
Scaling Java Points-To Analysis using SPARK

Ondřej Lhoták and Laurie Hendren

Sable Research Group, McGill University, Montreal, Canada
[olhotak,hendren]@sable.mcgill.ca

Abstract. Most points-to analysis research has been done on differentsystems
by different groups, making it difficult to compare results,and to understand in-
teractions between individual factors each group studied.Furthermore, points-to
analysis for Java has been studied much less thoroughly thanfor C, and the trade-
offs appear very different.
We introduce SPARK, a flexible framework for experimenting with points-to anal-
yses for Java. SPARK supports equality- and subset-based analyses, variationsin
field sensitivity, respect for declared types, variations in call graph construction,
off-line simplification, and several solving algorithms. SPARK is composed of
building blocks on which new analyses can be based.
We demonstrate SPARK in a substantial study of factors affecting precision and
efficiency of subset-based points-to analyses, including interactions between these
factors. Our results show that SPARK is not only flexible and modular, but also of-
fers superior time/space performance when compared to other points-to analysis
implementations.

1 Introduction

Many compiler analyses and optimizations, as well as program understanding and ver-
ification tools, require information about which objects each pointer in a program may
point to at run-time. The problem of approximating these points-to sets has been the
subject of much research; however, many questions remain unanswered [16].

As with many compiler analyses, a precision vs. time trade-off exists for points-to
analysis. For analyzing programs written in C, many points between the extremes of
high-precision, slow and low-precision, fast have been explored [6,8,11,15,19,21,22].
These analyses have been implemented as parts of distinct systems, so it is difficult
to compare and combine their unique features. The design tradeoffs for doing points-
to analysis for Java appear to be different than for C, and recently, several different
approaches to points-to analysis for Java have been suggested [17, 20, 27]. However,
once again, it is hard to compare the results since each grouphas implemented their
analysis in a different system, and has made very different assumptions about how to
handle the large Java class libraries and Java native methods.

To address these issues, we have developed the Soot Pointer Analysis Research
Kit (SPARK), a flexible framework for experimenting with points-to analyses for Java.
SPARK is very modular: the pointer assignment graph that it produces and simplifies can
be used as input to other solvers, including those being developed by other researchers.
We hope that this will make it easier for researchers to compare results. In addition,
the correctness of new analyses can be verified by comparing their results to those
computed by the basic analyses provided in SPARK.

In order to demonstrate the usefulness of the framework, we have also performed a
substantial empirical study of a variety of subset-based points-to analyses using SPARK.



We studied a wide variety of factors that affect both precision and time/space costs. Our
results show that SPARK is not only flexible and modular, but also offers very good
time/space performance when compared to other points-to analysis implementations.

Specific new contributions of this paper are as follows. (1) The SPARK framework
itself is available as part of Soot 1.2.4 [3] and later releases under the LGPL for the use
of all researchers. (2) We present a study of a variety of representations for points-to sets
and of a variety of solving strategies, including an incremental, worklist-based, field-
sensitive algorithm which appears to scale well to larger benchmarks. (3) We report
on an empirical evaluation of many factors affecting the precision, speed, and memory
requirements of subset-based points-to analysis algorithms. We focus on improving the
speed of the analysis without significant loss of precision.(4) We make recommenda-
tions to allow analyses to scale to programs on the order of a million lines of code. Even
trivial Java programs are becoming this large as the standard class library grows.

The structure of this paper is as follows. In Section 2 we examine some of the chal-
lenges and factors to consider when designing an effective points-to analysis for Java.
In Section 3 we introduce the SPARK framework and discuss the important components.
Section 4 shows SPARK in action via a large empirical study of a variety of subset-based
pointer analyses. In Section 5 we discuss related work and inSection 6 we provide our
conclusions and discuss future work.

2 Points-to Analysis for Java
Although some of the techniques developed for C have been adapted to Java, there are
significant differences between the two languages that affect points-to analysis. In C,
points-to analysis can be viewed as two separate problems: analysis of stack-directed
pointers, and analysis of heap-directed pointers. Most C programs have many more
occurrences of the address-of (&) operator, which creates stack-directed pointers, than
dynamic allocation sites, which create heap-directed pointers. It is therefore important
for C points-to analyses to deal well with stack-directed pointers. Java, on the other
hand, allows no stack-directed pointers whatsoever, and Java programs usually have
many more dynamic allocation sites than C programs of similar size. Java analyses
therefore have to handle heap-directed pointers well.

Another important difference is the strong type checking inJava, which limits the
sets of objects that a pointer could point to, and can therefore be used to improve anal-
ysis speed and precision. Diwan et. al. have shown the benefits of type-based alias
analysis for Modula-3 [10]. Our study shows that using typesin Java is very useful for
improving efficiency, and also results in a small improvement in precision.

The object-oriented nature of Java also introduces new complexities in dealing with
any whole program analysis. In order to build a call graph, some approximation of
the targets of virtual method calls must be used. There are two basic approaches. The
first approach is to use an approximation of the call graph built by another analysis.
The second approach is to construct the call graph on-the-fly, as the pointer analysis
proceeds. In our empirical study, Section 4, we compare the two approaches.

