig. 6. An example illustrating the effect of a method call on aliatssn the caller.

3.1 Computing Callee Summaries

The algorithm to compute the set of parameters that eseapg) from a methodn is
presented in Figure 7. The algorithm takes as input a SSAebesntrol flow graph of
the method and returns a set of indices which refer to thetiposiof parameters in the
method’s signature which might have escapddnes 1-10 populate a worklist with vari-

! Recall from Section 2 that we write a function calkagpo, - - - pi.) wherep, denotes the receiver
of the call andp; to pi. are the arguments.

input: SSA-based CFG of method
output:mayEscape
declaremayEscape : Set[Int], WorkList: FIFOWorklist[Var], seeBet[Var]

1 foreachinstructioninst € cfg do

2 switch inst

3 caseinst = Storeg) : addv to WorkListend-case

4 caseinst = CallSite(args, retval) :

5 foreachtgt € callees{nst) do

6 WorkList +={ args(i) : i€ EscapeSummariesg(t) }
7 od

8 end-case

9 end-switch

10 od

11 while WorkList not empty

12 Select and Remove variablefrom WorkList

13 if seen contains then continuefi

14 addv to seen

15 def = uniqueDef(cfgy)

16 switchdef

17 casedef = Startpo - - - pr): mayEscape +£ i : p; =v } end-case
18 casedef = Copy(,s): adds to WorkListend-case

19 casede f = CallSite(args, retval):

20 foreach tgt € calleesfef) do
21 WorkList += { args(i) : i€ RetValSummarieg@t).params;
22 od

23 end-case

24 casede f = Phi :foreach Copy(v,s) € phi.defs(v)do adds to WorkListod end-case
25 end-switch

26 od

Fig. 7. Algorithm to compute callee escape summarys() for a methodn

ables that either escaped through a store or through a éumncsill from withinm. The
algorithm then proceeds through each variabie the worklist. Using the SSA prop-
erty that each variable has a single reaching definition ldnerighm retrieves the unique
definitionde f of v (line 15). If def represents the Start node thers a receiver or a
parameter and the appropriate index is added to the may&seag-or a copy instruction
v < s, s is added to the worklist, sinceand s both point to the same escaped object.
Notice that the order between the instruction that escajpesl the copy from to v does
not matter, since in SSA-form once a variable is defined itlseveemains unchanged. If
variablev is assigned the return value from a function call then aliargnts correspond-
ing to the parameters that might be returned are added todhdist since these might
have escaped (lines 19-23). A S@Anstruction acts as a multi-variable copy statement.

Figure 8 presents the algorithm to compute the return valuengary for a function
m. The algorithm maintains a worklist of variables that migatreturned. The worklist is
seeded with the unique return variablexofFor each variable in the worklist, depending
on its unique definition, the return value summary and thekligirare updated. In lines
12-14, ifv is defined at th&t art node then, since &t art node defines the receiver or
parameters of methaa, the corresponding index of the parameter is storguhinans.
This represents the situation when the receiver or a paeartetn might be returned.

31
32
33
34
35
36
37
38
39
40
41
42
43
44
45

input: SSA-based CFG of method
output:retValSum
declareWorkList: FIFOWorklist[Var], seen : Set[Var]
retValSum = RetValSunj params: Set[Int], heap = fresh = escaped = null = false
if m.isV oid then return retValSunti
Insert unique return variable into WorkList
while WorkList not empty
Select and remove variablefrom WorkList
if seen contains then continuefi
addv to seen
de f = uniqueDef(cfgy)
switch de f
casedef = Startpo - - - px) :
retValSum.params +£i:p; =v }
end-case
casedef = CallSite(args, retval) :
foreachtgt € calleesfef) do
calleeRetValSum = RetValSummarigs()
if calleeRetValSum.fresten retValSum.fresh = trué
if calleeRetValSum.heapen retValSum.heap = trug

if calleeRetValSum.nuthen retValSum.null = trudi
WorkList += { args(i) :7 € calleeRetValSum.paranjs
od
end-case
casedef = Copy(,s) : adds to WorkListend-case
casedef = Phi:
foreach Copy(v,s) € phi.defs(v)do adds to WorkListod
end-case

casedef = Load : retValSum.heap = triend-case
casedef = New : retValSum.fresh = truend-case
casedef = Null : retValSum.null = trueend-case
end-switch
foreachinst € c¢fg do
switch inst

caseinst = Storep) :
if seen contains then retValSum.escaped = trdie
end-case
caseinst = CallSite (args, retval) :
foreachtgt € callees{nst) do
if seen contains args(i) 4 EscapeSummariesg(t) then
retValSum.escaped = true
fi
od
end-case
end-switch
od

Fig. 8. Algorithm to compute the return value summasy.{;) for a methodn

10

Lines 15-23 update the return value summaryig assigned the return value at a callsite.
The return value summaries of all possible target methotteatallsite are consulted and
thefresh, heap andnul | fields of the summary ofn appropriately updated. If any
of the return value summaries indicate that a receiver @rpater might be returned the
corresponding argument is added to the workligipy and Phi instructions add sources
of assignments to the worklistoad, N ew and Null instructions require an update to the
correspondindneap, f resh andnul | fields of the return value summary. Two special
cases must also be handled; if any possibly returned variabbk stored in a field or
escaped by a function called oy, escaped is set to true.

