Scaling Java Points-To Analysis using SARK

Ondfej Lhotak and Laurie Hendren

Sable Research Group, McGill University, Montreal, Canada
[ol hot ak, hendren] @abl e. ntgill.ca

Abstract. Most points-to analysis research has been done on diffeyastéms
by different groups, making it difficult to compare resulied to understand in-
teractions between individual factors each group studtedhermore, points-to
analysis for Java has been studied much less thoroughlydh&n and the trade-
offs appear very different.

We introduce BARK, a flexible framework for experimenting with points-to anal
yses for Java. BARK supports equality- and subset-based analyses, variations
field sensitivity, respect for declared types, variatiansall graph construction,
off-line simplification, and several solving algorithmspARK is composed of
building blocks on which new analyses can be based.

We demonstrate B\RK in a substantial study of factors affecting precision and
efficiency of subset-based points-to analyses, includitagactions between these
factors. Our results show thap&RK is not only flexible and modular, but also of-
fers superior time/space performance when compared to ptiirets-to analysis
implementations.

1 Introduction

Many compiler analyses and optimizations, as well as pragraderstanding and ver-
ification tools, require information about which objectsleointer in a program may
point to at run-time. The problem of approximating thesenpmto sets has been the
subject of much research; however, many questions remainsuwered [16].

As with many compiler analyses, a precision vs. time trafflexdsts for points-to
analysis. For analyzing programs written in C, many poirgsiveen the extremes of
high-precision, slow and low-precision, fast have beerareg [6,8,11,15,19,21,22].
These analyses have been implemented as parts of diststeinsy, so it is difficult
to compare and combine their unique features. The desigedfts for doing points-
to analysis for Java appear to be different than for C, andnthg several different
approaches to points-to analysis for Java have been seggdst, 20, 27]. However,
once again, it is hard to compare the results since each dgrasigmplemented their
analysis in a different system, and has made very differgsuraptions about how to
handle the large Java class libraries and Java native nmeethod

To address these issues, we have developed the Soot Poimagrsis Research
Kit (SPARK), a flexible framework for experimenting with points-to &rss for Java.
SPARK is very modular: the pointer assignment graph that it predand simplifies can
be used as input to other solvers, including those beingolegd by other researchers.
We hope that this will make it easier for researchers to compasults. In addition,
the correctness of new analyses can be verified by compdreigresults to those
computed by the basic analyses provided ma®x.

In order to demonstrate the usefulness of the framework,ave blso performed a
substantial empirical study of a variety of subset-baséatpdo analyses usingFaRK.

We studied a wide variety of factors that affect both precigind time/space costs. Our
results show that BARK is not only flexible and modular, but also offers very good
time/space performance when compared to other pointsaigsia implementations.

Specific new contributions of this paper are as follows. (1@ B ARK framework
itself is available as part of Soot 1.2.4 [3] and later redsasnder the LGPL for the use
of all researchers. (2) We present a study of a variety obsprtations for points-to sets
and of a variety of solving strategies, including an incratak worklist-basedfield-
sensitive algorithm which appears to scale well to largerchenarks. (3) We report
on an empirical evaluation of many factors affecting thecizien, speed, and memory
requirements of subset-based points-to analysis algasithiVe focus on improving the
speed of the analysis without significant loss of precis{@dhWe make recommenda-
tions to allow analyses to scale to programs on the order dlliamiines of code. Even
trivial Java programs are becoming this large as the stdrdass library grows.

The structure of this paper is as follows. In Section 2 we érarsome of the chal-
lenges and factors to consider when designing an effectir@to analysis for Java.
In Section 3 we introduce theP8Rk framework and discuss the important components.
Section 4 shows®rRK in action via a large empirical study of a variety of subsaesdx
pointer analyses. In Section 5 we discuss related work ageéation 6 we provide our
conclusions and discuss future work.

2 Points-to Analysis for Java

Although some of the techniques developed for C have bequtedito Java, there are
significant differences between the two languages thataffeints-to analysis. In C,
points-to analysis can be viewed as two separate problematysis of stack-directed
pointers, and analysis of heap-directed pointers. Mostdgqams have many more
occurrences of the address-&) perator, which creates stack-directed pointers, than
dynamic allocation sites, which create heap-directedtpanlt is therefore important
for C points-to analyses to deal well with stack-directechpms. Java, on the other
hand, allows no stack-directed pointers whatsoever, ana geograms usually have
many more dynamic allocation sites than C programs of singilze. Java analyses
therefore have to handle heap-directed pointers well.

Another important difference is the strong type checkindama, which limits the
sets of objects that a pointer could point to, and can thezdfe used to improve anal-
ysis speed and precision. Diwan et. al. have shown the berwfilype-based alias
analysis for Modula-3 [10]. Our study shows that using tyipe¥ava is very useful for
improving efficiency, and also results in a small improvetieprecision.

The object-oriented nature of Java also introduces new tqitigs in dealing with
any whole program analysis. In order to build a call grapmea@pproximation of
the targets of virtual method calls must be used. There avébtgic approaches. The
first approach is to use an approximation of the call graph byianother analysis.
The second approach is to construct the call graph on-thedlyhe pointer analysis
proceeds. In our empirical study, Section 4, we comparetbepproaches.

Related to the problem of finding a call graph is finding theo$etethods that must
be analyzed. In sequential C programs, there is one entny,p@ii n, and a whole pro-
gram analysis can start at this entry point and then incréaifigifeither ahead-of-time
or during analysis) add all called methods. In Java the tsitnas much more com-

plicated as there are many potential entry points inclugiagjc initializers, finalizers,
thread start methods, and methods called using reflectiothér complicating matters
are native methods which may impact points-to analysisfdruvhich we do not have
the code to analyze. OurBRk framework addresses these points.

