
Faster Alias Set Analysis Using Summaries

Nomair A. Naeem and Ondřej Lhoták

University of Waterloo, Canada
{nanaeem,olhotak}@uwaterloo.ca

Abstract. Alias sets are an increasingly used abstraction in situations which re-
quire flow-sensitive tracking of objects through differentpoints in time and the
ability to perform strong updates on individual objects. The interprocedural and
flow-sensitive nature of these analyses often make them difficult to scale. In this
paper, we use two types of method summaries (callee and caller) to improve the
performance of an interprocedural flow- and context-sensitive alias set analysis. We
present callee method summaries and algorithms to compute them. The computed
summaries contain sufficient escape and return value information to selectively re-
place flow-sensitive analysis of methods without affectinganalysis precision. When
efficiency is a bigger concern, we also use caller method summaries which provide
conservative initial assumptions for pointer and aliasingrelations at the start of a
method. Using caller summaries in conjunction with callee summaries enables the
alias set analysis to flow-sensitively analyze only methodscontaining points of in-
terest thereby reducing running time. We present results from empirically evaluating
the use of these summaries for the alias set analysis. Additionally, we also discuss
precision results from a realistic client analysis for verifying temporal safety proper-
ties. The results show that although caller summaries theoretically reduce precision,
empirically they do not. Furthermore, on average, using callee and caller summaries
reduces the running time of the alias set analysis by 27% and 96%, respectively.

1 Introduction
Inferring properties of pointers created and manipulated by programs has been the subject
of intense research [12,24]. A large spectrum of pointer analyses, from efficient points-to
analyses to highly precise shape analyses, have been developed. A useful tradeoff between
the two extremes, and an increasingly used abstraction, is the alias set analysis. This static
abstraction represents each runtime object with the set of all local pointers that point to it,
and no others. The abstraction is neither a may-point-to nora must-point-to approximation
of runtime objects. Instead, each alias set represents exactly those pointers that reference
the particular runtime object. As a result, like in a shape abstraction [26], every alias set
(except the empty one) corresponds to at most one concrete object at any given point in
time during program execution. This ability to statically pinpoint a runtime object enables
strong updates which makes the abstraction suitable for analyses that track individual
objects [6,10,18,21]. We discuss the alias set analysis in more detail in Section 2.

Unlike a shape analysis which emphasizes the precise relationships between objects,
and is expensive to model, an alias set analysis, like a pointer abstraction, focuses on lo-
cal pointers to objects. This makes computing the alias set abstraction faster than shape
analyses. However, since the analysis is flow-sensitive andinter-procedural it is still con-
siderably slower than most points-to analyses. In this paper we propose two ways to fur-
ther speed-up the alias set analysis; callee summaries providing effect and return value
information and caller summaries that make conservative assumptions at method entry.

Flow sensitive analyses take into account the order of instructions in the program
and compute a result for each program point. Although typically more precise than those

1

that are insensitive to program flow, flow-sensitive analyses often have longer execution
times than their insensitive counterparts. Computing suchprecise information for each
program point is often overkill; clients of the analysis need precise results only at specific
places. Long segments of code might exist where a client neither queries the analysis nor
cares about its precision. As an example, consider a static verification tool that determines
whether some property of lists and iterators is violated by the code in Figure 1. The
verification tool is a client of the alias set analysis as it requires flow-sensitive tracking of
individual objects to statically determine runtime objects involved in operations on lists
and iterators. Notice that precise alias sets are required only when operations of interest
occur. For the example, these are the two calls tonext at lines 7 and 10 and the call
to add at line 11. On the other hand, a typical alias set analysis computes flow-sensitive
results for all program points irrespective of the fact thatit is likely to be queried only at
a few places.

 class Foo {

 void foo(){

1 List a = new ...

2 addElements(a)

3 List b = new ...

4 bar(a,b)

5 ...

 }

 }

 void bar(List a, List b){

6 Iterator it = a.iterator

7 x = it.next()

8 method3(x)

9 method7(b)

10 ... = it.next()

 }

 11 b.add()

1
2

3

4 5

6

7 8

Fig. 1. Sample code illustrating the use of callee and caller summaries

In such situations, we propose the use of a selectively flow-sensitive alias set analysis
that uses callee method summaries as a cheaper option. Only methods that contain a point
of interest (which we callshadows), or transitively call methods containing shadows, are
analyzed flow-sensitively. For all other methods, callee summaries providing effect infor-
mation for the parameters of a method invocation and the possible return value are used.
If callee summaries were available, only methods 1, 2, 7 and 8from Figure 1 would have
to be analyzed flow-sensitively since they contain shadows or call methods containing
shadows. For the entire segment of code represented by methods 3-6, flow-sensitive in-
formation is not required and callee summaries can be used instead. In particular, while
analyzing method 2 the alias set analysis need not propagatethe analysis into method 3
at line 8 and instead its callee summary can be used. From the client’s perspective this
is acceptable since it does not query any program point within methods 3-6. In fact, as
long as callee summaries contain sufficient information so that foregoing flow-sensitive
analysis of methods without shadows does not affect alias set precision in methods with
shadows, the client’s precision will be unaffected. Details of the construction of callee
summaries and their use in the alias set analysis are given inSection 3.

The advantage any static analysis derives from interprocedurally analyzing a program
is that the analysis need not make conservative worst case assumptions at method entry.
This certainly holds true for the alias set analysis. At a callsite, the analysis ensures an
appropriate mapping from the caller scope arguments to the callee scope parameters so
that alias sets in the callee precisely represent aliasing at the start of the method. However,
when efficiency is a bigger concern, we propose the use of caller summaries which are
conservative and sound approximations of incoming alias sets. A direct benefit of using

2

such summaries at method entries is that methods that were previously analyzed flow-
sensitively only to obtain precise entry mappings for methods containing shadows no
longer require flow-sensitive analysis. For example, sincemethods 1 and 7 in Figure 1
were analyzed flow-sensitively only because they contain calls to methods 2 and 8, with
the added use of caller summaries this is no longer required.Only methods 2 and 8 will
be analyzed flow-sensitively with caller summaries used to seed their initial alias sets and
callee summaries used at all callsites.

Unlike callee summaries, caller summaries can affect the precision of the alias set
abstraction since important aliasing information available at a particular callsite might
not be propagated into the callee and instead some conservative assumption is made. The
degree to which the use of caller summaries affects precision is dependent on the choice
of caller summary as well as the client analysis.

This paper makes the following three contributions:

– We describe callee method summaries for the alias set analysis which provide suffi-
cient information at a method callsite to forego flow-sensitive analysis of the callee
without a loss of precision in the caller. We present algorithms to compute such sum-
maries and a transfer function that employs the computed summary. (Section 3)

– We present the simplest caller summary as a proof of concept to using such summaries
to flow-sensitively analyze even fewer methods. A transfer function for the alias set
abstraction that uses both callee and caller summaries is also presented. (Section 4)

– We empirically evaluate the effect of caller summaries on the precision of a realistic
client analysis and present precision metrics for the aliasset abstraction. The effect
on the running time of different incarnations of the alias set analysis is discussed.
(Section 5)

2 Alias Set Analysis

The alias set abstraction employs abstract interpretationto summarize all possible runtime
environments. The abstraction contains an alias set for every concrete object that could
exist at run time at a given program point. The merge operation is a union of the sets of
alias sets coming from different control flow paths. A given alias seto♯ is exactly the set of
local variables that point to the corresponding concrete object at run time. Individual alias
sets do not represent may- or must- points-to approximations of runtime objects, although
the abstraction subsumes these relationships. If two pointers must point to the same object
at a program point, then all alias sets in the abstraction forthat point will either contain
both pointers or neither. Similarly, if two pointers point to distinct objects at a program
point then the abstraction at that point will not contain anyalias sets containing both
pointers.