Since the callee summary of a functiondepends on summaries of functions called
by m, the algorithms presented must be wrapped in an interpuvakfixed-point com-
putation. A worklist keeps track of all functions whose suamni@s may need to be recom-
puted. Whenever the summary of a function changes, all afaliers are added to the
worklist. The computation iterates until the worklist beses empty.

3.2 Using callee summaries

To leverage callee summaries in the alias set analysisahsfar functions from Figures 3
and 5 are modified. These modifications are presented iné&@u\e denote the set of
methods that contain shadows or transitively call methaoigaining shadows by/*.
The function[[call]]iu is modified so that arguments in the caller are mapped to peeam

in the callee only for methods i/ *, the methods that are still analyzed flow-sensitively.
Since return instructions are only encountered in methotissing callee summaries no
change is required to the return functiprturn]?,.

For methods not i/ *, we define the transfer functidid'all Flow] for the similarly
named edge connecting a call node to a return node in the.daile] C'all F'low] function
uses two helper functionsust Ret ur n andmni ght Ret ur n which employ the return
value summaryy,..; to update alias sets by simulating the effect of analyziegcthlee.
The functionnust Ret ur n is true only when the object represented dybefore the
call is returned by the callee. Therefore the null, fresh laealp flags of the return value
summary should be false since a non-null object, that wasltatated in the callee nor
loaded from the heap should be returned. Additionaflynust contain the corresponding
arguments of all parameters that might be returned by theac&arameters that might be
returned are given by,..;.params and the corresponding arguments are retrievaairo
the inverse functiom, wherer is the function mapping arguments to parameters.

The helper functiomi ght Ret ur n determines whethef might be returned. This is
true if of represents an escaped objeét¢ k') and an object loaded from the heap might
be returned. An object representingmight also be returned if at least one parameter,
whose corresponding argument it might be returned. To handle the uncertainty when
m ght Ret ur n is true,[Call Flow] accounts for both possibilities similarly to tfeeus
operation. If the returned object must notdiehen the variable assigned from the return
of the callee cannot possibly point#b after the call.

The callee escape summaty,, is utilized to update alias sets representing objects
that might escape due to the function call (the funcescape in Figure 9). If any of the
corresponding arguments to parameters that escapggarams) are in an alias set in
pt, the alias set is added td since the function call escapes the parameter. The transfer
function must also handle situations when the callee ascand returns a new object.
If a;.fresh is true and the return from the callee is assignedriahla v, an alias set

11

[call]2 (o) 2 [[C&”]) if s = call Atarget(call) € M*
B otherW|se

true if lager. fresh/\'am heapAlai.c:.null A
Vp,p € 0° : p € F(arer.paramy

false otherwise

{ true if (of € hﬁ A arer.heapV

A
mustReturno , Qlret) =
A

Elp p € 0F : p € Flaye.params
false otherwise

might Return[h*] (0", airet)

if me M~
{oﬁ U v} if m¢ M* A mustReturn(,m. ozret)
{o \v of Uv}if m g M* A nghtReturn[hﬁ](, Mrer)
\v} otherwise

{{v}} if s = CallFlow[m,v] Am ¢ M*A M.ayer. fresh
otherwise

(1>

[CallFlow] 2, [h*, m, v](o*)

(1>

[[5]] ret

Uoteox 515 (o)
if s ¢ {v e, CallFlow[m,v]}

Oﬁeoﬁ[[CallFlow]] [h*, m,v](0%) if s = CallFlow[m, v]
Uotcos focus[h”](v oﬁ) ifs=v—e
[[Sﬂpﬁ (Pﬁvhu) = [[5]]genU [[Sﬂretu [[Sﬂoﬁ[hﬁ](P)
escape(p®,h*,m) £ h* U{o" € p* : Ip,p € 0" : p € F(M.tesc.params}
[s]2(m) 2 { {{5}} gt?éflv;fééfresh/\ M.Ctret.€Scaped
[s]5:[R"] (R*U{o* € p v €0'}) ifs=e—n
[[S]]iu (pﬁ7 hﬁ) A [slesdm) U [[5]]2011 [ﬁﬁ]escape(pﬁ, ht, m) i
if s = CallFlow[m,v] Am ¢ M
[s]2:[h*] (h) otherwise