Related to the problem of finding a call graph is finding the setof methods that must
be analyzed. In sequential C programs, there is one entry point,main, and a whole pro-
gram analysis can start at this entry point and then incrementally (either ahead-of-time
or during analysis) add all called methods. In Java the situation is much more com-



plicated as there are many potential entry points includingstatic initializers, finalizers,
thread start methods, and methods called using reflection. Further complicating matters
are native methods which may impact points-to analysis, butfor which we do not have
the code to analyze. Our SPARK framework addresses these points.

Another very important point is the large size of the Java libraries. Even small
application programs may touch, or appear to touch, a large part of the Java library.
This means that a whole program analysis must be able to handle large problem sizes.
Existing points-to analyses for Java have been successfully tested with the 1.1.8 ver-
sion of the Java standard libraries [17, 20], consisting of 148 thousand lines of code
(KLOC). However, current versions of the standard library are over three times larger
(eg. 1.3.101 is 574 KLOC), dwarfing most application programs that use them, so it is
not clear that existing analyses would scale to such large programs. Our framework has
been designed to provide the tools to develop efficient and scalable analyses which can
effectively handle large benchmarks using the large libraries.

3 SPARK framework
3.1 Overview
The Soot Pointer Analysis Research Kit (SPARK) is a flexible framework for experi-
menting with points-to analyses for Java. Although SPARK is very competitive in effi-
ciency with other points-to analysis systems, the main design goal was not raw speed,
but rather the flexibility to make implementing a wide variety of analyses as easy as
possible, to facilitate comparison of existing analyses and development of new ones.

SPARK supports both subset-based [6] and equality-based [22] analyses, as well as
variations that lie between these two extremes. In this paper, we focus on the more
precise, subset-based analyses. Although SPARK is limited to flow-insensitive analyses,
most of the benefit of flow-sensitivity is obtained by splitting variables.

SPARK is implemented as part of the Soot bytecode analysis, optimization, and
annotation framework [26]. Soot accepts Java bytecode as input, converts it to one of
several intermediate representations, applies analyses and transformations, and converts
the results back to bytecode. SPARK uses as its input the Jimple intermediate represen-
tation, a three-address representation in which local (stack) variables have been split
according to DU-UD webs, and declared types have been inferred for them. The results
of SPARK can be used by other analyses and transformations in Soot. Soot also provides
an annotation framework that can be used to encode the results in classfile annotations
for use by other tools or runtime systems [18].

The execution of SPARK can be divided into three stages: pointer assignment graph
construction, pointer assignment graph simplification, and points-to set propagation.
These stages are described in the following subsections.

3.2 Pointer Assignment Graph
SPARK uses apointer assignment graphas its internal representation of the program
being analyzed. The first stage of SPARK, the pointer assignment graph builder, con-
structs the pointer assignment graph from the Jimple input.Separating the builder from
the solver makes it possible to use the same solution algorithms and implementations
to solve different variations of the points-to analysis problem.

The pointer assignment graph consists of three types of nodes. Allocation site nodes
represent allocation sites in the source program, and are used to model heap locations.



Simple variable nodes represent local variables, method parameters and return values,
and static fields. Field dereference nodes represent field access expressions in the source
program; each is parametrized by a variable node representing the variable being deref-
erenced by the field access. The nodes in the pointer assignment graph are connected
with four types of edges reflecting the pointer flow, corresponding to the four types of
constraints imposed by the pointer-related instructions in the source program (Table I).
In this table,a andb denote allocation site nodes,src anddst denote variable nodes,
andsrc.f anddst.f denote field dereference nodes.

Table I. The four types pointer assignment graph edges.

Allocation Assignment Field store Field load

Instruction a : dst := new C dst := src dst.f := src dst := src.f

Edge a → dst src → dst src → dst.f src.f → dst

Rules
a → dst

a ∈ pt(dst)

src → dst

a ∈ pt(src)

a ∈ pt(dst)

src → dst.f

a ∈ pt(src)
b ∈ pt(dst)

a ∈ pt(b.f)

src.f → dst

a ∈ pt(src)
b ∈ pt(a.f)

b ∈ pt(dst)

Later, during the propagation of points-to sets, a fourth type of node (denoteda.f

and b.f ) is created to hold the points-to set of each field of objects created at each
allocation site. These nodes are parameterized by allocation site and field. However,
they are not part of the initial pointer assignment graph.

Depending on the parameters to the builder, the pointer assignment graph for the
same source code can be very different, reflecting varying levels of precision desired of
the points-to analysis. As an example, the builder may make assignments directed for a
subset-based analysis, or bi-directional for a equality-based analysis. Another example
is the representation of field dereference expressions in the graph, as discussed next.