2.1 Intermediate Representation and Control Flow Graph

We assume that the program has been converted into an SSA-based intermediate repre-
sentation containing the following kinds of instructions:

s ::= Copy(x← y) | Store(y.f ← x) | Load(x← y.f) |
Null(x← null) | New(x← new) | Call(m(p0 · · · pk))

The instructions copy pointers between variables, store and load objects to and from
fields, assign null to variables, create new objects and calla methodm. For method calls,
the receiver is specified as the first argumentp0 followed by the argumentsp1 to pk. φ

3

instructions, introduced during SSA conversion, act as copy instructions with a different
multi-variable copy for each incoming control flow edge.

The interprocedural control flow graph is created in the standard way; nodes represent
instructions and edges specify predecessor and successor relationships. Each procedure
begins with a uniqueStart node and ends at a uniqueExit node. By construction, a call
instruction is divided into two nodes; call and return. A call edge connects the call node
in the caller with the start node in the callee. A return edge connects the exit node in
the callee with the return node in the caller. ACallFlow edge connects a call node to its
return node completely bypassing the callee (Figure 2). This edge is parameterized with
the method it bypasses and the variable the return from the call is assigned to.

Start foo

New(y)

call(bar(x,y))

Start bar

Load(z,x.f)

Exit
return

Exit

CallFlow[bar,y]

call

return

Copy(x,y)

Copy(ret,z)

 void foo(){

 y = new ...

 x = y

 y = x.bar(y)

 }

Object bar(Object y){

 z = x.f

 return z

}

Fig. 2. Interprocedural control flow graph withcall, return andCallFlow edges.

2.2 Intra-procedural Alias Set Analysis

Flow-sensitivity enables the alias set analysis to precisely track abstract objects through
different points in time. The analysis mimics the effect of program instructions in chang-
ing the targets of pointers and accordingly updates the alias sets representing each runtime
object. For example, consider the instruction x← new. At runtime an objecto is allocated
in the heap and x points to that object. Correspondingly, thestatic abstraction creates the
alias set{x} representing the object’s abstractiono♯. Since a pointer can only point to one
concrete object at a time, x points to the newly created object and none other. If a copy
instructiony ← x creates a new reference to the runtime objecto the analysis mimics
this effect by updating the alias set to{x,y}. Hence, at all times each concrete object is
represented by some alias set, though due to the conservative nature of the analysis there
may be alias sets which represent no runtime object. For mostinstructions in the program,
given an alias set representing some runtime objecto, it is possible to compute the exact
set of pointers which will point too after the execution of the instruction.

An exception to this is the load from the heap (v ← e). Since the abstraction only
tracks local variables, the analysis is uncertain whether the object being loaded is repre-
sented by a given alias seto♯ before the instruction, and whether the destination variable
v should therefore be added too♯. To be conservative, the analysis accounts for both pos-
sibilities and creates two alias sets, one containingv (o♯ ∪ {v}) and one not containingv
(o♯ \ {v}). At this point a straightforward optimization can be applied; only objects that
had previously escaped to the heap via a Store can be loaded. We have implemented this
optimization in the alias set abstraction. At each program point, the abstraction computes

4

two sets of alias-setsρ♯ andh♯ with the condition thath♯ ⊆ ρ♯ and thath♯ contains only
those alias sets which are abstractions of run time objects that have escaped into the heap.

In previous work [18] we presented the intra-procedural transfer functions for the alias
set abstraction which we reproduce in Figure 3. The core of the transfer function is the
helper functionJsKo♯ which, depending on the instruction, updates an existing alias set.
For a copy instruction (v1 ← v2) any alias set that contains the source variablev2 is
modified by adding the target variablev1, since after the instruction the source and target
both point to the same location. Since a pointer can only point to one location at a time,
instructions that overwrite a variablev modify an existing alias set by removingv as after
the instructionv no longer points to the runtime object abstracted by this set. The store
instruction (e← v) has no effect on an alias set since alias sets by definition only track
local variables. Thefocus operator in Figure 3 handles the uncertainty due to heap loads.

JsK1o♯(o
♯) ,

8

>

>

>

>

<

>

>

>

>

:

o♯ ∪ {v1} if s = v1 ← v2 ∧ v2 ∈ o♯

o♯ \ {v1} if s = v1 ← v2 ∧ v2 6∈ o♯

o♯ \ {v} if s ∈ {v ← null , v ← new}
o♯ if s = e← v

undefined ifs = v ← e

focus[h♯](v, o♯) ,

 ˘

o♯ \ {v}
¯

if o♯ 6∈ h♯

˘

o♯ \ {v}, o♯ ∪ {v}
¯

if o♯ ∈ h♯

JsK1O♯ [h
♯](O♯) ,

 S

o♯∈O♯JsK
1

o♯(o
♯) if s 6= v ← e

S

o♯∈O♯ focus[h♯](v, o♯) if s = v ← e

JsK1ρ♯(ρ
♯, h♯) , JsK1gen∪ JsK1O♯ [h

♯](ρ♯)

JsK1gen ,

{{v}} if s = v ← new
∅ otherwise

JsK1h♯(ρ
♯, h♯) , JsKO♯ [h

♯]

„

h♯ ∪ {o♯ ∈ ρ♯ : v ∈ o♯} if s = e← v
h♯ otherwise

«

JsK1ρh♯(ρ
♯, h♯) ,

D

JsK1ρ♯(ρ
♯, h♯), JsK1h♯(ρ

♯, h♯)
E

Fig. 3.Transfer functions on individual alias sets.The superscript1 identifies the version of the trans-
fer function; we will present modified versions of the transfer functions later in the paper.

As discussed earlier, only objects that were previously stored in the heap can be loaded.
Therefore, for alias-sets not inh♯, focus(v, o♯) removesv from o♯ since the loaded object
cannot possibly be represented byo♯ and after the assignmentv no longer points too♯. On
the flip side, ifo♯ represents an escaped object, then it is split into two, one representing
the single concrete object that may have been loaded, and theother representing all other
objects previously represented byo♯.

Two additional special cases are handled. First, for a store(e← v), all abstract objects
that contain the variablev are added toh♯. Second, for an allocation instruction, a new
alias set containing only the destination variablev is created and added toρ♯.

Figure 4 graphically shows the effect of a sequence of three instructions on the alias set
abstraction. For illustration we assume that before the first instruction,ρ♯ andh♯ already
contain an alias set{x,z} i.e. an abstraction of an object that is pointed to by local variables
x andz and might also have external references from the heap. Note also the presence of a
single empty alias set which represents all runtime objectsthat are not referenced through

5

any local variables. This keeps the abstraction finite. Withthe allocation instruction, a
new alias-set{x} is added toρ♯. At the same time,JsK♯

o removesx from the alias set
{x,z} sincex no longer points to this runtime object. After the copy instruction both
y andz point to the same runtime object. The heap load highlights a number of analysis
features. First, note that the analysis determines that theloaded object cannot be the newly
created object from instruction 1. Second, since{x,z} was inh♯, so is{y,z}. The analysis
applies thefocus operator. Third, notice the creation of the alias set{z}which represents a
loaded object that previously had no local variable references. Figure 4 illustrates the two
key properties of alias set analysis (i) the abstraction candistinguish individual objects
i.e. each alias set represents at most one runtime object and(ii) the transfer functions
flow-sensitively track the effect of instructions on pointers. Each column represents what
happens to a particular concrete object as different instructions execute; all that changes
is the set of pointers pointing to the object at different program points.

x,z

z

y,z

y y,z z

x

x

x

x new

y z

z e

Fig. 4. An illustration of the transfer functions for computing thealias set abstraction.