(1>

[s15: [1¥](0%)

Fig. 9. Modified transfer functions for the alias set analysis usialjee summaries.

containing onlyv is added to!. If the freshly created object might have been stored in
the heap before being returned.(;.escaped is true) a similar alias set is addeffto

4 Caller Summaries

In this section we present caller summaries as a mechanispeted up the interproce-
dural context-sensitive alias set analysis. Althoughictatalyses that infer properties of
pointers can be useful even when the analysis is carriedoatly on individual meth-
ods, such analyses shine most when computed interprodigdiitee added ability to
carry forward computed pointer and aliasing informatiamnira caller into a callee by
mapping arguments to parameters can significantly improgeigion. However, when
efficiency is a bigger concern a natural trade-off is to foregme precision by conserva-
tively assuming initial pointer and aliasing relationshfpr the parameters of a method.
The reason using caller summaries improves efficiency isitliecreases the num-
ber of the methods the must be analyzed flow-sensitivelyukatevisit the example in
Figure 1. Using callee summaries enables the alias setsasadydiscard flow-sensitive
analysis of methods 3-6 since they do not contain any shadgasever, even though
methods 1 and 7 do not contain shadows, they are analyzed#@nsgitively to ensure that

12

at a callsite to a method containing a shadow, precise irdtiam can be mapped into the
callee. In an analysis that uses caller summaries to maksecaative assumptions at ev-
ery method entry, flow-sensitively analyzing such methsdsi-needed since the precise
information computed at the callsite will never be propagdanto the callee.

We have implemented a conservative mechanism for compaiitheyr summaries. In
our summaries, initial alias sets are created for the paeef a method such that the
abstraction at the start of the method specifies that any awanpeters might be aliased.
In our intermediate representation the methad in the example from Figure 1 has three
parameters; thehi s receiver and the twhi st referencea andb. The caller summary
for this method contains the following se{s;, {t hi s}, {a}, {b}, {t hi s,a}, {t hi s,b},
{a,b} and{t hi s,a,b}. Notice that given these alias sets the only conclusiondhate
drawn is that the three parameters might be aliased i.e. mb @nunust-not relationships
exist between the parameters. This is overly conservéfivstly, the caller summary
does not take into account any type information. Althougindb are both references to
alLi st data structure, the receivehi s is of typeFoo and, unles$-0o0 is declared a
supertype oti st , a reference of typEoo can never pointto &i st object. Secondly,
the caller summaries do not leverage any pointer informattor example, subset-based
points-to analyses that use allocation sites as their bafestraction are often performed
at onset for constructing a callgraph. Using this type ofperianalysis could potentially
improve the precision of the caller summary in situationemhthe pointer analysis can
specify that parametetsandb were created at different allocation sites.

Our reason for using a naive caller summary was to investitdeg maximum preci-
sion degradation due to such summaries. Whereas the catlemaries presented in the
preceding section do not affect precision, caller summsat@e As an example let us look
more closely at the example in Figure 1. The methad receives twd.i st references,
a andb. An alias set analysis which does not utilize caller sumesaig able to differenti-
ate between the two references. In particular, at the dterethodbar the analysis infers
thata andb must-not alias (two separate lists were created at linesiBand assigned
to a andb respectively, and a reference of one is never copied to tierptHowever, the
naive caller summary assumes theaandb could be aliased. Hence the precision of the
alias set analysis degrades i.e. fewer must-not facts anpuied.

This decrease in precision can cascade into client analifsesexample suppose a
client of the alias set analysis is a verification tool for gieperty that an iterator’'s un-
derlying list structure has not been modified whemigxt method is invoked (executing
such code results in a runtime exception). If caller sumesaaire not used, the analysis
infers that the iterator’s underlying list i.e the list regaced by, is never modified since
a andb must-not point to the same object and the code only modifieetighreferenced
by b. Hence, the client analysis can prove that line 10 is not &tian of the property.
However, when caller summaries are used, the client asalyfgrs that the list pointed
to by reference: might be modified (the caller summary suggests thabhdb might be
aliased and an element is added at line 11 to the list poiotbyg teferencé). Hence the
client analysis loses precision since it can no longer ptiogethenext operation at line
10 is safe w.r.t. the property being verified. We empiricallaluate the loss in precision
of using caller summaries on the alias set analysis and it @realysis in Section 5.