Field Dereference Expressions:A field expressionp.f refers to the fieldf of the
object pointed to byp. There are three standard ways of dealing with fields. Afield-
sensitiveinterpretation, which is the most precise, considersp.f to represent only the
field f of only objects in the points-to set ofp. A less precise,field-basedinterpretation
approximates each fieldf of all objects using a single set, ignoring thep. The key advan-
tage of this is that points-to sets can be propagated along a pointer assignment graph of
only simple variable nodesin one single iteration, by first merging strongly-connected
components of nodes, then propagating in topological order. Many C points-to analyses
use afield-independentinterpretation, which ignores thef , and approximates all the
fields of objects in the points-to set ofp as a single location. In Java, the field infor-
mation is readily available, and different fields are guaranteed not to be aliased, so a
field-independent interpretation makes little sense. SPARK supports field-sensitive and
field-based analyses, and field-independent analyses wouldbe trivial to implement.

3.3 Call Graph Construction

An interprocedural points-to analysis requires an approximation of the call graph. This
can be constructed in advance using a technique such as CHA [9], RTA [7] or VTA [24],
or it can be constructed on-the-fly as the points-to sets of call site receivers are com-



puted. The latter approach gives somewhat higher precision, but requires more iteration
as edges are added to the pointer assignment graph.

SPARK supports all of these variations, but in this paper, our empirical study focuses
on CHA and on-the-fly call graph construction. SPARK always uses the CHA call graph
builder included in Soot to determine which methods are reachable for the purposes of
building the pointer assignment graph. However, on-the-fly call graph construction can
be achieved atsolvingtime by excluding interprocedural edges from the initial graph,
and then adding only the reachable edges as the points-to sets are propagated.

In theory, determining which methods are possibly reachable at run-time is simple:
start with a root set containing the main method, and transitively add all methods which
are called from methods in the set. Java is not this simple, however; execution can also
start at static initializers, finalizers, thread start methods, and dynamic call sites using
reflection. Soot considers all these factors in determiningwhich methods are reachable.
For the many call sites using reflection inside the standard class library, we have com-
piled, by hand, a list of their possible targets, and they areautomatically added to the
root set.

In addition, native methods may affect the flow of pointers ina Java program.
SPARK therefore includes a native method simulation framework. The effects of each
native method are described in the framework using abstractJava code, and SPARK then
creates the corresponding pointer flow edges. The native method simulation framework
was designed to be independent of SPARK, so the simulations of native methods should
be usable by other analyses.

3.4 Points-to Assignment Graph Simplification

Before points-to sets are propagated, the pointer assignment graph can be simplified by
merging nodes that are known to have the same points-to set. Specifically, all the nodes
in a strongly-connected component (cycle) will have equal points-to sets, so they can
be merged to a single node. A version of the off-line variablesubstitution algorithm
given in [19] is also used to merge equivalence sets of nodes that have a single common
predecessor.1

SPARK uses a fast union-find algorithm [25] to merge nodes in time almost linear
in the number of nodes. This is the same algorithm used for equality-based [22] analy-
ses. Therefore, by making all edges bidirectional and merging nodes forming strongly-
connected components, we can implement a equality-based analysis in SPARK. In fact,
we can easily implement a hybrid analysis which is partly equality-based and partly
subset-based by making onlysomeof the edges bidirectional. One instance of a sim-
ilarly hybrid analysis is described in [8]. Even when performing a fully subset-based
analysis, we can use the same unification code to simplify thepointer assignment graph.

3.5 Set Implementations

Choosing an appropriate set representation for the points-to sets is a key part of design-
ing an effective analysis. The following implementations are currently included as part
of SPARK; others should be easy to add.Hash Setis a wrapper for theHashSet imple-
mentation from the standard class library. It is provided asa baseline against which the

1 If types are being used, then only nodes with compatible types can be merged; the interaction
of types and graph simplication is examined in Section 4.



other set implementations can be compared.Sorted Array Setimplements a set using
an array which is always kept in sorted order. This makes it possible to compute the
union of two sets in linear time, like in a merge sort.Bit Setimplements a set as a bit
vector. This makes set operations very fast regardless of how large the sets get (as long
as the size of the universal set stays constant). The drawback is that the many sparse
sets use a large amount of memory.Hybrid Setrepresents small sets (up to 16 elements)
explicitly using pointers to the elements themselves, but switches to a bit vector rep-
resentation when the sets grow larger, thus allowing both small and large sets to be
represented efficiently.

3.6 Points-to Set Propagation

After the pointer assignment graph has been built and simplified, the final step is propa-
gating the points-to sets along its edges according to the rules shown in Table I. SPARK

provides several different algorithms to implement these rules.

Iterative Algorithm: SPARK includes a naive, baseline, iterative algorithm (Algo-
rithm 1) that can be used to check the correctness of the results of the more complicated
algorithms.2 Note that for efficiency, all the propagation algorithms in SPARK consider
variable nodes in topological order (or pseudo-topological order, if cycles have not been
simplified).