2.3 Inter-procedural Alias Set Analysis

The intra-procedural transfer function can be extended to be inter-procedural by defining
the transfer functions forcall and return. The overall effect of calling a functionm is
JreturnK◦ JmK◦ JcallK for each possible callee. To determine the callees possibleat each
call site, we used a call graph computed using the default subset-based points-to analy-
sis implemented in Spark [16]. The functionJcallKo♯ is straightforward to define; actual
arguments in each alias set are replaced by the corresponding parameters and all other
variables are removed. Given a substitutionr that maps each argument to its correspond-
ing parameter, the function is defined in Figure 5.

JcallK1o♯(o
♯) ,

n

r(v) : v ∈ o♯ ∩ dom(r)
o

rv(o♯
c, o

♯
r) ,

8

<

:

o♯
c if p does not return a value

o♯
c ∪ {vt} vs ∈ o♯

r

o♯
c \ {vt} vs 6∈ o♯

r

JreturnK1o♯(o
♯
c) ,{rv(o♯

c, o
♯
r) : o♯

r ∈ JmK ◦ JcallK}

Fig. 5. Transfer functions forJcallKo♯ andJreturnKo♯.

Defining the return from a functionm is more challenging since any object that might
be returned bym is abstracted by some alias set containing variables local to m. On
its own this is insufficient to map variables from a callee alias set to one in the caller
since it is unknown which caller variables, if any, pointed to the object before the call.

6

Instead, the analysis uses a function that, given a call siteand the computed flow function
JmK ◦ JcallK, computes the appropriate caller-side alias sets after thefunction returns. For
theJreturnKo♯ function in Figure 5,o♯

c is the caller-side abstraction of an object existing
before the call and the setJmK ◦ JcallK contains all possible callee-side alias sets (o♯

r) that
could be returned. The functionrv takes each such pair (o♯

c, o
♯
r), wherevs is the callee

variable being returned andvt is the caller variable to which the return value is assigned.
Intuitively, if the object that was represented byo♯

c in the caller before the call is returned
from the callee (i.e.vs ∈ o♯

r), thenvt is added too♯
c. If some other object is returned,

thenvt is removed fromo♯
c, sincevt gets overwritten by the return value. In the case of

an object newly created within the callee, the empty set is substituted foro♯
c, since no

variables of the caller pointed to the object before the call. Overall,JreturnK yields the
set of possible caller-side alias sets of the object after the call. We refer the interested
reader to our previous work [20] for more details.

3 Callee Summaries
Although precise, the alias set analysis in its original form is expensive to compute. Us-
ing efficient data structures [19] and algorithms [20, 22] only improves the efficiency to
some extent. In situations where a faster running time is desired we propose the use of
method summaries. In this section, we discuss the use of callee summaries that decrease
the computation load, without any effect on a client analysis.

The key insight is that clients of a flow-sensitive whole program analysis often need
precise information at a small subset of program points. On the other hand, a flow-
sensitive program analysis computes precise information at all program points and there-
fore computes a lot more information than required. Computing this unnecessary infor-
mation is wasteful and should be avoided. We use callee summaries to achieve this.

Before we explain the contents of a callee summary let us see how the alias set anal-
ysis can use such summaries. Consider a callsite, with a target methodm. If an oracle
predicts that a client of the alias set analysis never queries any program point withinm or
any methods transitively called bym, then computing flow-sensitive alias results for all
methods in the transitive closure ofm is unnecessary. Instead a callee summary, which
provides information regarding the parameters and return value, could be used. For many
client analyses such an oracle exists. In Section 5 we discuss one such client analysis that
leverages alias sets in proving temporal properties of objects. The points of interest for
this analysis i.e. the shadows, are operations that change the state an object is in and are
statically known ahead of time. Additionally, callee summaries can be used for methods
in the standard library; the alias set analysis can be seededto use callee summaries for
all chains of calls into the library. Analyses such as those detecting memory leaks and
automatically deallocating objects [6, 21], that already use alias sets, could benefit from
such summaries to only analyze application code.

The key requirement we put on a callee summary is that it should enable the analysis
to bypass flow-sensitively analyzing a method without impacting precision in the caller.
Table 1 provides a summary of the contents of such a summary. The summary is divided
into escape (αesc) and return value (αret) information.

To determine the contents of a callee summary one must understand the effect of a
method call on the alias set abstraction. First, the callee might escape the receiver or
arguments of the call. This might occurdirectly, when a callee’s parameter is stored in a
field, orindirectly, when a parameter is copied to a local reference which is thenstored. In

7

Escape Information (αesc)
params set of parameters (including receiver) that may be stored into the heap by

m or procedures transitively called bym

Return Value Information (αret)
params set of parameters (including receiver) that might be returned bym.
heap might an object loaded from the heap be returned?
fresh might a newly created object be returned?
escaped might a newly created object be stored in the heap before being returned?
null might a null reference be returned?

Table 1.Callee Summary for a callsite with target methodm

Figure 6 the functionfoo escapes both its parameters,p directly via a store to fieldf of
classFoo andq indirectly by first copying the reference toy and then storing inFoo.f .
Therefore, a callee summary analysis must track such copiesand ultimately provide a list
of all parameters that might have escaped.

Second, the return value from the callee might be assigned toa reference in the caller.
To see how this might affect aliasing in the caller consider once again the example in
Figure 6. The functionfoo returns the pointery which is a copy ofq, one offoo’s
parameters. Therefore, the returned reference is the argument which is mapped to q, in
this case variableb. At run time, the effect of callingfoo is that after the call,a andb

must point to the same object. Let us examine the effect on theabstraction at the callsite
if the interprocedural transfer functions from Figure 5 were used.JcallK determines that
b andq point to the same location andJfooK determines thatq andy point to the same
location. This leadsJreturnK to infer that sinceb andy point to the same location and
y is assigned toa, b anda must point to the same location after the call; an alias set
containing botha andb is created in the caller. In order to forego flow-sensitive analysis
of foo in favour of a callee summary, the summary must specify whichof the callee’s
parameters might be returned so that similar updates can be made at the callsite. Other
possible returned references include references to newly created objects or those loaded
from the heap.

bar(){

 Object a = new ...

 Object b = new ...

 a = foo(a,b)

 ...

}

foo(Object p, Object q){

 Foo.f = p;

 y = q;

 Foo.f = y;

 return y;

}

Fig. 6.An example illustrating the effect of a method call on alias sets in the caller.

3.1 Computing Callee Summaries
The algorithm to compute the set of parameters that escape (αesc) from a methodm is
presented in Figure 7. The algorithm takes as input a SSA-based control flow graph of
the method and returns a set of indices which refer to the positions of parameters in the
method’s signature which might have escaped1. Lines 1-10 populate a worklist with vari-

1 Recall from Section 2 that we write a function call asm(p0, · · · pk) wherep0 denotes the receiver
of the call andp1 to pk are the arguments.