Modifying the alias set analysis to use caller summariesasghtforward. Figure 10
shows those transfer functions which have been modified thain earlier version (Fig-

13

[call]?; (0*) £ callerSummaries(target(call))

{o* Uv} if mustReturn(of, M.cret)
[CallFlow]?, [h*, m, v](o") £ { {0* \ v, of U} if mightReturn[h*](oF, M.ctret)
{o*\ v} otherwise
) [s]2:[h*] (WP U{o® € p* :v € 0'}) ifs=e—n
[s]3: (o, h*) 2 { [s]2(m) U [s]2: [h*]escape(p®, h*, m) if s = Call Flow[m, v]
[s]5:[h*] (h) otherwise

Fig. 10.Updated transfer functions for the alias set analysis usafige and caller summaries.

ure 9). First, thecall function is modified. Instead of mapping arguments to patarag
the caller summary provides the set of alias sets to seedallee’s analysis. Second,
callee summaries are used for all methods instead of ongethot inA/*.

5 Experiments

Any standard dataflow analysis framework can be used to ctartpa alias set abstrac-
tion using the original transfer functions from Section 2tloe subsequently modified
versions from Sections 3 and 4. We have chosen to implemesgtimcarnations as in-
stances of the efficient interprocedural finite distribeisubset (IFDS) algorithm of Reps
et al. [22]. The algorithm requires an analysis donBifD) for some finite sefD, and
transfer functions that are distributive. The alias setrabfon satisfies these conditions
whereD is the set of all possible alias sets. The key to IFDS’s efiicyes the distribu-
tivity of transfer functions which enables it to evaluate fanctions on individual alias
sets, rather than on the entire set of alias sets at a prograrn Space restrictions limit
us in providing interesting details of the algorithm. Irzsteve refer the interested reader
to the ever growing body of work discussed in Section 6.

For the experiments we used the DaCapo Benchmark suitépne2806-10-MR2
with the standard library from JDK 1.312 for antlr, pmd and bloat, and JDK 1.412 for
the rest, since they use features not present in JDK 1.3 .rt@eriediate representation is
constructed using the Soot Framework [29] with reflectiasslloading modelled through
reflection summaries obtained using ProBe [15] and *J [9]gie an indication of the
size of these benchmarks we computed the number of methatisaly reachable in
the control flow graph created by Soot and present these ile Pallime taken to pre-
compute the callee summaries using the algorithms disdus&ection 3 are also shown.

Benchmark antlr |bloat|chart |fop |hsgldb|jython [luindex|lusearcipmd [xalan
Reachable Methods|4452|5955|14912|27408({11418|14437|7358 |7821 |9365|14961
Callee SummaryTime(8 12 |29 72 28 50 10 10 15 |29

Table 2. Number of statically reachable methods and the time to pnpcte callee summaries.

In our experiments we have used a static analysis that \&edéiaformance to tem-
poral properties specified using a statemachine-basedfispgon [2] as a client of the
alias set abstraction. In previous work [18], we presentbastage approach to verify-
ing such properties. In the first stage an alias set abgiraofiobjects in the program is
computed. The second stage uses this abstraction to compatestraction for the state
an object, or group of objects, is in. This enables staticadrifying whether the state
machine might end up in an error state indicating a violatibtne property.

14

Our choice of client analysis was dictated by two reasornst,Féach temporal prop-
erty specifies its own points of interest; only events thamgition the state machine of
that property are considered shadows. By choosing diffgne&perties we ensure a vary-
ing setM*, the set of methods for which callee summaries are used. idpepies we
experimented with are presented in Table 3. The code fragfren Figure 1 uses the
FSI property. Shadows for FSI are the next operation on aatiteand updates on the
Col | ecti ontype e.g. add, clear, remove. A second reason for choogmglibnt anal-
ysis is that it cleanly teases apart the computation of tlas akt abstraction and its use in
computing the state abstraction. This enables us to me#simecision and efficiency
of the alias set abstraction in a real-world scenario.

FailSafeEnum (FSE) A vector should not be updated while enumerating it
FailSafeEnumHash(FSEH) A hashtable should not be updated while enumerating its/ke;ue#s
FailSafelter (FSI): A collection should not be updated while iterating over it

HasNext (HN) The hasNext method should be called prior to every call td apxan iterator
HasNextElem (HNE) The hasNextElem method should be called prior to everytoall

nextElement on an enumeration
Reader (R) A Reader should not be used after its InputStream has besed:|
Writer (W) : A Writer should not be used after its OutputStream has bkeed

Table 3. Temporal properties investigated to obtain a varying\dét

We call a pair containing a benchmark and temporal propedst @ase. Since not all
benchmarks exercise all temporary properties we have nhoggresent results only for
test cases when a temporal property is applicable for a Imeadte.g. the antlr benchmark
never uses a Writer and hence the corresponding tempoiaéiyds inapplicable.