Another very important point is the large size of the Javaaliles. Even small
application programs may touch, or appear to touch, a laageqgs the Java library.
This means that a whole program analysis must be able to déardle problem sizes.
Existing points-to analyses for Java have been succegsésted with the 1.1.8 ver-
sion of the Java standard libraries [17, 20], consisting48 thousand lines of code
(KLOC). However, current versions of the standard libramy aver three times larger
(eg. 1.3.101 is 574 KLOC), dwarfing most application programs that hsert, so it is
not clear that existing analyses would scale to such larggrams. Our framework has
been designed to provide the tools to develop efficient aalhblz analyses which can
effectively handle large benchmarks using the large libgsar

3 SPARK framework

3.1 Overview

The Soot Pointer Analysis Research KitPeRK) is a flexible framework for experi-
menting with points-to analyses for Java. Althoughn8K is very competitive in effi-
ciency with other points-to analysis systems, the maingegoal was not raw speed,
but rather the flexibility to make implementing a wide vayief analyses as easy as
possible, to facilitate comparison of existing analyses development of new ones.

SPARK supports both subset-based [6] and equality-based [2B}ses as well as
variations that lie between these two extremes. In this pape focus on the more
precise, subset-based analyses. AlthougkrRX is limited to flow-insensitive analyses,
most of the benefit of flow-sensitivity is obtained by sptitivariables.

SPARK is implemented as part of the Soot bytecode analysis, opditon, and
annotation framework [26]. Soot accepts Java bytecodepsg,inonverts it to one of
several intermediate representations, applies analyssamsformations, and converts
the results back to bytecoder&RK uses as its input the Jimple intermediate represen-
tation, a three-address representation in which locatK¥teariables have been split
according to DU-UD webs, and declared types have been @déor them. The results
of SPARK can be used by other analyses and transformations in Samta8o provides
an annotation framework that can be used to encode thegésuliassfile annotations
for use by other tools or runtime systems [18].

The execution of 8ARK can be divided into three stages: pointer assignment graph
construction, pointer assignment graph simplificatiord apints-to set propagation.
These stages are described in the following subsections.

3.2 Pointer Assignment Graph

SPARK uses goointer assignment grapas its internal representation of the program
being analyzed. The first stage ob&RK, the pointer assignment graph builder, con-
structs the pointer assignment graph from the Jimple irfpeparating the builder from
the solver makes it possible to use the same solution ahgoesiind implementations
to solve different variations of the points-to analysiskjem.

The pointer assignment graph consists of three types ofmddlecation site nodes
represent allocation sites in the source program, and acktosmodel heap locations.

Simple variable nodes represent local variables, methoahpeters and return values,
and static fields. Field dereference nodes represent fieba@xpressions in the source
program; each is parametrized by a variable node repreggtht variable being deref-
erenced by the field access. The nodes in the pointer assigrgraph are connected
with four types of edges reflecting the pointer flow, correxfing to the four types of
constraints imposed by the pointer-related instructiorthé source program (Table).
In this table,a andb denote allocation site nodes;c anddst denote variable nodes,
andsrc. f anddst. f denote field dereference nodes.

Table I. The four types pointer assignment graph edges.

| | Allocation | Assignment | Field store | Field load |
Instruction)|a : dst := new C| dst := src dst.f = src dst := sre.f
Edge a — dst src — dst src — dst.f srce.f — dst
amas | semdst | TELES L e
Rules _— € pt
a € pt(dst) Lt(ji) b € pt(dst) b € pt(a.f)
@ € pi(dst) a € pt(b.f) b € pt(dst)

Later, during the propagation of points-to sets, a fourgietpf node (denoted. f
andb.f) is created to hold the points-to set of each field of objectsted at each
allocation site. These nodes are parameterized by allwcatie and field. However,
they are not part of the initial pointer assignment graph.

Depending on the parameters to the builder, the pointegmas&nt graph for the
same source code can be very different, reflecting varywejdef precision desired of
the points-to analysis. As an example, the builder may makigaments directed for a
subset-based analysis, or bi-directional for a equalityeldl analysis. Another example
is the representation of field dereference expressionigrdph, as discussed next.

Field Dereference Expressions:A field expressiorp.f refers to the fieldf of the
object pointed to by. There are three standard ways of dealing with fieldsiefd-
sensitiveinterpretation, which is the most precise, consigeysto represent only the
field f of only objects in the points-to set pf A less precisefjeld-basednterpretation
approximates each fielflof all objects using a single set, ignoring thel he key advan-
tage of this is that points-to sets can be propagated alooninéep assignment graph of
only simple variable noddga one single iterationby first merging strongly-connected
components of nodes, then propagating in topological okdany C points-to analyses
use afield-independeninterpretation, which ignores thg and approximates all the
fields of objects in the points-to set pfas a single location. In Java, the field infor-
mation is readily available, and different fields are guszad not to be aliased, so a
field-independent interpretation makes little sensgrK supports field-sensitive and
field-based analyses, and field-independent analyses WwetutiVial to implement.

3.3 Call Graph Construction

An interprocedural points-to analysis requires an appnaxion of the call graph. This
can be constructed in advance using a technique such as GHAI®[7] or VTA [24],
or it can be constructed on-the-fly as the points-to sets Ib&ita receivers are com-

puted. The latter approach gives somewhat higher pregisigdmequires more iteration
as edges are added to the pointer assignment graph.

SPARK supports all of these variations, but in this paper, our eicadistudy focuses
on CHA and on-the-fly call graph constructiorrARK always uses the CHA call graph
builder included in Soot to determine which methods arehrehle for the purposes of
buildingthe pointer assignment graph. However, on-the-fly call ly@amstruction can
be achieved adolvingtime by excluding interprocedural edges from the initiadr,
and then adding only the reachable edges as the pointsstarsspropagated.

In theory, determining which methods are possibly reaahabtun-time is simple:
start with a root set containing the main method, and trave$jtadd all methods which
are called from methods in the set. Java is not this simpleehier; execution can also
start at static initializers, finalizers, thread start nogify and dynamic call sites using
reflection. Soot considers all these factors in determininigh methods are reachable.
For the many call sites using reflection inside the standaskdibrary, we have com-
piled, by hand, a list of their possible targets, and theyaatematically added to the
root set.