8

input : SSA-based CFG of methodm
output:mayEscape
declaremayEscape : Set[Int], WorkList: FIFOWorklist[Var], seen :Set[Var]

1 foreach instructioninst ∈ cfg do
2 switch inst

3 caseinst = Store(v) : addv to WorkListend-case
4 caseinst = CallSite(args, retval) :
5 foreach tgt ∈ callees(inst) do
6 WorkList += { args(i) : i∈ EscapeSummaries(tgt) }
7 od
8 end-case
9 end-switch
10 od
11 while WorkList not empty
12 Select and Remove variablev from WorkList
13 if seen containsv then continuefi
14 addv to seen
15 def = uniqueDef(cfg,v)
16 switch def

17 casedef = Start(p0 · · · pk): mayEscape +={ i : pi = v } end-case
18 casedef = Copy(v,s): adds to WorkList end-case
19 casedef = CallSite(args, retval):
20 foreach tgt ∈ callees(def) do
21 WorkList += { args(i) : i∈ RetValSummaries(tgt).params}
22 od
23 end-case
24 casedef = Phi : foreach Copy(v,s) ∈ phi.defs(v)do adds to WorkList od end-case
25 end-switch
26 od

Fig. 7. Algorithm to compute callee escape summary (αesc) for a methodm

ables that either escaped through a store or through a function call from withinm. The
algorithm then proceeds through each variablev in the worklist. Using the SSA prop-
erty that each variable has a single reaching definition the algorithm retrieves the unique
definition def of v (line 15). If def represents the Start node thenv is a receiver or a
parameter and the appropriate index is added to the mayEscape set. For a copy instruction
v ← s, s is added to the worklist, sincev ands both point to the same escaped object.
Notice that the order between the instruction that escapesv and the copy froms to v does
not matter, since in SSA-form once a variable is defined its value remains unchanged. If
variablev is assigned the return value from a function call then all arguments correspond-
ing to the parameters that might be returned are added to the worklist since these might
have escaped (lines 19-23). A SSAφ instruction acts as a multi-variable copy statement.

Figure 8 presents the algorithm to compute the return value summary for a function
m. The algorithm maintains a worklist of variables that mightbe returned. The worklist is
seeded with the unique return variable ofm. For each variablev in the worklist, depending
on its unique definition, the return value summary and the worklist are updated. In lines
12-14, ifv is defined at theStart node then, since aStart node defines the receiver or
parameters of methodm, the corresponding index of the parameter is stored inparams.
This represents the situation when the receiver or a parameter to m might be returned.

9

input : SSA-based CFG of methodm
output:retValSum
declareWorkList: FIFOWorklist[Var], seen : Set[Var]

1 retValSum = RetValSum{ params: Set[Int], heap = fresh = escaped = null = false}
4 if m.isV oid then return retValSumfi
5 Insert unique return variable into WorkList
6 while WorkList not empty
7 Select and remove variablev from WorkList
8 if seen containsv then continuefi
9 addv to seen
10 def = uniqueDef(cfg,v)
11 switch def

12 casedef = Start(p0 · · · pk) :
13 retValSum.params +={ i : pi = v }

14 end-case
15 casedef = CallSite(args, retval) :
16 foreach tgt ∈ callees(def) do
17 calleeRetValSum = RetValSummaries(tgt)
18 if calleeRetValSum.freshthen retValSum.fresh = truefi
19 if calleeRetValSum.heapthen retValSum.heap = truefi
20 if calleeRetValSum.nullthen retValSum.null = truefi
21 WorkList += { args(i) :i ∈ calleeRetValSum.params}
22 od
23 end-case
24 casedef = Copy(v,s) : adds to WorkListend-case
25 casedef = Phi :
26 foreach Copy(v,s) ∈ phi.defs(v)do adds to WorkListod
27 end-case
28 casedef = Load : retValSum.heap = trueend-case
29 casedef = New : retValSum.fresh = trueend-case
30 casedef = Null : retValSum.null = trueend-case
31 end-switch
32 foreach inst ∈ cfg do
33 switch inst

34 caseinst = Store(v) :
35 if seen containsv then retValSum.escaped = truefi
36 end-case
37 caseinst = CallSite (args, retval) :
38 foreach tgt ∈ callees(inst) do
39 if seen contains args(i) : i∈ EscapeSummaries(tgt) then
40 retValSum.escaped = true
41 fi
42 od
43 end-case
44 end-switch
45 od

Fig. 8. Algorithm to compute the return value summary (αret) for a methodm

10

Lines 15-23 update the return value summary ifv is assigned the return value at a callsite.
The return value summaries of all possible target methods atthe callsite are consulted and
thefresh, heap andnull fields of the summary ofm appropriately updated. If any
of the return value summaries indicate that a receiver or parameter might be returned the
corresponding argument is added to the worklist.Copy andPhi instructions add sources
of assignments to the worklist.Load, New andNull instructions require an update to the
correspondingheap, fresh andnull fields of the return value summary. Two special
cases must also be handled; if any possibly returned variable was stored in a field or
escaped by a function called bym, escaped is set to true.

Since the callee summary of a functionm depends on summaries of functions called
by m, the algorithms presented must be wrapped in an interprocedural fixed-point com-
putation. A worklist keeps track of all functions whose summaries may need to be recom-
puted. Whenever the summary of a function changes, all of itscallers are added to the
worklist. The computation iterates until the worklist becomes empty.

3.2 Using callee summaries

To leverage callee summaries in the alias set analysis the transfer functions from Figures 3
and 5 are modified. These modifications are presented in Figure 9. We denote the set of
methods that contain shadows or transitively call methods containing shadows byM∗.
The functionJcallK1

o♯ is modified so that arguments in the caller are mapped to parameters
in the callee only for methods inM∗, the methods that are still analyzed flow-sensitively.
Since return instructions are only encountered in methods not using callee summaries no
change is required to the return functionJreturnK1

o♯ .
For methods not inM∗, we define the transfer functionJCallF lowK for the similarly

named edge connecting a call node to a return node in the caller. TheJCallF lowK function
uses two helper functionsmustReturn andmightReturn which employ the return
value summaryαret to update alias sets by simulating the effect of analyzing the callee.
The functionmustReturn is true only when the object represented byo♯ before the
call is returned by the callee. Therefore the null, fresh andheap flags of the return value
summary should be false since a non-null object, that was notallocated in the callee nor
loaded from the heap should be returned. Additionally,o♯ must contain the corresponding
arguments of all parameters that might be returned by the callee. Parameters that might be
returned are given byαret.params and the corresponding arguments are retrieved through
the inverse functionr, wherer is the function mapping arguments to parameters.

The helper functionmightReturn determines whethero♯ might be returned. This is
true if o♯ represents an escaped object (o♯ ∈ h♯) and an object loaded from the heap might
be returned. An object representingo♯ might also be returned if at least one parameter,
whose corresponding argument is ino♯, might be returned. To handle the uncertainty when
mightReturn is true,JCallF lowK accounts for both possibilities similarly to thefocus
operation. If the returned object must not beo♯ then the variable assigned from the return
of the callee cannot possibly point too♯ after the call.