5.1 Shadow Statistics

Section 3 proposed the use of callee summaries for methdds dd* and Section 4
proposed the use of caller summaries for all methods theretpyiring flow-sensitive
analysis of only methods containing shadows (S). We medgheepercentage of reach-
able methods that are M * and S and present these in Table 4. The maximum percentage
of methods inM* was for the test case jython-FSI where 59.9% of the methaglar
M*. Notice that the methods containing shadows for jython&8lonly 0.6% indicat-

ing that most methods are i * since they call methods containing shadows. On average
(geometric mean)/* contains 11.9% of the reachable methods implying thateallen-
maries are used for the remaining 88.1%. When using boteecahd caller summaries a
mere 0.3% of reachable methods (average of set S) requireséiagitive analysis.

antlr | bloat | chart | fop [hsgldb] jython [luindex]lusearch pmd | xalan
M*|S |M*|S |M*|S |M*|S |M*|S |M*|S |M*|S |[M*|S |M*|S |M~*|S
FSE [56.30.7 47.60.1 1.6|0.159.80.4] 1.6|0.4) 1.1/0.2| 9.5(0.1/50.00.6
FSEH56.31.1] 2.8]0.1/59.80.4{ 1.1|0.3 0.8|0.2 49.90.3
FSI 56.34.2/50.60.6/47.7/0.5(54.00.1{59.90.6/53.1{0.4{52.4/0.6/52.4/1.0,50.0 0.5,
HN 56.02.6/50.50.447.60.1/54.00.1/59.80.2/53.1/0.2/52.30.3/52.20.5/ 0.1|0.1
HNE |56.30.7| 0.1]0.1] 1.6(0.1{59.80.2/ 0.5|0.2/ 0.3]0.1] 6.6 |0.1/49.90.2
R 7.5/0.2 4.210.359.80.2/ 0.9]0.1) 2.3|0.3| 7.7 |0.1{49.90.1
w 55.80.5 47.60.3/ 5.7|0.6 0.8/0.1/1.7|0.3/ 0.2]|0.1/49.90.4

Table 4. Percentage of reachable methods that contain shadowsneititraly call methods with
shadows {/*) and methods that contain shadows (S)

15

5.2 Efficiency

To measure the effect of summaries on the time required tgatethe alias set abstrac-
tion we computed the abstractions using the three versibtigedransfer functions. In
Table 5 we show the running time of the original alias setralotibn (ORIG), the alias set
abstraction which uses only callee summaries (CS) and thteaation using both callee
and caller summaries (CCS). The times for CS and CCS inchelérme for computing
the callee summary and CCS also includes the time to comipeteailer summary.

For all test cases, the time required to compute the abstnastreduced when callee
summaries are used for methods notdifi*. The greatest reduction is for pmd-writer
which takes 99.6% less time to compute (6670 vs 29 secondse)rdason for this is
quite obvious; for pmd-writer)/* contains only 12 methods out of the 9365 reachable
methods. On average the use of callee summaries reducesthtotcompute the alias
set abstraction by 27%. Introducing caller summaries hasta significant impact; an
average reduction of 96% is witnessed over the entire test se

antlr |bloat |chart|fop |hsgldb |jython [luindeXlusearchpmd |xalan

ORIG | 484 5934 1351 2390 1017 580 2638 5052
FSE |CS 349 5422 220 1524 118 151 37| 4484
CCs 15 108 40 71 19 18 26) 112
ORIG| 500 1426 2020 1054 576 6395
FSEHCS 386 226 1397 120 133 5834
CCs 18 39 77| 17 17 51
ORIG 1810 1653 4057 131§ 2335 1057 553 3685 510(Q

FSI |CS 1683 1022 4051 651 1671 391 407, 2069 5099
CCs 563 72| 109 37 69 17 17 29 119
ORIG 1601 1665 3735 1406 2225 1019 485 5273 5262

HN |[CS 1556 1035 3289 714 1390 393 388 5031 164
CCs 455 44 115 41 70 18 17 29 45
ORIG | 457 1607 1450 2233 1098 562 5182 4361
HNE |CS 358 119 220 1481 137 121 32| 3588
CCs 16| 18 40 77| 18 17 26 44
ORIG | 511 1414 2205 1097 563 4348 328(

R Cs 55 238 1487 123 123 35 3172
CCs 13 39 73 16 16 27 48
ORIG 1551 3840 145(Q 1067 607 6670 3468

W |CS 1411 3553 318 120 146 29| 3323
CCs 19 447 37 17 18 28 66|

Table 5. Time taken to compute the alias set abstraction for thermaldransfer functions (ORIG),
the transfer functions leveraging Callee Summaries (C8 Yl transfer functions employing both
Callee and Caller Summaries (CCS)

5.3 Client Analysis Precision

As discussed earlier we chose a static analysis that vecdig®rmance to temporal prop-

erties as a client of the alias set analysis. The analysiesepts temporal properties as
state machines where operations on object(s) transitmattdte machine associated with
the object(s). To distinguish the objects on which operatiare performed, the analysis
uses an alias set abstraction. The result of the analysiksiscd shadows that cannot be

verified by the analysis; these include actual violations fase positives.