In addition, native methods may affect the flow of pointersaidava program.
SPARK therefore includes a native method simulation framewote &ffects of each
native method are described in the framework using absteaetcode, andi3RK then
creates the corresponding pointer flow edges. The nativeadestimulation framework
was designed to be independent @h8K, so the simulations of native methods should
be usable by other analyses.

3.4 Points-to Assignment Graph Simplification

Before points-to sets are propagated, the pointer assigignaph can be simplified by
merging nodes that are known to have the same points-togetifigally, all the nodes
in a strongly-connected component (cycle) will have equéhis-to sets, so they can
be merged to a single node. A version of the off-line variaglbstitution algorithm
givenin [19] is also used to merge equivalence sets of nddéfiive a single common
predecessor.

SPARK uses a fast union-find algorithm [25] to merge nodes in timeost linear
in the number of nodes. This is the same algorithm used foalégtbased [22] analy-
ses. Therefore, by making all edges bidirectional and mgrgodes forming strongly-
connected components, we can implement a equality-baségkain SPARK. In fact,
we can easily implement a hybrid analysis which is partlyatity+based and partly
subset-based by making ordpmeof the edges bidirectional. One instance of a sim-
ilarly hybrid analysis is described in [8]. Even when penfiimg a fully subset-based
analysis, we can use the same unification code to simplifpdirger assignment graph.

3.5 SetImplementations

Choosing an appropriate set representation for the ptirdsts is a key part of design-
ing an effective analysis. The following implementations eurrently included as part
of SPARK; others should be easy to adthsh Sets a wrapper for thélashSet imple-

mentation from the standard class library. It is provided asseline against which the

L |f types are being used, then only nodes with compatiblestya® be merged; the interaction
of types and graph simplication is examined in Section 4.

other set implementations can be compafgatted Array Seimplements a set using
an array which is always kept in sorted order. This makes ssjide to compute the
union of two sets in linear time, like in a merge s@it Setimplements a set as a bit
vector. This makes set operations very fast regardlesswidrge the sets get (as long
as the size of the universal set stays constant). The dr&wbdleat the many sparse
sets use a large amount of mematybrid Setrepresents small sets (up to 16 elements)
explicitly using pointers to the elements themselves, liitches to a bit vector rep-
resentation when the sets grow larger, thus allowing bothllsamd large sets to be
represented efficiently.

3.6 Points-to Set Propagation

After the pointer assignment graph has been built and sfieglithe final step is propa-
gating the points-to sets along its edges according to tlee slhown in Table |. SARK
provides several different algorithms to implement theses:.

Iterative Algorithm: SPARK includes a naive, baseline, iterative algorithm (Algo-
rithm 1) that can be used to check the correctness of thesasfithe more complicated
algorithms? Note that for efficiency, all the propagation algorithms Pr8k consider
variable nodes in topological order (or pseudo-topoldgicder, if cycles have not been
simplified).
Algorithm 1 Iterative Propagation

1: initialize sets according to allocation edges

2: repeat
propagate sets along each assignment gdgeg
4: for each load edgge.f — ¢ do
5 for eacha € pt(p) do
6 propagate sefs(a.f) — pt(q)
7. for each store edge — ¢.f do
8: for eacha € pt(q) do
9:
10:

propagate ses(p) — pt(a.f)
until no changes

Worklist Algorithm: For some of our benchmarks, the iterative algorithm perform
over 60 iterations. After the first few iterations, the peitd sets grow very little, yet
each iteration is as expensive as the first few. A better, loweérmomplex solver based on
worklists is also provided as part oPSRK and is outlined in Algorithm 2. This solver
maintains a worklist of variable nodes whose points-to setd to be propagated to
their successors, so that only those nodes are considerpobftagation.

In the presence of field-sensitivity, however, the worldigiorithm is not so simple.
Whenever a variable nogeappears in the worklist (which means that its points-to set
has new nodes in it that need to be propagated), the algopitbpagates along edges of
the formp — ¢, but also along loads and stores involvin(those of the formp — ¢.f,
qg — p.f,andp.f — q), since they are likely to require propagation. Howeveis th
is not sufficient to obtain the complete solution. For examplppose that is in the

2 For clarity, the algorithms are presented here without sttgjer on-the-fly call graph con-
struction. However, both variations are implemented /X and evaluated in Section 4.

Algorithm 2 Worklist Propagation
1: for each allocation edge; — p do
2: pt(p) = {o1}

3 addp to worklist

4: repeat
5
6
7

repeat

remove first node from worklist

propagate sets along each assignment gdgeq,
addingq to worklist whenevept(q) changes

8: for each store edge — r.f wherep = g orp = r do
9: for eacha € pt(r) do

10: propagate sejg(q) — pt(a.f)

11: for each load edgg.f — ¢ do

12: for eacha € pt(p) do

13: propagate sefg(a.f) — ¢

14: addq to worklist if pt(q) changed

15: until worklist is empty
16: for each store edge — r.f do

17: for eacha € pt(r) do

18: propagate seig(q) — pt(a.f)
19: for each load edge.f — ¢ do

20: for eacha € pt(p) do

21: propagate seig (a.f) — ¢

22: addg to worklist if pt(q) changed

23: until worklist is empty

points-to sets of both andq, so thatp andq are possible aliases. After processing any
store intogq. f, we should process all loads fromf. However, there is no guarantee
thatp will appear in the worklist. For this reason, the algorithmagnstill include an
outer iteration oveall the load and store edges. To summarize, lines 16 to 22 in the
outer loop are necessary for correctness; lines 8 to 14 dmutémoved, but including
them greatly reduces the number of iterations of the outsp End therefore reduces
the analysis time.