The callee escape summaryαesc is utilized to update alias sets representing objects
that might escape due to the function call (the functionescape in Figure 9). If any of the
corresponding arguments to parameters that escape (αesc.params) are in an alias set in
ρ♯, the alias set is added toh♯ since the function call escapes the parameter. The transfer
function must also handle situations when the callee allocates and returns a new object.
If αret.fresh is true and the return from the callee is assigned to variablev, an alias set

11

JcallK2o♯(o
♯) ,

JcallK1
o♯(o

♯) if s = call ∧ target(call) ∈M∗

∅ otherwise

mustReturn(o♯, αret) ,

8

<

:

true if !αret.fresh∧!αret.heap∧!αret.null ∧
∀p, p ∈ o♯ : p ∈ r(αret.params)

false otherwise

mightReturn[h♯](o♯, αret) ,

8

<

:

true if (o♯ ∈ h♯ ∧ αret.heap)∨
∃p, p ∈ o♯ : p ∈ r(αret.params)

false otherwise

JCallF lowK2o♯ [h
♯, m, v](o♯) ,

8

>

>

<

>

>

:

∅ if m ∈M∗

{o♯ ∪ v} if m /∈M∗ ∧mustReturn(o♯, m.αret)

{o♯ \ v, o♯ ∪ v} if m /∈M∗ ∧mightReturn[h♯](o♯, m.αret)

{o♯ \ v} otherwise

JsK2ret ,

{{v}} if s = CallF low[m, v] ∧m /∈M∗∧ m.αret.fresh
∅ otherwise

JsK2O♯ [h
♯](O♯) ,

8

>

>

<

>

>

:

S

o♯∈O♯JsK
1

o♯(o
♯)

if s /∈ {v ← e, CallF low[m, v]}
S

o♯∈O♯JCallF lowK2
o♯ [h

♯, m, v](o♯) if s = CallF low[m, v]
S

o♯∈O♯ focus[h♯](v, o♯) if s = v ← e

JsK2ρ♯(ρ
♯, h♯) , JsK1gen∪ JsK2ret ∪ JsK1O♯ [h

♯](ρ♯)

escape(ρ♯, h♯, m) , h♯ ∪ {o♯ ∈ ρ♯ : ∃p, p ∈ o♯ : p ∈ r(m.αesc.params)}

JsK2esc(m) ,

{{v}} if m.αret.fresh∧ m.αret.escaped
∅ otherwise

JsK2h♯(ρ
♯, h♯) ,

8

>

>

<

>

>

:

JsK2
O♯ [h

♯]
`

h♯ ∪ {o♯ ∈ ρ♯ : v ∈ o♯}
´

if s = e← v

JsK2esc(m) ∪ JsK2
O♯ [h

♯]escape(ρ♯, h♯, m)
if s = CallF low[m, v] ∧m /∈M∗

JsK2
O♯[h

♯]
`

h♯
´

otherwise

Fig. 9. Modified transfer functions for the alias set analysis usingcallee summaries.

containing onlyv is added toρ♯. If the freshly created object might have been stored in
the heap before being returned (αret.escaped is true) a similar alias set is added toh♯.

4 Caller Summaries
In this section we present caller summaries as a mechanism tospeed up the interproce-
dural context-sensitive alias set analysis. Although static analyses that infer properties of
pointers can be useful even when the analysis is carried out locally on individual meth-
ods, such analyses shine most when computed interprocedurally. The added ability to
carry forward computed pointer and aliasing information from a caller into a callee by
mapping arguments to parameters can significantly improve precision. However, when
efficiency is a bigger concern a natural trade-off is to forego some precision by conserva-
tively assuming initial pointer and aliasing relationships for the parameters of a method.

The reason using caller summaries improves efficiency is that it decreases the num-
ber of the methods the must be analyzed flow-sensitively. Letus revisit the example in
Figure 1. Using callee summaries enables the alias set analysis to discard flow-sensitive
analysis of methods 3-6 since they do not contain any shadows. However, even though
methods 1 and 7 do not contain shadows, they are analyzed flow-sensitively to ensure that

12

at a callsite to a method containing a shadow, precise information can be mapped into the
callee. In an analysis that uses caller summaries to make conservative assumptions at ev-
ery method entry, flow-sensitively analyzing such methods is un-needed since the precise
information computed at the callsite will never be propagated into the callee.

We have implemented a conservative mechanism for computingcaller summaries. In
our summaries, initial alias sets are created for the parameters of a method such that the
abstraction at the start of the method specifies that any two parameters might be aliased.
In our intermediate representation the methodbar in the example from Figure 1 has three
parameters; thethis receiver and the twoList referencesa andb. The caller summary
for this method contains the following sets:{}, {this}, {a}, {b}, {this,a}, {this,b},
{a,b} and{this,a,b}. Notice that given these alias sets the only conclusion thatcan be
drawn is that the three parameters might be aliased i.e. no must or must-not relationships
exist between the parameters. This is overly conservative.Firstly, the caller summary
does not take into account any type information. Althougha andb are both references to
a List data structure, the receiverthis is of typeFoo and, unlessFoo is declared a
supertype ofList, a reference of typeFoo can never point to aList object. Secondly,
the caller summaries do not leverage any pointer information. For example, subset-based
points-to analyses that use allocation sites as their object abstraction are often performed
at onset for constructing a callgraph. Using this type of pointer analysis could potentially
improve the precision of the caller summary in situations where the pointer analysis can
specify that parametersa andb were created at different allocation sites.

Our reason for using a naive caller summary was to investigate the maximum preci-
sion degradation due to such summaries. Whereas the callee summaries presented in the
preceding section do not affect precision, caller summaries do. As an example let us look
more closely at the example in Figure 1. The methodbar receives twoList references,
a andb. An alias set analysis which does not utilize caller summaries is able to differenti-
ate between the two references. In particular, at the start of methodbar the analysis infers
thata andb must-not alias (two separate lists were created at lines 1 and 3 and assigned
to a andb respectively, and a reference of one is never copied to the other). However, the
naive caller summary assumes thata andb could be aliased. Hence the precision of the
alias set analysis degrades i.e. fewer must-not facts are computed.

This decrease in precision can cascade into client analyses. For example suppose a
client of the alias set analysis is a verification tool for theproperty that an iterator’s un-
derlying list structure has not been modified when itsnextmethod is invoked (executing
such code results in a runtime exception). If caller summaries are not used, the analysis
infers that the iterator’s underlying list i.e the list referenced bya, is never modified since
a andb must-not point to the same object and the code only modifies the list referenced
by b. Hence, the client analysis can prove that line 10 is not a violation of the property.
However, when caller summaries are used, the client analysis infers that the list pointed
to by referencea might be modified (the caller summary suggests thata andb might be
aliased and an element is added at line 11 to the list pointed to by referenceb). Hence the
client analysis loses precision since it can no longer provethat thenext operation at line
10 is safe w.r.t. the property being verified. We empiricallyevaluate the loss in precision
of using caller summaries on the alias set analysis and a client analysis in Section 5.

Modifying the alias set analysis to use caller summaries is straightforward. Figure 10
shows those transfer functions which have been modified fromtheir earlier version (Fig-

13

JcallK3o♯(o
♯) , callerSummaries(target(call))

JCallF lowK3o♯ [h
♯, m, v](o♯) ,

8

<

:

{o♯ ∪ v} if mustReturn(o♯, m.αret)

{o♯ \ v, o♯ ∪ v} if mightReturn[h♯](o♯, m.αret)

{o♯ \ v} otherwise

JsK3h♯(ρ
♯, h♯) ,

8

<

:

JsK2
O♯ [h

♯]
`

h♯ ∪ {o♯ ∈ ρ♯ : v ∈ o♯}
´

if s = e← v

JsK2esc(m) ∪ JsK2
O♯ [h

♯]escape(ρ♯, h♯, m) if s = CallF low[m, v]
JsK2

O♯[h
♯]

`

h♯
´

otherwise

Fig. 10.Updated transfer functions for the alias set analysis usingcallee and caller summaries.

ure 9). First, thecall function is modified. Instead of mapping arguments to parameters,
the caller summary provides the set of alias sets to seed the callee’s analysis. Second,
callee summaries are used for all methods instead of only those not inM∗.