16

To evaluate the effect of using caller summaries on the picatof the analysis (callee
summaries have no effect on precision) we executed thet @realysis using the ORIG
and CCS abstractions. As per our discussion in Section 4,xpected a decrease in
precision since caller summaries cause the alias set atistréo compute fewer aliasing
facts. However, the results surprised us; none of the 54 #ssis showed any degradation
in the client analysis. The CCS abstraction contained seiffiecnust and must-not aliasing
at each shadow of a test case to produce the same transititims abstract state machine.

Our conclusion from this experiment is that even thouglecallmmaries cause a the-
oretical decrease in precision, this does not automatitahslate into precision loss for
the client analysis. Situations exist where the benefitssofgicaller summaries heavily
outweigh the slight chance of losing precision.

5.4 Fine-grained Precision Metrics

When the client analysis did not show a loss of precision, @teosat to develop a fine-
grained metric for evaluating precision of alias sets. gdime alias set abstraction we
compute must and must-not alias pairs for variables liveeashadows of each test case.
Then we sum the alias pairs for all shadows in a test case éagitwo precision metrics:
MA the aggregated must-alias pairs and MNA the aggregatest-mat alias pairs. As
expected, the metric values for ORIG and CS are identicatatithg that no precision is
lost by using callee summaries. Table 6 presents the refu@RIG (alternately CS) vs
CCS. For each test case the MA and MNA values for ORIG are predeBilow this
is a number indicating the number of alias pairs that areitst CCS. For example, the
MA value for jython-FSE is 51 indicating that 51 differeniae-pairs were identified at
the shadows of this test case. The absence of a number balaates no decrease in
precision when using caller summaries. The MNA value fongyt-FSE is 189. The -7
below indicates that 7 must-not alias pairs were lost whéercsummaries were used.

bloat chart jython luindex || lusearch|| pmd xalan

MA |MNA || MA |MNA ||MA |MNA [[MA|MNA [[MA|MNA [[MA |MNA [[MA|MNA
FSE 51189 6| 98 (18| 91 || O | 35 ||3711180
-7 -2 -1 -1 -64

930{1546| 4 | 63 || 1 | 17 179 384

FSEH -21] -19 -4 -2
FS| 115218858|3344 6244|(404| 583 || 76 | 226 || 77 | 233 ||459] 1505||350(1042
-611|(-212| -254 -32 -1 -1 || -3 | -79 -22

HN 606| 7584 704|1529||322| 386 || 95| 202 || 58| 112 ||127| 839 0 | 13

-328 || -14 | -214 -1 -53

HNE 0 21 111133 8 | 91 || O | 13 || O | 41 || 45| 194
0 -10 -2 -1

R 253| 427 || 59| 80 ||203| 222 || 56| 130 ({671 1395
9| -14 ||-44 -44 -7 -20

W 7 | 306 56| 83 ||200] 219 || O | 22 ||524] 799
-55 -41 -41 -21

Table 6. Alias set abstraction precision in terms of aggregated ralissing (MA) and must not
aliasing (MNA) metrics computed at the shadows for eachcase.

Of the 54 test cases, only 9 showed a degradation in the MAgiwaecmetric. The
four highest degradations were for luindex-R (75%), luiié (73%), lusearch-R (22%)

2 Due to space limitations we do not present results for gotirand hsgldb.

17

and lusearch-W (21%). The average (geometric mean) degyadar the 9 test cases
was 8%. 31 of the 54 test cases also noted a decrease in the M nThe maximum
decrease was 17% for bloat-W with an average decrease of 4%.

6 Related Work

Kildall's framework [14] for intraprocedural dataflow agals was extended by Sharir and
Pnueli [27] to perform context-sensitive interprocedudia@hflow analysis using either the
call-strings or functional approach. The functional approach computes the effectalf ea
procedure by composing functions for individual instraog in the procedure thereby
obtaining a summary functiofi, : D — D, whereD is the dataflow analysis domain.
Once the summary function for a procedure has been compugedsed at each call site
of the procedure to model the effect of the call. Sagiv, RepidHorwitz [22] extended the
original formalism toP (D) for a finite setD with the condition that the functions on in-
dividual dataflow facts should be distributive. Distrilmitly of transfer functions enables
the graphical representation of these functions as bipajtaphs wittO (D) nodes. The
IFDS algorithm has been used to solve both locally sepambleiems such as reaching
definitions, available expressions and live variables,rsovttlocally-separable problems
such as uninitialized variables and copy-constant prapagadts efficiency makes it suit-
able for computing a variety of useful static abstractidi® 3,19, 23, 25, 28, 31].