Incremental Sets: In certain implementations of sets (hash set and sorteg aety,
each set union operation takes time proportional to thecfitee sets being combined.
While iterating through an analysis, the contents of one@setepeatedly merged into
the contents of another set, often adding only a small numbeew elements in each
iteration. We can improve the algorithm by noting that thenetnts that have already
been propagated must be found in the set in every subsedeietian.

Thus, as an optional improvemengA&RK includes versions of the solvers that use
incremental sets. Each set is divided into a “new” part antbédi part. During each
iteration, elements are propagated only between the nets, penich are likely to be
small. At the end of each iteration, all the new parts are #idshto their corresponding
old part. An additional advantage of this is that when cartding the call graph on-
the-fly, only the smaller, new part of the points-to set of theeiver of each call site
needs to be considered in each iteration.

4 Using SPARK for Subset-based Points-to Analysis

In order to demonstrate thabSRK provides a general and effective means to express
different points-to analyses, we have done an extensivargapstudy of a variety

of subset-based points-to analyses. By expressing maieyetit variations within the
same framework we can measure both precision and cost ofithgses.

4.1 Benchmarks

We tested BARK on benchmarks from the SPECjvm [4] suite, along veitibl ecc
andsoot from the Ashes [1] suite, andedi t [2], a full-featured editor written in
Java. The last three were selected because they are niahdaiva applications used in
the real world, and they were also used in other points-téyaisastudies [17, 20, 27].
The complete list of benchmarks appears in the summary iteNalat the end of this
section, along with some characteristics of the benchmarid measurements of the
effectiveness of BARK on them. All benchmarks were analyzed with the Sun JDK
1.3.101 standard class library, on a 1.67 GHz AMD Athlon with 2GBneémory
running Linux 2.4.18. In addition, we also tested ttevac benchmark with the Sun
JDK 1.1.8 standard class library for comparison with othedies.

We chose four representative benchmarks for which to ptékerdetailed results
of our experiments on individual factors affecting premisand efficiency of points-
to analysis. We choseonpr ess as a small SPECjvm benchmajlavac as a large
SPECjvm benchmark, arghbl ecc andj edi t as large non-SPECjvm benchmarks
written by distinct groups of people. We observed similentts on the other bench-
marks.

4.2 Factors Affecting Precision

We now discuss three factors that affect not only the effeyieaf the analysis, but also
the precision of its result. These factors are: (1) how tygresused in the analysis,
(2) whether we use a CHA-based call graph or build the caply@n the fly, and (3)
whether the analysis is field-sensitive or field-based.

Table Il gives the results. For each benchmark we experiméhtfive different
points-to analyses, where each analysis is named by a tifplee formxx-yyy-zz
which specifies the setting for each of the three factors if@ptete explanation of each
factor is given in the subsections below). For each benckipaints-to analysis com-
bination, we give a summary of the precision for dereferesites and call sites.

For dereference sites, we consider all occurrences ofartes of the fornp. f
and we give the percentage of dereference sites with 0, 119, 231-100, 101-1000
and more than 1000 elements in their points-to sets. Denedersites with 0 items
in the set correspond to statements that cannot be reackedh@ CHA call graph
conservatively indicated that it was in a reachable methotno allocation ever flows
to that statement).

For call sites, we consider dlinvokevi rt ual andi nvokei nt erf ace calls
and report the percentage of such call sites with with 0, Bn2, more than two tar-
get methods, where the target methods are found using the tffthe allocation sites
pointed to by the receiver of the method call. For exampleafwall of the forno. n() ,
the types of allocation sites pointed to bywould be used to find the target methods.
Calls with 0 targets correspond to unreachable calls anslwith 1 target are guaran-
teed to be monomorphic at run-time.

Table Il. Analysis precision.

Dereference Sites (% of total) ||Call Sites (% of total
3-[11-101
0 1] 2| 10/100 100(11001 o 1 2 3+
compressit-otf-fs |(35.223.4 6.314.1/ 5.9 0.1] 14.9(|53.842.61.6 1.9
at-otf-fs (|35.332.7 8.017.4 4.3 2.2 0.0|53.842.61.6 1.9
ot-otf-fs (|36.932.1 7.8§17.0 4.3 1.8 0.0|54.642.31.3 1.8
ot-cha-fs||20.939.610.121.8 6.0 2.1 0.0|40.851.72.6 4.9
ot-otf-fb (|26.338.1 9.419.25.1 1.9 0.0(48.047.42.0 2.6
ot-cha-fb||16.041.6§10.922.9 6.4 2.2 0.0/|37.554.32.9 5.2
javac nt-otf-fs |[31.422.2] 6.012.9 5.8 6.4 15.2(50.145.31.9 2.7
at-otf-fs (|31.633.9 8.7|17.7/ 5.7/ 2.4 0.0|50.145.31.9 2.7
ot-otf-fs (|33.033.3 8.617.3 5.7 2.0 0.0|50.845.21.5 2.5
ot-cha-fs||18.440.010.521.5 7.2 2.3 0.0/38.053.92.6 5.5
ot-otf-fb (|23.638.610.019.2 6.5 2.1 0.0/44.649.92.1] 3.3
ot-cha-fb|[14.941.711.322.5 7.6/ 2.4 0.0|34.956.33.0 5.8
sablecc nt-otf-fs |[31.624.2 5.912.7 9.5 0.2 15.8(49.945.82.1 2.2
at-otf-fs (|31.7137.9 7.416.24.9 2.0 0.0(49.945.82.1 2.2
ot-otf-fs (|33.137.4 7.315.7 4.9 1.6 0.0|50.845.51.6 2.0
ot-cha-fs(|18.444.1 9.220.1 6.4 1.9 0.0|37.954.22.9 5.0
ot-otf-fb (|23.642.6 8.7/117.7/ 5.7 1.7/ 0.0|44.750.32.2 2.8
ot-cha-fb||14.445.810.021.0 6.8 1.9 0.0/[34.956.63.3 5.2
jedit nt-otf-fs (|25.629.6 6.6/12.7, 3.8 1.5 20.2(43.852.01.9 2.2
at-otf-fs (|25.742.4 9.016.3 4.7/ 2.0 0.0/(43.852.01.9 2.2
ot-otf-fs (|27.142.0 8.915.9 4.3 1.9 0.0/44.651.91.4 2.1
ot-cha-fs||14.947.910.719.4 5.5 2.1 0.0/|33.259.32.3 5.1
ot-otf-fb (|18.946.710.017.6 4.8 2.0 0.0/38.656.71.9 2.8
ot-cha-fb||12.149.011.020.1 5.7/ 2.1 0.0/30.761.52.5 5.3