Algorithm 1 Iterative Propagation
1: initialize sets according to allocation edges
2: repeat
3: propagate sets along each assignment edgep → q

4: for each load edgep.f → q do
5: for eacha ∈ pt(p) do
6: propagate setspt(a.f) → pt(q)
7: for each store edgep → q.f do
8: for eacha ∈ pt(q) do
9: propagate setspt(p) → pt(a.f)

10: until no changes

Worklist Algorithm: For some of our benchmarks, the iterative algorithm performs
over 60 iterations. After the first few iterations, the points-to sets grow very little, yet
each iteration is as expensive as the first few. A better, but more complex solver based on
worklists is also provided as part of SPARK and is outlined in Algorithm 2. This solver
maintains a worklist of variable nodes whose points-to setsneed to be propagated to
their successors, so that only those nodes are considered for propagation.

In the presence of field-sensitivity, however, the worklistalgorithm is not so simple.
Whenever a variable nodep appears in the worklist (which means that its points-to set
has new nodes in it that need to be propagated), the algorithmpropagates along edges of
the formp→ q, but also along loads and stores involvingp (those of the formp→ q.f ,
q → p.f , andp.f → q), since they are likely to require propagation. However, this
is not sufficient to obtain the complete solution. For example, suppose thata is in the

2 For clarity, the algorithms are presented here without support for on-the-fly call graph con-
struction. However, both variations are implemented in SPARK and evaluated in Section 4.



Algorithm 2 Worklist Propagation
1: for each allocation edgeo1 → p do
2: pt(p) = {o1}
3: addp to worklist
4: repeat
5: repeat
6: remove first nodep from worklist
7: propagate sets along each assignment edgep → q,

addingq to worklist wheneverpt(q) changes
8: for each store edgeq → r.f wherep = q or p = r do
9: for eacha ∈ pt(r) do

10: propagate setspt(q) → pt(a.f)
11: for each load edgep.f → q do
12: for eacha ∈ pt(p) do
13: propagate setspt(a.f) → q

14: addq to worklist if pt(q) changed
15: until worklist is empty
16: for each store edgeq → r.f do
17: for eacha ∈ pt(r) do
18: propagate setspt(q) → pt(a.f)
19: for each load edgep.f → q do
20: for eacha ∈ pt(p) do
21: propagate setspt(a.f) → q

22: addq to worklist if pt(q) changed
23: until worklist is empty

points-to sets of bothp andq, so thatp andq are possible aliases. After processing any
store intoq.f , we should process all loads fromp.f . However, there is no guarantee
thatp will appear in the worklist. For this reason, the algorithm must still include an
outer iteration overall the load and store edges. To summarize, lines 16 to 22 in the
outer loop are necessary for correctness; lines 8 to 14 couldbe removed, but including
them greatly reduces the number of iterations of the outer loop and therefore reduces
the analysis time.

Incremental Sets: In certain implementations of sets (hash set and sorted array set),
each set union operation takes time proportional to the sizeof the sets being combined.
While iterating through an analysis, the contents of one setare repeatedly merged into
the contents of another set, often adding only a small numberof new elements in each
iteration. We can improve the algorithm by noting that the elements that have already
been propagated must be found in the set in every subsequent iteration.

Thus, as an optional improvement, SPARK includes versions of the solvers that use
incremental sets. Each set is divided into a “new” part and an“old” part. During each
iteration, elements are propagated only between the new parts, which are likely to be
small. At the end of each iteration, all the new parts are flushed into their corresponding
old part. An additional advantage of this is that when constructing the call graph on-
the-fly, only the smaller, new part of the points-to set of thereceiver of each call site
needs to be considered in each iteration.



4 Using SPARK for Subset-based Points-to Analysis
In order to demonstrate that SPARK provides a general and effective means to express
different points-to analyses, we have done an extensive empirical study of a variety
of subset-based points-to analyses. By expressing many different variations within the
same framework we can measure both precision and cost of the analyses.

4.1 Benchmarks
We tested SPARK on benchmarks from the SPECjvm [4] suite, along withsablecc
andsoot from the Ashes [1] suite, andjedit [2], a full-featured editor written in
Java. The last three were selected because they are non-trivial Java applications used in
the real world, and they were also used in other points-to analysis studies [17, 20, 27].
The complete list of benchmarks appears in the summary in Table V at the end of this
section, along with some characteristics of the benchmarks, and measurements of the
effectiveness of SPARK on them. All benchmarks were analyzed with the Sun JDK
1.3.101 standard class library, on a 1.67 GHz AMD Athlon with 2GB ofmemory
running Linux 2.4.18. In addition, we also tested thejavac benchmark with the Sun
JDK 1.1.8 standard class library for comparison with other studies.

We chose four representative benchmarks for which to present the detailed results
of our experiments on individual factors affecting precision and efficiency of points-
to analysis. We chosecompress as a small SPECjvm benchmark,javac as a large
SPECjvm benchmark, andsablecc andjedit as large non-SPECjvm benchmarks
written by distinct groups of people. We observed similar trends on the other bench-
marks.

4.2 Factors Affecting Precision
We now discuss three factors that affect not only the efficiency of the analysis, but also
the precision of its result. These factors are: (1) how typesare used in the analysis,
(2) whether we use a CHA-based call graph or build the call graph on the fly, and (3)
whether the analysis is field-sensitive or field-based.