5 Experiments

Any standard dataflow analysis framework can be used to compute the alias set abstrac-
tion using the original transfer functions from Section 2 orthe subsequently modified
versions from Sections 3 and 4. We have chosen to implement these incarnations as in-
stances of the efficient interprocedural finite distributive subset (IFDS) algorithm of Reps
et al. [22]. The algorithm requires an analysis domainP(D) for some finite setD, and
transfer functions that are distributive. The alias set abstraction satisfies these conditions
whereD is the set of all possible alias sets. The key to IFDS’s efficiency is the distribu-
tivity of transfer functions which enables it to evaluate the functions on individual alias
sets, rather than on the entire set of alias sets at a program point. Space restrictions limit
us in providing interesting details of the algorithm. Instead we refer the interested reader
to the ever growing body of work discussed in Section 6.

For the experiments we used the DaCapo Benchmark suite, version 2006-10-MR2
with the standard library from JDK 1.3.112 for antlr, pmd and bloat, and JDK 1.4.211 for
the rest, since they use features not present in JDK 1.3. The intermediate representation is
constructed using the Soot Framework [29] with reflective class loading modelled through
reflection summaries obtained using ProBe [15] and *J [9]. Togive an indication of the
size of these benchmarks we computed the number of methods statically reachable in
the control flow graph created by Soot and present these in Table 2. Time taken to pre-
compute the callee summaries using the algorithms discussed in Section 3 are also shown.

Benchmark antlr bloat chart fop hsqldb jython luindex lusearchpmd xalan
Reachable Methods 4452 5955 14912 27408 11418 14437 7358 7821 9365 14961

Callee SummaryTime(s)8 12 29 72 28 50 10 10 15 29

Table 2.Number of statically reachable methods and the time to precompute callee summaries.

In our experiments we have used a static analysis that verifies conformance to tem-
poral properties specified using a statemachine-based specification [2] as a client of the
alias set abstraction. In previous work [18], we presented atwo stage approach to verify-
ing such properties. In the first stage an alias set abstraction of objects in the program is
computed. The second stage uses this abstraction to computean abstraction for the state
an object, or group of objects, is in. This enables statically verifying whether the state
machine might end up in an error state indicating a violationof the property.

14

Our choice of client analysis was dictated by two reasons. First, each temporal prop-
erty specifies its own points of interest; only events that transition the state machine of
that property are considered shadows. By choosing different properties we ensure a vary-
ing setM∗, the set of methods for which callee summaries are used. The properties we
experimented with are presented in Table 3. The code fragment from Figure 1 uses the
FSI property. Shadows for FSI are the next operation on an iterator and updates on the
Collection type e.g. add, clear, remove. A second reason for choosing this client anal-
ysis is that it cleanly teases apart the computation of the alias set abstraction and its use in
computing the state abstraction. This enables us to measurethe precision and efficiency
of the alias set abstraction in a real-world scenario.
FailSafeEnum (FSE): A vector should not be updated while enumerating it
FailSafeEnumHash(FSEH): A hashtable should not be updated while enumerating its keys/values
FailSafeIter (FSI): A collection should not be updated while iterating over it
HasNext (HN)The hasNext method should be called prior to every call to next on an iterator
HasNextElem (HNE): The hasNextElem method should be called prior to every callto

nextElement on an enumeration
Reader (R): A Reader should not be used after its InputStream has been closed
Writer (W) : A Writer should not be used after its OutputStream has been closed

Table 3.Temporal properties investigated to obtain a varying setM∗.

We call a pair containing a benchmark and temporal property atest case. Since not all
benchmarks exercise all temporary properties we have chosen to present results only for
test cases when a temporal property is applicable for a benchmark e.g. the antlr benchmark
never uses a Writer and hence the corresponding temporal property is inapplicable.

5.1 Shadow Statistics

Section 3 proposed the use of callee summaries for methods not in M∗ and Section 4
proposed the use of caller summaries for all methods therebyrequiring flow-sensitive
analysis of only methods containing shadows (S). We measured the percentage of reach-
able methods that are inM∗ and S and present these in Table 4. The maximum percentage
of methods inM∗ was for the test case jython-FSI where 59.9% of the methods are in
M∗. Notice that the methods containing shadows for jython-FSIare only 0.6% indicat-
ing that most methods are inM∗ since they call methods containing shadows. On average
(geometric mean)M∗ contains 11.9% of the reachable methods implying that callee sum-
maries are used for the remaining 88.1%. When using both callee and caller summaries a
mere 0.3% of reachable methods (average of set S) require flow-sensitive analysis.

antlr bloat chart fop hsqldb jython luindex lusearch pmd xalan
M∗ S M∗ S M∗ S M∗ S M∗ S M∗ S M∗ S M∗ S M∗ S M∗ S

FSE 56.30.7 47.60.1 1.6 0.1 59.80.4 1.6 0.4 1.1 0.2 9.5 0.1 50.00.6
FSEH56.31.1 2.8 0.1 59.80.4 1.1 0.3 0.8 0.2 49.90.3
FSI 56.34.2 50.60.6 47.70.5 54.00.1 59.90.6 53.10.4 52.40.6 52.41.0 50.00.5
HN 56.02.6 50.50.4 47.60.1 54.00.1 59.80.2 53.10.2 52.30.3 52.20.5 0.1 0.1
HNE 56.30.7 0.1 0.1 1.6 0.1 59.80.2 0.5 0.2 0.3 0.1 6.6 0.1 49.90.2
R 7.5 0.2 4.2 0.3 59.80.2 0.9 0.1 2.3 0.3 7.7 0.1 49.90.1
W 55.80.5 47.60.3 5.7 0.6 0.8 0.1 1.7 0.3 0.2 0.1 49.90.4

Table 4. Percentage of reachable methods that contain shadows or transitively call methods with
shadows (M∗) and methods that contain shadows (S)

15

5.2 Efficiency

To measure the effect of summaries on the time required to compute the alias set abstrac-
tion we computed the abstractions using the three versions of the transfer functions. In
Table 5 we show the running time of the original alias set abstraction (ORIG), the alias set
abstraction which uses only callee summaries (CS) and the abstraction using both callee
and caller summaries (CCS). The times for CS and CCS include the time for computing
the callee summary and CCS also includes the time to compute the caller summary.