Note that since the level of precision required is highlyetegent on the application
of the points-to results, this table is not intended to betmohute measure of precision;
rather, we present it only to give some idea of the relatieeision of different analysis
variations, and to give basic insight into the effect th#fedént levels of precision have
on the analysis.

Respecting declared types:Unlike in C, variables in Java are strongly-typed, limit-
ing the possible set of objects to which a pointer could pdiltvever, many points-to
analyses adapted from C do not take advantage of this. Fonmgathe analyses de-
scribed in [20, 24] ignore declared types as the analysisgas; however, objects of
incompatible type are removed after the analysis completes

The first three lines of each benchmark in Table Il show thecefbf types. The first
line shows the precision of an analysis in which declare@sygre ignoredpotypes
(abbreviatedht). The second line shows the results of the same analysisadffects
of incompatible type have been removed after completiorhefanalysisaftertypes
(abbreviatedat). The third line shows the precision of an analysis in whielcldred
types are respected throughout the analysisthe-fly typegabbreviateabt).

We see that removing objects based on declared type aftgrletiom of the analysis
(at) achieves almost the same precision as enforcing the typagydhe analysisat).
However, notice that during the analysigt)(between 15% and 20% of the points-
to sets at dereference sites are over 1000 elements in dieseTarge sets increase
memory requirements prohibitively, and slow the analysissiderably. We therefore
recommend enforcing declared types as the analysis preogbith eliminates almost
all of these large sets. Further, based on this observatierfocus on analyses that
respect declared types for the remainder of this paper.

Call graph construction: As we have already mentioned, the call graph used for an
inter-procedural points-to analysis can be constructedalbf time using, for example,
CHA [9], or on-the-fly as the analysis proceeds [20], for ¢eearecision. We abbrevi-
ate these variations @&ha andotf, respectively. As the third and fourth lines for each
benchmark in Table 1l show, computing the call graph onfthéacreases the number
of points-to sets of size zero (dereference sites detethimbe unreachable), but has
a smaller effect on the size distribution of the remaining.se

Field Dereference Expressions:We study the handling of field dereference expres-
sions in a field-based (abbreviatif) and field-sensitivef§) manner. Comparing rows

3 and 5 (on-the-fly call graph), and rows 4 and 6 (CHA call gjafur each benchmark,
we see that field-sensitive analysis is more precise thafidliebased analysis. Thus,
it is probably worthwhile to do field-sensitive analysishi&tcost of the analysis is rea-
sonable. As we will see later, in Table IV, with the approtisolver, the field-sensitive
analysis can be made to be quite competitive to the fieldebasalysis.

4.3 Factors Affecting Performance

Set Implementation: We evaluated the analyses with the four different implement
tions of points-to sets described in Section 3. Table lIvghthe efficiency of the imple-
mentations using two of the propagation algorithms: theeaierative algorithm, and
the incremental worklist algorithm. For both algorithms vespected declared types
during the analysis, used a CHA call graph, and simplifiegtsieter assignment graph
by collapsing cycles and variables with common predecessodescribed in [19]. The
“Graph space” column shows the space needed to store theaginter assignment
graph, and the remaining space columns show the space neesl@de the points-to
sets. The data structure storing the graph is designed fabifley rather than space
efficiency; it could be made smaller if necessary. In any déssize is linear in the size
of the program being analyzed.

The terrible performance of the hash set implementatiorsegpgointing, as this is
the implementation provided by the standard Java librdgai®y, anyone serious about
implementing an efficient points-to analysis in Java mustena custom set represen-
tation.

The sorted array set implementation is prohibitively exgpemusing the iterative
algorithm, but becomes reasonable using the incrementddigtoalgorithm, which is
designed explicitly to limit the size of the sets that muspbepagated.

The bit set implementation is much faster still than theesberray set implementa-
tion. However, especially when used with the incrementakiligt algorithm, its mem-
ory usage is high, because the many small sets are represesiig the same size bit-

Table lll. Set Implementation (time in seconds, space in MB).

Graph)| Hash Array Bit Hybrid
Algorithm spacg time spacetime spacgiime spacgime space
compress lterative 31){3448 3111206 118 36 75 24 34
Incremental Worklis 31| 219 319 62 57 14 158 9 53
javac Iterative 34/(3791 3611114 139 50 88 33 4]
Incremental Worklis 34| 252 369 61 68 19 181 13 65
sablecc Iterative 36(|4158 3341194 132 50 93 32 42
Incremental Worklis 36/| 244 342 54 62 17 193 11 64
jedit lterative 42||6502 5832233 229 91 168 59 77
Incremental Worklis 42|| 488 597 135 114 38 349 24 128

vector as large sets. In addition, the incremental worglgbrithm splits each points-to
set into two halves, making the bit set implementation useetthe memory.

Finally, the hybrid set implementation is even faster thHam bit set implementa-
tion, while maintaining modest memory requirements. Weehfaund the hybrid set
implementation to be consistently the most efficient overidewariety of settings of
the other parameters, and therefore recommend that it allbawsed.

Points-To Set Propagation Algorithms: Table IV shows the time and space require-
ments of the propagation algorithms included #n8k. All measurements in this table
were made using the hybrid set implementation, and withoytsamplification of the
pointer assignment graghAgain, the “Graph space” column shows the space needed
to store the original pointer assignment graph, and the irengaspace columns show
the space needed to store the points-to sets.