Other frameworks for computing procedure summaries hagetsen proposed. Gul-
wani and Tiwari [11] developed procedure summaries in thefof constraints that must
be satisfied for some generic assertion to hold at the endeoptbcedure. Their key
insight was to use weakest preconditions of such genergetasss. Furthermore, for effi-
ciency they use strengthening and simplification of thesegmditions to ensure early ter-
mination. The approach has been used to compute two usefirhations; unary uninter-
preted functions and linear arithmetic. Recently, Yorshl €32] introduced an algorithm
which also computes weakest preconditions and relies opli§ication for termination.
They describe a class of complex abstract domains (inajttiie class of problems solv-
able using IFDS) for which they can generate concise andge@cocedure summaries.
Their approach uses symbolic composition of the transfectfans for the instructions in
the program to obtain a compact representation for the Iplgsafinite calling contexts.

In contrast to the related work discussed above, we proptesehaique to reduce the
number of methods that must be analyzed using any of the aplpes discussed above
(our implementation uses the IFDS algorithm [22] to comphtealias set abstraction).
Under certain conditions, instead of computing expensieegdure summaries through
IFDS, our analysis uses cheaper callee summaries withossaf precision.

Cherem and Rugina [7] present a flow-insensitive, unificabiased context-sensitive
analysis to construct method summaries that describe tilesmse The analysis is param-
eterized for specifying the depth of the heap to analyze ifkl the number of fields to
track per object (b). Varying the values for k and b resuldifferent method summaries;
smaller values produce lightweight summaries whereagtarglues result in increased
precision. Method summaries were shown to significantlyroxp a client analysis that
infers uniqueness of variables i.e. when a variable hole®thy reference to an object.

Also related are analyses which traverse the program epligfmostly bottom-up but
some top-down analyses have also been proposed) and coanpurtemary function for
each procedure [4, 5, 30]. This summary function is then wgezh analyzing the callers.

18

Escape analysis has been widely studied [1, 3, 8, 30] andinsedariety of appli-
cations ranging from allocating objects on the stack to ieléting unnecessary synchro-
nization in Java programs. To determine whether an objetbeaallocated on the stack
and whether it is accessed by a single thread, Choi et al.d@jpcite object escape in-
formation usingconnected graphs. A connected graph summarizes a method and helps
identify non-escaping objects in different calling corigexn their work on inferring alias-
ing and encapsulation properties for Java [17], Ma and Fpsésent a static analysis for
demand-driven predicate inference. Their analysis coegpitedicates such as checking
for uniqueness of pointers (only reference to an objectamaters that are lent (callee
does not change uniqueness) and those that do not escapeea cal

7 Summary

This paper presented callee and caller summaries as a neanprove the efficiency
of an alias set analysis. We described the information redurom a callee summary
to ensure that their use does not decrease precision atsaecallgorithms to compute
the callee summary and the alias set transfer function dg¥weg the summaries were
also presented. Through experimental evidence we showéd thient analysis and alias
set precision metrics are unaffected by the use of calleersrias. On average a 27%
reduction in the running time to compute the abstractionwiisessed.

In situations where some loss of precision is acceptablavaur of larger gains in
efficiency, we showed how caller summaries that make assongpabout pointer and
aliasing relationships at method entry can be employedrderdo gauge the maximum
decrease in precision, we chose to use a conservative saittfenary which assumes that
any two parameters of a method might be aliased. Empiricdlation of the effect of
using caller summaries on the precision of the client amalyes/ealed no decrease in
the abilities of the client analysis. For a fine-grained eatibn of precision, two metrics
deriving aggregated must and must-not aliasing betwedablas were calculated. The
average decrease was 8% for the must- and 4% for the musliasireetric. The running
time for computing the alias set abstraction decreases %y @b average if both callee
and caller summaries are used.

Future directions include experimenting with other cliantlyses of the alias set
abstraction, using callee and caller summaries for thedstahlibrary, and developing
less conservative caller summaries such as those briefljioned in Section 4.

Acknowledgements This work was supported, in part, by the Natural Sciencestand
gineering Research Council of Canada and Ontario MinidtResearch and Innovation.

References

1. J. Aldrich, C. Chambers, E. G. Sirer, and S. J. Eggersic®aalyses for eliminating unneces-
sary synchronization from Java prograr®S’ 99, pages 19-38, 1999.

2.C. Allan, P. Avgustinov, A. S. Christensen, L. HendrenK8zins, O. Lhotak, O. de Moor,
D. Sereni, G. Sittampalam, and J. Tibble. Adding trace magcith free variables to AspectJ.
OOPSLA 05, pages 345-364, 2005.