For all test cases, the time required to compute the abstraction is reduced when callee
summaries are used for methods not inM∗. The greatest reduction is for pmd-writer
which takes 99.6% less time to compute (6670 vs 29 seconds). The reason for this is
quite obvious; for pmd-writer,M∗ contains only 12 methods out of the 9365 reachable
methods. On average the use of callee summaries reduces the time to compute the alias
set abstraction by 27%. Introducing caller summaries has a more significant impact; an
average reduction of 96% is witnessed over the entire test set.

antlr bloat chart fop hsqldb jython luindex lusearchpmd xalan

FSE
ORIG 484 5934 1351 2390 1017 580 2638 5052
CS 349 5422 220 1524 118 151 37 4484
CCS 15 108 40 71 19 18 26 112

FSEH
ORIG 500 1426 2020 1054 576 6395
CS 386 226 1397 120 133 5834
CCS 18 39 77 17 17 51

FSI
ORIG 1810 1653 4057 1316 2335 1057 553 3685 5100
CS 1683 1022 4051 651 1671 391 407 2069 5099
CCS 563 72 109 37 69 17 17 29 119

HN
ORIG 1601 1665 3735 1406 2225 1019 485 5273 5262
CS 1556 1035 3289 714 1390 393 388 5031 164
CCS 455 44 115 41 70 18 17 29 45

HNE
ORIG 457 1607 1450 2233 1098 562 5182 4361
CS 358 119 220 1481 137 121 32 3588
CCS 16 18 40 77 18 17 26 44

R
ORIG 511 1416 2205 1097 563 4348 3280
CS 55 238 1487 123 123 35 3172
CCS 13 39 73 16 16 27 48

W
ORIG 1551 3840 1450 1067 607 6670 3468
CS 1411 3553 318 120 146 29 3323
CCS 19 447 37 17 18 28 66

Table 5.Time taken to compute the alias set abstraction for the original transfer functions (ORIG),
the transfer functions leveraging Callee Summaries (CS) and the transfer functions employing both
Callee and Caller Summaries (CCS)

5.3 Client Analysis Precision

As discussed earlier we chose a static analysis that verifiesconformance to temporal prop-
erties as a client of the alias set analysis. The analysis represents temporal properties as
state machines where operations on object(s) transition the state machine associated with
the object(s). To distinguish the objects on which operations are performed, the analysis
uses an alias set abstraction. The result of the analysis is alist of shadows that cannot be
verified by the analysis; these include actual violations and false positives.

16

To evaluate the effect of using caller summaries on the precision of the analysis (callee
summaries have no effect on precision) we executed the client analysis using the ORIG
and CCS abstractions. As per our discussion in Section 4, we expected a decrease in
precision since caller summaries cause the alias set abstraction to compute fewer aliasing
facts. However, the results surprised us; none of the 54 testcases showed any degradation
in the client analysis. The CCS abstraction contained sufficient must and must-not aliasing
at each shadow of a test case to produce the same transitions on the abstract state machine.

Our conclusion from this experiment is that even though caller summaries cause a the-
oretical decrease in precision, this does not automatically translate into precision loss for
the client analysis. Situations exist where the benefits of using caller summaries heavily
outweigh the slight chance of losing precision.

5.4 Fine-grained Precision Metrics
When the client analysis did not show a loss of precision, we set out to develop a fine-
grained metric for evaluating precision of alias sets. Using the alias set abstraction we
compute must and must-not alias pairs for variables live at the shadows of each test case.
Then we sum the alias pairs for all shadows in a test case to give us two precision metrics:
MA the aggregated must-alias pairs and MNA the aggregated must-not alias pairs. As
expected, the metric values for ORIG and CS are identical indicating that no precision is
lost by using callee summaries. Table 6 presents the resultsof ORIG (alternately CS) vs
CCS2. For each test case the MA and MNA values for ORIG are presented. Below this
is a number indicating the number of alias pairs that are lostwith CCS. For example, the
MA value for jython-FSE is 51 indicating that 51 different alias-pairs were identified at
the shadows of this test case. The absence of a number below indicates no decrease in
precision when using caller summaries. The MNA value for jython-FSE is 189. The -7
below indicates that 7 must-not alias pairs were lost when caller summaries were used.

bloat chart jython luindex lusearch pmd xalan
MA MNA MA MNA MA MNA MA MNA MA MNA MA MNA MA MNA

FSE
51 189 6 98 18 91 0 35 371 1180

-7 -2 -1 -1 -64

FSEH
930 1546 4 63 1 17 179 384
-21 -19 -4 -2

FSI
115218858 3344 6244 404 583 76 226 77 233 459 1505 350 1042

-611 -212 -254 -32 -1 -1 -3 -79 -22

HN
606 7584 704 1529 322 386 95 202 58 112 127 839 0 13

-328 -14 -214 -1 -53

HNE
0 21 11 133 8 91 0 13 0 41 45 194

0 -10 -2 -1

R
253 427 59 80 203 222 56 130 671 1395
-9 -14 -44 -44 -7 -20

W
7 306 56 83 200 219 0 22 524 799

-55 -41 -41 -21

Table 6. Alias set abstraction precision in terms of aggregated mustaliasing (MA) and must not
aliasing (MNA) metrics computed at the shadows for each testcase.

Of the 54 test cases, only 9 showed a degradation in the MA precision metric. The
four highest degradations were for luindex-R (75%), luindex-W (73%), lusearch-R (22%)

2 Due to space limitations we do not present results for antlr,fop and hsqldb.

17

and lusearch-W (21%). The average (geometric mean) degradation for the 9 test cases
was 8%. 31 of the 54 test cases also noted a decrease in the MNA metric. The maximum
decrease was 17% for bloat-W with an average decrease of 4%.

6 Related Work

Kildall’s framework [14] for intraprocedural dataflow analysis was extended by Sharir and
Pnueli [27] to perform context-sensitive interproceduraldataflow analysis using either the
call-strings or functional approach. The functional approach computes the effect of each
procedure by composing functions for individual instructions in the procedure thereby
obtaining a summary functionfp : D → D, whereD is the dataflow analysis domain.
Once the summary function for a procedure has been computed it is used at each call site
of the procedure to model the effect of the call. Sagiv, Reps and Horwitz [22] extended the
original formalism toP(D) for a finite setD with the condition that the functions on in-
dividual dataflow facts should be distributive. Distributivity of transfer functions enables
the graphical representation of these functions as bipartite graphs withO(D) nodes. The
IFDS algorithm has been used to solve both locally separableproblems such as reaching
definitions, available expressions and live variables, andnon-locally-separable problems
such as uninitialized variables and copy-constant propagation. Its efficiency makes it suit-
able for computing a variety of useful static abstractions [10,13,19,23,25,28,31].

Other frameworks for computing procedure summaries have also been proposed. Gul-
wani and Tiwari [11] developed procedure summaries in the form of constraints that must
be satisfied for some generic assertion to hold at the end of the procedure. Their key
insight was to use weakest preconditions of such generic assertions. Furthermore, for effi-
ciency they use strengthening and simplification of these preconditions to ensure early ter-
mination. The approach has been used to compute two useful abstractions; unary uninter-
preted functions and linear arithmetic. Recently, Yorsh etal. [32] introduced an algorithm
which also computes weakest preconditions and relies on simplification for termination.
They describe a class of complex abstract domains (including the class of problems solv-
able using IFDS) for which they can generate concise and precise procedure summaries.
Their approach uses symbolic composition of the transfer functions for the instructions in
the program to obtain a compact representation for the possibly infinite calling contexts.

In contrast to the related work discussed above, we propose atechnique to reduce the
number of methods that must be analyzed using any of the approaches discussed above
(our implementation uses the IFDS algorithm [22] to computethe alias set abstraction).
Under certain conditions, instead of computing expensive procedure summaries through
IFDS, our analysis uses cheaper callee summaries without a loss of precision.

Cherem and Rugina [7] present a flow-insensitive, unification-based context-sensitive
analysis to construct method summaries that describe heap effects. The analysis is param-
eterized for specifying the depth of the heap to analyze (k) and the number of fields to
track per object (b). Varying the values for k and b results indifferent method summaries;
smaller values produce lightweight summaries whereas larger values result in increased
precision. Method summaries were shown to significantly improve a client analysis that
infers uniqueness of variables i.e. when a variable holds the only reference to an object.

Also related are analyses which traverse the program callgraph (mostly bottom-up but
some top-down analyses have also been proposed) and computea summary function for
each procedure [4,5,30]. This summary function is then usedwhen analyzing the callers.