The nt-otf-fs line shows how much ignoring declared types hurts efficieftiog
“oom” for j edi t signifies that the analysis exceeded the 1700MB of memooy-all
ted); we recommend that declared types be respected. Ré&suit the recommended
algorithms are in bold.

The iterative algorithm is consistently slowest, and iegias a baseline only. The
worklist algorithm is usually about twice as fast as thedtie algorithm. For the CHA
field-based analysis, this algorithm is consistently tretefst, faster even than the in-
cremental worklist algorithm. This is because the incret@eworklist algorithm is
designed to propagate only the newly-added part of the pdinsets in each iteration,
but the CHA field-based analysis requires only a singletimmaTherefore, any benefit
from its being incremental is outweighed by the overhead aifaining two parts of
every set. However, both field-sensitivity and on-the-flly geaph construction require
iteration, so for these, the incremental worklist algaritis consistently fastest. We
note that the speedup comes with a cost in the memory requin@gintain two parts
of every set.

Note also that while the field-based analysis is faster ttedafensitive with a CHA
call graph, it is slower when the call graph is constructedhanfly (with all propaga-
tion algorithms). This is because although a field-basetysisavith a CHA call graph

3 The time and space reported for the hybrid set implememtatidable 11l are different than
in Table IV because the former were measured with off-lin@teo assignment graph simpli-
fication, and the latter without.

Table IV. Propagation Algorithms (time in seconds, space in MB).

Graph)| lterative | Worklist |Incr. Worklist
spacg time spacetime spacdime space
compressit-otf-fs 32/|1628 357 992 365 399 6041
ot-otf-fs 37| 133 52 58 51 52 69
ot-cha-fs 36| 49 68 15 63 13 91
ot-otf-fb 35/| 158 54 86 52 66 66
ot-cha-fb 34| 17 62 10 54 13 74
javac nt-otf-fs 34{|2316 5021570 512715 856
ot-otf-fs 40/l 201 69 103 66 90 9@
ot-cha-fs 39| 64 83 22 77 18 109
ot-otf-fb 37|| 218 7Q 123 66 102 84
ot-cha-fb 37| 22 7§ 11 67 15 9d
sablecc nt-otf-fs 35/[2190 4621382 472635 772
ot-otf-fs 41)| 274 72 104 7Q 95 94
ot-cha-fs 41| 66 83 20 83 18 117

ot-otf-fb 38| 255 74 138 72114 9(q
ot-cha-fb 38| 52 81 14 74 18 97
jedit nt-otf-fs || oom|oom oomoom oomoom oon

ot-otf-fs 49| 313 121 142 117101 164
ot-cha-fs 48| 107 141 59 131 38 196
ot-otf-fb 47|| 298 104 178 99111 126
ot-cha-fb 45| 28 109 21 98 27 128

completes in one iteration, constructing the call graphtafly requires iterating re-
gardless of the field representation. The less precise i@dd representation causes
more methods to be found reachable, increasing the numliterations required.

Graph Simplification: Rountev and Chandra [19] showed that simplifying the pointe
assignment graph by merging nodes known to have equal pioiisests speeds up the
analysis. Our experience agrees with their findings.

When respecting declared types, a cycle can only be mergalt riibdes in the
cycle have the same declared type, and a subgraph with aaupigdecessor can only
be merged if all its nodes have declared types that are syygarof the predecessor. On
our benchmarks, between 6% and 7% of variable nodes wereveshiry collapsing
cycles, compared to between 5% and 6% when declared typesesrected. Between
59% and 62% of variable nodes were removed by collapsingrapbhg with a unique
predecessor, compared to between 55% and 58% when degtpesdtere respected.
Thus, the effect of respecting declared types on simplifioas minor.

On the other hand, when constructing the call graph on-th&dlinter-procedural
edges are present before the analysis begins. This medmstheycles spanning mul-
tiple methods are broken, and the corresponding nodes thamoerged. The 6%-7%
of nodes removed by collapsing cycles dropped to 1%-1.5%the call graph was
constructed on-the-fly. The 59%-62% of nodes removed bypsihg subgraphs with
a unique predecessor dropped to 31%-33%. When construbgngall graph on-the-
fly, simplifying the pointer assignment graph before thelgsia has little effect, and
on-the-fly cycle detection methods should be used instead.

4.4 Overall Results

Based on our experiments, we have selected three analgdegstihhecommend as good
compromises between precision and speed, with reasonzdiie sequirements:
ot-otf-fs is suitable for applications requiring the highest premisiFor this analysis,
the incremental worklist algorithm works best.

ot-cha-fs is much faster, but with a drop in precision as compareat-otf-fs (mostly
because it includes significantly more call edges). For dhnialysis, the incremental
worklist algorithm works best.

ot-cha-fb is the fastest analysis, completing in a single iteration jitis also the least
precise. For this analysis, the non-incremental worklgb@thm works best.

Each of the three analyses should be implemented using tiredtsets.