Table II gives the results. For each benchmark we experimentwith five different
points-to analyses, where each analysis is named by a tripleof the form xx-yyy-zz
which specifies the setting for each of the three factors (a complete explanation of each
factor is given in the subsections below). For each benchmark/points-to analysis com-
bination, we give a summary of the precision for dereferencesites and call sites.

For dereference sites, we consider all occurrences of references of the formp.f
and we give the percentage of dereference sites with 0, 1, 2, 3-10, 11-100, 101-1000
and more than 1000 elements in their points-to sets. Dereference sites with 0 items
in the set correspond to statements that cannot be reached (i.e. the CHA call graph
conservatively indicated that it was in a reachable method,but no allocation ever flows
to that statement).

For call sites, we consider allinvokevirtual andinvokeinterface calls
and report the percentage of such call sites with with 0, 1, 2,and more than two tar-
get methods, where the target methods are found using the types of the allocation sites
pointed to by the receiver of the method call. For example, for a call of the formo.m(),
the types of allocation sites pointed to byo would be used to find the target methods.
Calls with 0 targets correspond to unreachable calls and calls with 1 target are guaran-
teed to be monomorphic at run-time.



Table II. Analysis precision.

Dereference Sites (% of total) Call Sites (% of total)
3- 11- 101-

0 1 2 10 100 10001001+ 0 1 2 3+

compressnt-otf-fs 35.223.4 6.3 14.1 5.9 0.1 14.9 53.842.61.6 1.9
at-otf-fs 35.332.7 8.0 17.4 4.3 2.2 0.0 53.842.61.6 1.9
ot-otf-fs 36.932.1 7.8 17.0 4.3 1.8 0.0 54.642.31.3 1.8
ot-cha-fs 20.539.610.121.8 6.0 2.1 0.0 40.851.72.6 4.9
ot-otf-fb 26.338.1 9.4 19.2 5.1 1.9 0.0 48.047.42.0 2.6
ot-cha-fb 16.041.610.922.9 6.4 2.2 0.0 37.554.32.9 5.2

javac nt-otf-fs 31.422.2 6.0 12.9 5.8 6.4 15.2 50.145.31.9 2.7
at-otf-fs 31.633.9 8.7 17.7 5.7 2.4 0.0 50.145.31.9 2.7
ot-otf-fs 33.033.3 8.6 17.3 5.7 2.0 0.0 50.845.21.5 2.5
ot-cha-fs 18.440.010.521.5 7.2 2.3 0.0 38.053.92.6 5.5
ot-otf-fb 23.638.610.019.2 6.5 2.1 0.0 44.649.92.1 3.3
ot-cha-fb 14.541.711.322.5 7.6 2.4 0.0 34.956.33.0 5.8

sablecc nt-otf-fs 31.624.2 5.9 12.7 9.5 0.2 15.8 49.945.82.1 2.2
at-otf-fs 31.737.9 7.4 16.2 4.9 2.0 0.0 49.945.82.1 2.2
ot-otf-fs 33.137.4 7.3 15.7 4.9 1.6 0.0 50.845.51.6 2.0
ot-cha-fs 18.444.1 9.2 20.1 6.4 1.9 0.0 37.954.22.9 5.0
ot-otf-fb 23.642.6 8.7 17.7 5.7 1.7 0.0 44.750.32.2 2.8
ot-cha-fb 14.445.810.021.0 6.8 1.9 0.0 34.956.63.3 5.2

jedit nt-otf-fs 25.629.6 6.6 12.7 3.8 1.5 20.2 43.852.01.9 2.2
at-otf-fs 25.742.4 9.0 16.3 4.7 2.0 0.0 43.852.01.9 2.2
ot-otf-fs 27.142.0 8.9 15.9 4.3 1.9 0.0 44.651.91.4 2.1
ot-cha-fs 14.547.910.719.4 5.5 2.1 0.0 33.259.32.3 5.1
ot-otf-fb 18.946.710.017.6 4.8 2.0 0.0 38.656.71.9 2.8
ot-cha-fb 12.149.011.020.1 5.7 2.1 0.0 30.761.52.5 5.3

Note that since the level of precision required is highly dependent on the application
of the points-to results, this table is not intended to be an absolute measure of precision;
rather, we present it only to give some idea of the relative precision of different analysis
variations, and to give basic insight into the effect that different levels of precision have
on the analysis.

Respecting declared types:Unlike in C, variables in Java are strongly-typed, limit-
ing the possible set of objects to which a pointer could point. However, many points-to
analyses adapted from C do not take advantage of this. For example, the analyses de-
scribed in [20, 24] ignore declared types as the analysis proceeds; however, objects of
incompatible type are removed after the analysis completes.

The first three lines of each benchmark in Table II show the effect of types. The first
line shows the precision of an analysis in which declared types are ignored,notypes
(abbreviatednt). The second line shows the results of the same analysis after objects
of incompatible type have been removed after completion of the analysis,aftertypes
(abbreviatedat). The third line shows the precision of an analysis in which declared
types are respected throughout the analysis,on-the-fly types(abbreviatedot).