3. B. Blanchet. Escape analysis for object-oriented laggsiaapplication to Java. OOPSLA '99,
pages 20-34, 1999.

4. R. Chatterjee, B. G. Ryder, and W. A. Landi. Relevant cdniteference. POPL '99, pages
133-146, 1999.

5. B.-C. Cheng and W.-M. W. Hwu. Modular interproceduralrer analysis using access paths:
design, implementation, and evaluatid?.DI ' 00, pages 57—69, 2000.

19

6. S. Cherem and R. Rugina. Compile-time deallocation afiiddal objects.|SMM '06, pages
138-149, 2006.

7.S. Cherem and R. Rugina. A practical escape and effegtsisédr building lightweight method
summariesCC’' 07, pages 172-186, 2007.

8.J.-D. Choi, M. Gupta, M. Serrano, V. C. Sreedhar, and SkN¥idEscape analysis for Java.
OOPSLA '99, pages 1-19, 1999.

9. B. Dufour. Objective quantification of program behaviasing dynamic metrics. Master's
thesis, McGill University, June 2004.

10. S. J. Fink, E. Yahav, N. Dor, G. Ramalingam, and E. Geafeckye typestate verification in
the presence of aliasing\CM Trans. Softw. Eng. Methodol., 17(2):1-34, 2008.

11. S. Gulwani and A. Tiwari. Computing procedure summdnegmterprocedural analysi€SOP
'07, pages 253-267, 2007.

12. M. Hind. Pointer analysis: haven’t we solved this prablet? PASTE ' 01, pages 54-61, 2001.

13. S. Horwitz, T. Reps, and M. Sagiv. Demand interprocddiataflow analysisS GSOFT FSE
'95, pages 104-115, 1995.

14. G. A. Kildall. A unified approach to global program optraiion. POPL ' 73, pages 194—206.

15. O. Lhoték. Comparing call graphRASTE ' 07, pages 37-42, 2007.

16. O. Lhotak and L. Hendren. Scaling Java points-to araly@ng SparkCC' 03, pages 153-169,
2003.

17. K.-K. Ma and J. S. Foster. Inferring aliasing and enckgpsun properties for Java. OOPSLA
‘07, pages 423-440, 2007.

18. N. A. Naeem and O. Lhotak. Typestate-like analysis oftipia interacting objects.OOP-

S A’08, pages 347-366, 2008.

19. N. A. Naeem and O. Lhotak. Efficient alias set analysisgu$SA form. ISMM '09, pages
79-88, 2009.

20. N. A. Naeem, O. Lhotak, and J. Rodriguez. Practicalresitss to the IFDS algorithnCC ' 10,
pages 124-144, 2010.

21. M. Orlovich and R. Rugina. Memory leak analysis by catiton. K. Yi, editor, SAS ' 06,
pages 405-424, 2006.

22.T. Reps, S. Horwitz, and M. Sagiv. Precise interprocadiataflow analysis via graph reacha-
bility. POPL ’95, pages 49-61, 1995.

23. N. Rinetzky, M. Sagiv, and E. Yahav. Interprocedurapghanalysis for cutpoint-free programs.
SAS 2005, pages 284-302, 2005.

24.B. G. Ryder. Dimensions of precision in reference angslgs object-oriented programming
languagesCC 03, pages 126-137, 2003.

25. M. Sagiv, T. Reps, and S. Horwitz. Precise interprocadiataflow analysis with applications
to constant propagatioheoretical Computer Science, 167(1-2):131-170, 1996.

26. M. Sagiv, T. Reps, and R. Wilhelm. Solving shape-analgsdblems in languages with destruc-
tive updating.ACM Trans. Program. Lang. Syst., 20(1):1-50, Jan. 1998.

27. M. Sharir and A. Pnueli. Two approaches to interprocaldiata flow analysis. S. S. Muchnick
and N. D. Jones, editor®rogram Flow Analysis. Theory and Applications, chapter 7, pages
189-233. Prentice-Hall, 1981.

28. S. Shoham, E. Yahav, S. Fink, and M. Pistoia. Static §patton mining using automata-based
abstractionsISSTA ' 07, pages 174-184, 2007.

29. R. Vallée-Rai, E. Gagnon, L. J. Hendren, P. Lam, P. Paittenand V. Sundaresan. Optimizing
Java bytecode using the Soot framework: is it feasil@€?00, pages 18-34, 2000.

30. J. Whaley and M. Rinard. Compositional pointer and eseayalysis for Java programs. OOP-
SLA 99, pages 187-206, 1999.

31. H. Yang, O. Lee, J. Berdine, C. Calcagno, B. Cook, D. faste, and P. W. O’Hearn. Scalable
shape analysis for systems co@&V '08, pages 385-398, 2008.

32. G. Yorsh, E. Yahav, and S. Chandra. Generating precideamcise procedure summaries.
POPL '08, pages 221-234, 2008.

20