Table V. Overall Results (time in seconds, space in MB, precisiorraegnt).

methods stmtstypeg ot-otf-fs ot-cha-fs ot-cha-fb
Benchmark|| (CHA)| (CHA) time space pretime space pregtime space preg.
compress 151832789022770| 52 106 69.1 13 127 60.1 10 90 57.¢
db 151842789542763| 52 107 68.9 14 128 59.9 11 90 57.4
jack 154412881422814| 54 112 68.7 14 132 60.1 11 94 57.¢
javac (1.1.8) 4602 86454 874 8 27 63.6 3 24574 1 16 55.1
javac 1630713018012940| 89 131 66.3 18 148 58.4 11 104 56.2
jess 157942888312917| 57 115 68.1 15 136 59.2 10 97 56.8
mpegaudio|| 153852834822782| 56 112 68.6 16 134 59.Y 11 93 57.4
raytrace 1531242815872789| 53 107 68.5 13 129 59.6 11 91 57.1
sablecc 1697713005043070| 95 136 70.5 18 158 62.5 14 112 60.3
soot 174983109353435| 88 143 68.3 19 162 60.4 18 116 58.4
jedit 196213673173395| 100 218 69.1 38 244 62.3 21 143 61.1

Table V shows the results of these three analyses on ourdubfsbenchmarks.
The first column gives the benchmark naayac is listed twice: once with the 1.1.8
JDK class library, and once with the 1.301 JDK class library). The next two columns
give the number of methods determined to be reachable, anduimber of Jimpte
statements in these methods. Note that because of the laggelibrary, these are the
largest Java benchmarks for which a subtype-based paiaisalysis has been reported,
to our knowledge. The fourth column gives the number of di¢dttypes encountered
by the subtype tester. The remaining columns give the aisdtiyse, total space, and
precision for each of the three recommended analyses. Thesjpace includes the
space used to store the pointer assignment graph as wed peitits-to sets; these were
reported separately in previous tables. The precision @ssored as the percentage of
field dereference sites at which the points-to set of thetpoiveing dereferenced has
size 0 or 1; for a more detailed measurement of precisionTaele Il.

5 Related Work

The most closely related work are various adaptations aftpdd analyses for C to
Java.

4 Jimple is the three-address typed intermediate repragmmtssed by Soot.

Rountev, Milanova and Ryder [20] based their field-sensitimalysis for Java on
Soot [26] and the BANE [5] constraint solving toolkit, on whifurther points-to anal-
ysis work has been done [12,23]. Their analysis was fielditea, constructed the call
graph on-the-fly, and ignored declared types until afterathalysis completed. They
reported empirical results on many benchmarks using the 18 standard class
library. Since they do not handle declared types during tiadyais, their implementa-
tion suffers from having to represent large points-to smtsl is unlikely to scale well
to large class libraries. They do not report results for th& 1.3.1 library, but their
results forj avac (1. 1. 8) show 350 seconds and 125.5 MB of memory (360 MHz
Sun Ultra-60 machine with 512 MB of memory, BANE solver waiitin ML), com-
pared to 8 seconds and 27 MB of memory (1.67 GHz AMD Athlon @iBB memory,
solver written in Java) for thet-otf-fs analysis using BARK. The precision of our re-
sults should be very slightly better, since the Rountev letmathod is equivalent to
our at-otf-fs analysis, which we showed to be slightly less precise thabttotf-fs
analysis.

Whaley and Lam’s [27] approach is interesting in that it ddadlpe demand-driven
algorithm of Heintze and Tardieu [14, 15] (see below) to JaVvee intermediate repre-
sentation on which their analysis operates is differennfdmple (on which our and
Rountev, Milanova and Ryder’s analyses are based) in tldaeis not split stack loca-
tions based on DU-UD webs; instead, it uses intra-method flemsitivity to achieve
a similar effect. In contrast with other work that used a ewuative (safe) approxi-
mation of reachable methods which to analyze, Whaley andd_arperiments used
optimistic assumptions (not safe) about which methods nedg analyzed. In par-
ticular, the results presented in their paper [27] are foaidation of the analysis that
does not analyze class initializers and assumes that alemmatthods have no effect on
the points-to analysis. Their optimistic assumptions abdiich methods are reachable
lead to reachable method counts almost an order of magnibuae than reported in
other related work, such as the present paper, and [20,2f8ct, they analyze signif-
icantly fewer methods than can be observed to be executedhatme in a standard
run of the benchmarks. As a result of the artificially smalinier of methods that they
analyze, they get fast execution times. Even so, when lgakithel edi t benchmark,
the only benchmark for which they analyze at least half ofrtheber of methods an-
alyzed by $ARK, their analysis runs in 614 seconds and 472 MB of memory (2 GHz
Pentium 4, 2GB of memory, solver written in Java), compacetid0 seconds and 218
MB for the most precise analysis irPSRK (1.67 GHz AMD Athlon, 2GB memory,
solver written in Java).

Our comparison with these two other previous works for petotanalysis for Java
illustrates two important things. First, it would be nicev could compare the analyses
head to head, on the same system, with the same assumptmutsidiat code needs
to be analyzed. Second, it appears the4 allows one to develop efficient analyses
that compare very favourably with previous work.

Liang, Pennings and Harrold [17] tested several variatainkava points-to analy-
ses, including subset-based and equality-based varsafield-based and field-sensitive
variations, and constructing the call graph using CHA [9] &TA [7]. Instead of ana-
lyzing benchmarks with the standard class library, theydhemded a model of the most

commonly used JDK 1.1.8 standard classes. Thus, we cantetdirect comparisons,
since our results include all the library code.

Heintze and Tardieu [14, 15] reported very fast analysiesimsing their analysis
for C. The main factor making it fast was a demand-driventiym that also collapsed
cycles in the constraint graph on-the-fly. Such a demandedalgorithm is particularly
useful when the points-to sets of only a subset of pointdalses are required; we plan
to implement it in a future version of BRK for such applications. In addition, in an
unpublished report [13], Heintze discusses an implemiemtaf sets using bit-vectors
which are shared, so that copies of an identical set are ¢otgdsonce. We are also
considering implementing this set representationrar.

Since points-to analysis in general is a very active areas#arch, we can only list
the work most closely related to ours. A more complete suagpears in [16].

6 Conclusions and Future Work

We have presentedP8RK, a flexible framework for experimenting with points-to anal
ysis for Java. Our empirical results have shown theérX is not only flexible, but
also competitive with points-to analyses that have beeremented in other frame-
works. Using $ARK, we studied various factors affecting the precision andiefiicy
of points-to analysis. Our study led us to recommend threeiip analyses, and we
showed that they compare favourably to other analyses theat heen described in the
literature.