We see that removing objects based on declared type after completion of the analysis
(at) achieves almost the same precision as enforcing the types during the analysis (ot).
However, notice that during the analysis (nt), between 15% and 20% of the points-
to sets at dereference sites are over 1000 elements in size. These large sets increase
memory requirements prohibitively, and slow the analysis considerably. We therefore
recommend enforcing declared types as the analysis proceeds, which eliminates almost
all of these large sets. Further, based on this observation,we focus on analyses that
respect declared types for the remainder of this paper.

Call graph construction: As we have already mentioned, the call graph used for an
inter-procedural points-to analysis can be constructed ahead of time using, for example,
CHA [9], or on-the-fly as the analysis proceeds [20], for greater precision. We abbrevi-
ate these variations ascha andotf, respectively. As the third and fourth lines for each
benchmark in Table II show, computing the call graph on-the-fly increases the number
of points-to sets of size zero (dereference sites determined to be unreachable), but has
a smaller effect on the size distribution of the remaining sets.

Field Dereference Expressions:We study the handling of field dereference expres-
sions in a field-based (abbreviatedfb) and field-sensitive (fs) manner. Comparing rows
3 and 5 (on-the-fly call graph), and rows 4 and 6 (CHA call graph), for each benchmark,
we see that field-sensitive analysis is more precise than thefield-based analysis. Thus,
it is probably worthwhile to do field-sensitive analysis if the cost of the analysis is rea-
sonable. As we will see later, in Table IV, with the appropriate solver, the field-sensitive
analysis can be made to be quite competitive to the field-based analysis.

4.3 Factors Affecting Performance

Set Implementation: We evaluated the analyses with the four different implementa-
tions of points-to sets described in Section 3. Table III shows the efficiency of the imple-
mentations using two of the propagation algorithms: the naive, iterative algorithm, and
the incremental worklist algorithm. For both algorithms, we respected declared types
during the analysis, used a CHA call graph, and simplified thepointer assignment graph
by collapsing cycles and variables with common predecessors as described in [19]. The
“Graph space” column shows the space needed to store the original pointer assignment
graph, and the remaining space columns show the space neededto store the points-to
sets. The data structure storing the graph is designed for flexibility rather than space
efficiency; it could be made smaller if necessary. In any case, its size is linear in the size
of the program being analyzed.

The terrible performance of the hash set implementation is disappointing, as this is
the implementation provided by the standard Java library. Clearly, anyone serious about
implementing an efficient points-to analysis in Java must write a custom set represen-
tation.

The sorted array set implementation is prohibitively expensive using the iterative
algorithm, but becomes reasonable using the incremental worklist algorithm, which is
designed explicitly to limit the size of the sets that must bepropagated.

The bit set implementation is much faster still than the sorted array set implementa-
tion. However, especially when used with the incremental worklist algorithm, its mem-
ory usage is high, because the many small sets are represented using the same size bit-



Table III. Set Implementation (time in seconds, space in MB).

Graph Hash Array Bit Hybrid
Algorithm space time spacetime spacetime spacetime space

compress Iterative 31 3448 3111206 118 36 75 24 34
Incremental Worklist 31 219 319 62 57 14 155 9 53

javac Iterative 34 3791 3611114 139 50 88 33 41
Incremental Worklist 34 252 369 61 68 19 181 13 65

sablecc Iterative 36 4158 3341194 132 50 93 32 42
Incremental Worklist 36 244 342 54 62 17 193 11 66

jedit Iterative 42 6502 5832233 229 91 168 59 77
Incremental Worklist 42 488 597 135 114 38 349 24 128

vector as large sets. In addition, the incremental worklistalgorithm splits each points-to
set into two halves, making the bit set implementation use twice the memory.

Finally, the hybrid set implementation is even faster than the bit set implementa-
tion, while maintaining modest memory requirements. We have found the hybrid set
implementation to be consistently the most efficient over a wide variety of settings of
the other parameters, and therefore recommend that it always be used.

Points-To Set Propagation Algorithms: Table IV shows the time and space require-
ments of the propagation algorithms included in SPARK. All measurements in this table
were made using the hybrid set implementation, and without any simplification of the
pointer assignment graph.3 Again, the “Graph space” column shows the space needed
to store the original pointer assignment graph, and the remaining space columns show
the space needed to store the points-to sets.

The nt-otf-fs line shows how much ignoring declared types hurts efficiency(the
“oom” for jedit signifies that the analysis exceeded the 1700MB of memory allot-
ted); we recommend that declared types be respected. Results from the recommended
algorithms are in bold.

The iterative algorithm is consistently slowest, and is given as a baseline only. The
worklist algorithm is usually about twice as fast as the iterative algorithm. For the CHA
field-based analysis, this algorithm is consistently the fastest, faster even than the in-
cremental worklist algorithm. This is because the incremental worklist algorithm is
designed to propagate only the newly-added part of the points-to sets in each iteration,
but the CHA field-based analysis requires only a single iteration. Therefore, any benefit
from its being incremental is outweighed by the overhead of maintaining two parts of
every set. However, both field-sensitivity and on-the-fly call graph construction require
iteration, so for these, the incremental worklist algorithm is consistently fastest. We
note that the speedup comes with a cost in the memory requiredto maintain two parts
of every set.