18

Escape analysis has been widely studied [1, 3, 8, 30] and usedin a variety of appli-
cations ranging from allocating objects on the stack to eliminating unnecessary synchro-
nization in Java programs. To determine whether an object can be allocated on the stack
and whether it is accessed by a single thread, Choi et al. [8] compute object escape in-
formation usingconnected graphs. A connected graph summarizes a method and helps
identify non-escaping objects in different calling contexts. In their work on inferring alias-
ing and encapsulation properties for Java [17], Ma and Foster present a static analysis for
demand-driven predicate inference. Their analysis computes predicates such as checking
for uniqueness of pointers (only reference to an object), parameters that are lent (callee
does not change uniqueness) and those that do not escape a callee.

7 Summary
This paper presented callee and caller summaries as a means to improve the efficiency
of an alias set analysis. We described the information required from a callee summary
to ensure that their use does not decrease precision at a callsite. Algorithms to compute
the callee summary and the alias set transfer function leveraging the summaries were
also presented. Through experimental evidence we showed that a client analysis and alias
set precision metrics are unaffected by the use of callee summaries. On average a 27%
reduction in the running time to compute the abstraction waswitnessed.

In situations where some loss of precision is acceptable in favour of larger gains in
efficiency, we showed how caller summaries that make assumptions about pointer and
aliasing relationships at method entry can be employed. In order to gauge the maximum
decrease in precision, we chose to use a conservative callersummary which assumes that
any two parameters of a method might be aliased. Empirical evaluation of the effect of
using caller summaries on the precision of the client analysis revealed no decrease in
the abilities of the client analysis. For a fine-grained evaluation of precision, two metrics
deriving aggregated must and must-not aliasing between variables were calculated. The
average decrease was 8% for the must- and 4% for the must-not alias metric. The running
time for computing the alias set abstraction decreases by 96% on average if both callee
and caller summaries are used.

Future directions include experimenting with other clientanalyses of the alias set
abstraction, using callee and caller summaries for the standard library, and developing
less conservative caller summaries such as those briefly mentioned in Section 4.

AcknowledgementsThis work was supported, in part, by the Natural Sciences andEn-
gineering Research Council of Canada and Ontario Ministry of Research and Innovation.

References
1. J. Aldrich, C. Chambers, E. G. Sirer, and S. J. Eggers. Static analyses for eliminating unneces-

sary synchronization from Java programs.SAS ’99, pages 19–38, 1999.
2. C. Allan, P. Avgustinov, A. S. Christensen, L. Hendren, S.Kuzins, O. Lhoták, O. de Moor,

D. Sereni, G. Sittampalam, and J. Tibble. Adding trace matching with free variables to AspectJ.
OOPSLA ’05, pages 345–364, 2005.

3. B. Blanchet. Escape analysis for object-oriented languages: application to Java. OOPSLA ’99,
pages 20–34, 1999.

4. R. Chatterjee, B. G. Ryder, and W. A. Landi. Relevant context inference. POPL ’99, pages
133–146, 1999.

5. B.-C. Cheng and W.-M. W. Hwu. Modular interprocedural pointer analysis using access paths:
design, implementation, and evaluation.PLDI ’00, pages 57–69, 2000.

19

6. S. Cherem and R. Rugina. Compile-time deallocation of individual objects.ISMM ’06, pages
138–149, 2006.

7. S. Cherem and R. Rugina. A practical escape and effect analysis for building lightweight method
summaries.CC’07, pages 172–186, 2007.

8. J.-D. Choi, M. Gupta, M. Serrano, V. C. Sreedhar, and S. Midkiff. Escape analysis for Java.
OOPSLA ’99, pages 1–19, 1999.

9. B. Dufour. Objective quantification of program behaviourusing dynamic metrics. Master’s
thesis, McGill University, June 2004.

10. S. J. Fink, E. Yahav, N. Dor, G. Ramalingam, and E. Geay. Effective typestate verification in
the presence of aliasing.ACM Trans. Softw. Eng. Methodol., 17(2):1–34, 2008.

11. S. Gulwani and A. Tiwari. Computing procedure summariesfor interprocedural analysis.ESOP
’07, pages 253–267, 2007.

12. M. Hind. Pointer analysis: haven’t we solved this problem yet?PASTE ’01, pages 54–61, 2001.
13. S. Horwitz, T. Reps, and M. Sagiv. Demand interprocedural dataflow analysis.SIGSOFT FSE

’95, pages 104–115, 1995.
14. G. A. Kildall. A unified approach to global program optimization.POPL ’73, pages 194–206.
15. O. Lhoták. Comparing call graphs.PASTE ’07, pages 37–42, 2007.
16. O. Lhoták and L. Hendren. Scaling Java points-to analysis using Spark.CC ’03, pages 153–169,

2003.
17. K.-K. Ma and J. S. Foster. Inferring aliasing and encapsulation properties for Java. OOPSLA

’07, pages 423–440, 2007.
18. N. A. Naeem and O. Lhoták. Typestate-like analysis of multiple interacting objects.OOP-

SLA ’08, pages 347–366, 2008.
19. N. A. Naeem and O. Lhoták. Efficient alias set analysis using SSA form. ISMM ’09, pages

79–88, 2009.
20. N. A. Naeem, O. Lhoták, and J. Rodriguez. Practical extensions to the IFDS algorithm.CC ’10,

pages 124–144, 2010.
21. M. Orlovich and R. Rugina. Memory leak analysis by contradiction. K. Yi, editor,SAS ’06,

pages 405–424, 2006.
22. T. Reps, S. Horwitz, and M. Sagiv. Precise interprocedural dataflow analysis via graph reacha-

bility. POPL ’95, pages 49–61, 1995.
23. N. Rinetzky, M. Sagiv, and E. Yahav. Interprocedural shape analysis for cutpoint-free programs.

SAS 2005, pages 284–302, 2005.
24. B. G. Ryder. Dimensions of precision in reference analysis of object-oriented programming

languages.CC ’03, pages 126–137, 2003.
25. M. Sagiv, T. Reps, and S. Horwitz. Precise interprocedural dataflow analysis with applications

to constant propagation.Theoretical Computer Science, 167(1–2):131–170, 1996.
26. M. Sagiv, T. Reps, and R. Wilhelm. Solving shape-analysis problems in languages with destruc-

tive updating.ACM Trans. Program. Lang. Syst., 20(1):1–50, Jan. 1998.
27. M. Sharir and A. Pnueli. Two approaches to interprocedural data flow analysis. S. S. Muchnick

and N. D. Jones, editors,Program Flow Analysis: Theory and Applications, chapter 7, pages
189–233. Prentice-Hall, 1981.

28. S. Shoham, E. Yahav, S. Fink, and M. Pistoia. Static specification mining using automata-based
abstractions.ISSTA ’07, pages 174–184, 2007.

29. R. Vallée-Rai, E. Gagnon, L. J. Hendren, P. Lam, P. Pominville, and V. Sundaresan. Optimizing
Java bytecode using the Soot framework: is it feasible?CC’00, pages 18–34, 2000.

30. J. Whaley and M. Rinard. Compositional pointer and escape analysis for Java programs. OOP-
SLA ’99, pages 187–206, 1999.

31. H. Yang, O. Lee, J. Berdine, C. Calcagno, B. Cook, D. Distefano, and P. W. O’Hearn. Scalable
shape analysis for systems code.CAV ’08, pages 385–398, 2008.

32. G. Yorsh, E. Yahav, and S. Chandra. Generating precise and concise procedure summaries.
POPL ’08, pages 221–234, 2008.

20