We plan several improvements t@&RK. First, we would like to create an on-the-
fly pointer assignment graph builder, so that the entire teoiassignment graph need
not be built for an on-the-fly call graph analysis. Secondyweld like to add Heintze
and Tardieu’s demand-driven propagation algorithmpar.

We have several studies in mind that we would like to perfosma@ SPARK. First,
we are implementing points-to analysis using Reduced @diBinary Decision Dia-
grams to store the large, often duplicated sets. Second|ame@ study the effects of
various levels of context-sensitivity on Java points-talgsis. Third, we will experi-
ment with various clients of the points-to analysis.

7 Acknowledgements

We are grateful to Feng Qian for work on the native method Koy to Navindra
Umanee for help producing the list of methods called usifiigeton by the standard
class library, to Marc Berndl and John Jorgensen for helgistussions, to Atanas
Rountev, Ana Milanova, and Barbara Ryder for providing tietbout how their points-
to analysis determines the reachable call graph, and to\ltatey for answering our
questions about the assumptions made by his analysis, argkttings he used in his
experiments.

References

Ashes suite collectiomt t p: / / ww. sabl e. ncgi |l | . ca/ sof tware/ .

jEdit: Open source programmer’s text editort p: / / www. j edi t. org/.

Soot: a Java optimization framewoht.t p: / / www. sabl e. ncgi | | . ca/ soot /.

SPEC JVM98 benchmarkist t p: / / www. spec. or g/ osg/ j vimB8/ .

A. Aiken, M. Fahndrich, J. S. Foster, and Z. Su. A toolkit tonstructing type- and
constraint-based program analyses. Types in Compilation, Second International Work-
shop, TIC '98 volume 1473 oL NCS pages 78-96, 1998.

agpwNE

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

L. O. Andersen.Program Analysis and Specialization for the C Programmirgduage
PhD thesis, University of Copenhagen, May 1994. (DIKU r&pdy19).

. D. F. Bacon and P. F. Sweeney. Fast static analysis of Gtu#alfunction calls. IrProceed-

ings of the 1996 OOPSL Aages 324-341, 1996.

. M. Das. Unification-based pointer analysis with direséibassignments. IRroceedings of

PLDI'00, volume 35.5 ofACM Sigplan Noticegpages 35-46, June 2000.

. J. Dean, D. Grove, and C. Chambers. Optimization of olgjgented programs using static

class hierarchy analysis. ECOOP’95—Object-Oriented Programming, 9th European Con-
ference volume 952 o.NCS pages 77-101, Aug. 1995.

A. Diwan, K. S. McKinley, and J. E. B. Moss. Type-basedsknalysis. IfProceedings of
PLDI'98, pages 106-117, 1998.

M. Emami, R. Ghiya, and L. J. Hendren. Context-sensititerprocedural points-to analysis
in the presence of function pointers. Pnoceedings of PLDI'94pages 242—256, 1994.

M. Fahndrich, J. S. Foster, Z. Su, and A. Aiken. Partidihe cycle elimination in inclusion
constraint graphs. IRroceedings of PLDI'98pages 85-96, June 1998.

N. Heintze. Analysis of large code bases: The compile-dinalyze model.
http://cmbell-1abs. conl cni cs/ who/ nch/ cl a. ps, 1999.

N. Heintze and O. Tardieu. Demand-driven pointer aiglys Proceedings of PLDI'01
pages 24-34, 2001.

N. Heintze and O. Tardieu. Ultra-fast aliasing analysiag CLA: A million lines of C code
in a second. IrProceedings of PLDI'Olvolume 36.5 ofACM SIGPLAN Noticespages
254-263, June 2001.

M. Hind. Pointer analysis: Haven't we solved this problget? InProceedings of PASTE'Q1
pages 54-61, June 2001.

D. Liang, M. Pennings, and M. J. Harrold. Extending analwating flow-insensitive and
context-insensitive points-to analyses for JavaPtaceedings of PASTE'Qpages 73-79,
2001.

P. Pominville, F. Qian, R. Vallée-Rai, L. Hendren, and\V@rbrugge. A framework for
optimizing Java using attributes. @ompiler Construction (CC 2001yolume 2027 of
LNCS pages 334-554, 2001.

A. Rountev and S. Chandra. Off-line variable substitufor scaling points-to analysis. In
Proceedings of PLDI'OQpages 47 — 56, Jun 2000.

A. Rountev, A. Milanova, and B. G. Ryder. Points-to asayfor Java using annotated
constraints. IrfProceedings of the 2001 OOPS|#ages 43-55, 2001.

M. Shapiro and S. Horwitz. Fast and accurate flow-insgagioints-to analysis. |€onfer-
ence Record of 24th POPL '9pages 1-14, Jan. 1997.

B. Steensgaard. Points-to analysis in almost lineae.tinm Conference Record of 23rd
POPL'96 pages 32-41, Jan. 1996.

Z. Su, M. Fahndrich, and A. Aiken. Projection mergirgduicing redundancies in inclusion
constraint graphs. IRroceedings of the 27th POPL'0pages 81-95, 2000.

V. Sundaresan, L. Hendren, C. Razafimahefa, R. ValledR Lam, E. Gagnon, and
C. Godin. Practical virtual method call resolution for Java Proceedings of the 2000
OOPSLA pages 264-280, 2000.

R. E. Tarjan. Efficiency of a good but not linear set unitgoathm. Journal of the ACM
(JACM), 22(2):215-225, 1975.

R. Vallee-Rai, E. Gagnon, L. J. Hendren, P. Lam, P. Pailténand V. Sundaresan. Opti-
mizing Java bytecode using the Soot framework: Is it fea8ibln Compiler Construction
(CC 2000) volume 1781 of.NCS pages 18-34, 2000.

J. Whaley and M. Lam. An efficient inclusion-based petotanalysis for strictly-typed
languages. IStatic Analysis 9th International Symposium, SAS 208Rme 2477 o NCS
pages 180-195, 2002.