Note also that while the field-based analysis is faster than field-sensitive with a CHA
call graph, it is slower when the call graph is constructed onthe fly (with all propaga-
tion algorithms). This is because although a field-based analysis with a CHA call graph

3 The time and space reported for the hybrid set implementation in Table III are different than
in Table IV because the former were measured with off-line pointer assignment graph simpli-
fication, and the latter without.



Table IV. Propagation Algorithms (time in seconds, space in MB).

Graph Iterative Worklist Incr. Worklist
space time spacetime spacetime space

compressnt-otf-fs 32 1628 357 992 365 399 605
ot-otf-fs 37 133 52 58 51 52 69
ot-cha-fs 36 49 68 15 63 13 91
ot-otf-fb 35 158 54 86 52 66 66
ot-cha-fb 34 17 62 10 56 13 76

javac nt-otf-fs 34 2316 5021570 512 715 856
ot-otf-fs 40 201 69 103 66 90 90
ot-cha-fs 39 64 83 22 77 18 109
ot-otf-fb 37 218 70 123 66 102 84
ot-cha-fb 37 22 75 11 67 15 90

sablecc nt-otf-fs 35 2190 4621382 472 635 772
ot-otf-fs 41 274 72 104 70 95 94
ot-cha-fs 41 66 88 20 83 18 117
ot-otf-fb 38 255 74 138 72 114 90
ot-cha-fb 38 52 81 14 74 18 97

jedit nt-otf-fs oom oom oom oom oomoom oom
ot-otf-fs 49 313 121 142 117 101 169
ot-cha-fs 48 107 141 59 131 38 196
ot-otf-fb 47 298 104 178 99 111 126
ot-cha-fb 45 28 109 21 98 27 128

completes in one iteration, constructing the call graph on-the-fly requires iterating re-
gardless of the field representation. The less precise field-based representation causes
more methods to be found reachable, increasing the number ofiterations required.

Graph Simplification: Rountev and Chandra [19] showed that simplifying the pointer
assignment graph by merging nodes known to have equal points-to sets speeds up the
analysis. Our experience agrees with their findings.

When respecting declared types, a cycle can only be merged ifall nodes in the
cycle have the same declared type, and a subgraph with a unique predecessor can only
be merged if all its nodes have declared types that are supertypes of the predecessor. On
our benchmarks, between 6% and 7% of variable nodes were removed by collapsing
cycles, compared to between 5% and 6% when declared types were respected. Between
59% and 62% of variable nodes were removed by collapsing subgraphs with a unique
predecessor, compared to between 55% and 58% when declared types were respected.
Thus, the effect of respecting declared types on simplification is minor.

On the other hand, when constructing the call graph on-the-fly, no inter-procedural
edges are present before the analysis begins. This means that any cycles spanning mul-
tiple methods are broken, and the corresponding nodes cannot be merged. The 6%-7%
of nodes removed by collapsing cycles dropped to 1%-1.5% when the call graph was
constructed on-the-fly. The 59%-62% of nodes removed by collapsing subgraphs with
a unique predecessor dropped to 31%-33%. When constructingthe call graph on-the-
fly, simplifying the pointer assignment graph before the analysis has little effect, and
on-the-fly cycle detection methods should be used instead.



4.4 Overall Results

Based on our experiments, we have selected three analyses that we recommend as good
compromises between precision and speed, with reasonable space requirements:
ot-otf-fs is suitable for applications requiring the highest precision. For this analysis,
the incremental worklist algorithm works best.
ot-cha-fs is much faster, but with a drop in precision as compared toot-otf-fs (mostly
because it includes significantly more call edges). For thisanalysis, the incremental
worklist algorithm works best.
ot-cha-fb is the fastest analysis, completing in a single iteration, but it is also the least
precise. For this analysis, the non-incremental worklist algorithm works best.
Each of the three analyses should be implemented using the hybrid sets.

Table V. Overall Results (time in seconds, space in MB, precision in precent).

methods stmtstypes ot-otf-fs ot-cha-fs ot-cha-fb
Benchmark (CHA) (CHA) time space prec.time space prec.time space prec.

compress 151832789022770 52 106 69.1 13 127 60.1 10 90 57.6
db 151852789542763 52 107 68.9 14 128 59.9 11 90 57.4
jack 154412881422816 54 112 68.7 14 132 60.1 11 94 57.6
javac (1.1.8) 4602 86454 874 8 27 63.6 3 24 57.4 1 16 55.1
javac 163073018012940 89 131 66.3 18 148 58.4 11 104 56.2
jess 157942888312917 57 115 68.1 15 136 59.2 10 97 56.8
mpegaudio 153852834822782 56 112 68.6 16 134 59.7 11 93 57.4
raytrace 153122815872789 53 107 68.5 13 129 59.6 11 91 57.1
sablecc 169773005043070 95 136 70.5 18 158 62.5 14 112 60.3
soot 174983109353435 88 143 68.3 19 162 60.4 18 116 58.4
jedit 196213673173395 100 218 69.1 38 244 62.3 21 143 61.1

Table V shows the results of these three analyses on our full set of benchmarks.
The first column gives the benchmark name (javac is listed twice: once with the 1.1.8
JDK class library, and once with the 1.3.101 JDK class library). The next two columns
give the number of methods determined to be reachable, and the number of Jimple4

statements in these methods. Note that because of the large class library, these are the
largest Java benchmarks for which a subtype-based points-to analysis has been reported,
to our knowledge. The fourth column gives the number of distinct types encountered
by the subtype tester. The remaining columns give the analysis time, total space, and
precision for each of the three recommended analyses. The total space includes the
space used to store the pointer assignment graph as well as the points-to sets; these were
reported separately in previous tables. The precision is measured as the percentage of
field dereference sites at which the points-to set of the pointer being dereferenced has
size 0 or 1; for a more detailed measurement of precision, seeTable II.

5 Related Work

The most closely related work are various adaptations of points-to analyses for C to
Java.

4 Jimple is the three-address typed intermediate representation used by Soot.



Rountev, Milanova and Ryder [20] based their field-sensitive analysis for Java on
Soot [26] and the BANE [5] constraint solving toolkit, on which further points-to anal-
ysis work has been done [12,23]. Their analysis was field-sensitive, constructed the call
graph on-the-fly, and ignored declared types until after theanalysis completed. They
reported empirical results on many benchmarks using the JDK1.1.8 standard class
library. Since they do not handle declared types during the analysis, their implementa-
tion suffers from having to represent large points-to sets,and is unlikely to scale well
to large class libraries. They do not report results for the JDK 1.3.1 library, but their
results forjavac (1.1.8) show 350 seconds and 125.5 MB of memory (360 MHz
Sun Ultra-60 machine with 512 MB of memory, BANE solver written in ML), com-
pared to 8 seconds and 27 MB of memory (1.67 GHz AMD Athlon with2GB memory,
solver written in Java) for theot-otf-fs analysis using SPARK. The precision of our re-
sults should be very slightly better, since the Rountev et. al. method is equivalent to
our at-otf-fs analysis, which we showed to be slightly less precise that the ot-otf-fs
analysis.

Whaley and Lam’s [27] approach is interesting in that it adapts the demand-driven
algorithm of Heintze and Tardieu [14, 15] (see below) to Java. The intermediate repre-
sentation on which their analysis operates is different from Jimple (on which our and
Rountev, Milanova and Ryder’s analyses are based) in that itdoes not split stack loca-
tions based on DU-UD webs; instead, it uses intra-method flow-sensitivity to achieve
a similar effect. In contrast with other work that used a conservative (safe) approxi-
mation of reachable methods which to analyze, Whaley and Lam’s experiments used
optimistic assumptions (not safe) about which methods needto be analyzed. In par-
ticular, the results presented in their paper [27] are for a variation of the analysis that
does not analyze class initializers and assumes that all native methods have no effect on
the points-to analysis. Their optimistic assumptions about which methods are reachable
lead to reachable method counts almost an order of magnitudelower than reported in
other related work, such as the present paper, and [20, 24]; in fact, they analyze signif-
icantly fewer methods than can be observed to be executed at run-time in a standard
run of the benchmarks. As a result of the artificially small number of methods that they
analyze, they get fast execution times. Even so, when looking at thejedit benchmark,
the only benchmark for which they analyze at least half of thenumber of methods an-
alyzed by SPARK, their analysis runs in 614 seconds and 472 MB of memory (2 GHz
Pentium 4, 2GB of memory, solver written in Java), compared to 100 seconds and 218
MB for the most precise analysis in SPARK (1.67 GHz AMD Athlon, 2GB memory,
solver written in Java).

Our comparison with these two other previous works for points-to analysis for Java
illustrates two important things. First, it would be nice ifwe could compare the analyses
head to head, on the same system, with the same assumptions about what code needs
to be analyzed. Second, it appears that SPARK allows one to develop efficient analyses
that compare very favourably with previous work.

Liang, Pennings and Harrold [17] tested several variationsof Java points-to analy-
ses, including subset-based and equality-based variations, field-based and field-sensitive
variations, and constructing the call graph using CHA [9] and RTA [7]. Instead of ana-
lyzing benchmarks with the standard class library, they hand-coded a model of the most



commonly used JDK 1.1.8 standard classes. Thus, we cannot make direct comparisons,
since our results include all the library code.

Heintze and Tardieu [14, 15] reported very fast analysis times using their analysis
for C. The main factor making it fast was a demand-driven algorithm that also collapsed
cycles in the constraint graph on-the-fly. Such a demand-driven algorithm is particularly
useful when the points-to sets of only a subset of pointer variables are required; we plan
to implement it in a future version of SPARK for such applications. In addition, in an
unpublished report [13], Heintze discusses an implementation of sets using bit-vectors
which are shared, so that copies of an identical set are only stored once. We are also
considering implementing this set representation in SPARK.

Since points-to analysis in general is a very active area of research, we can only list
the work most closely related to ours. A more complete surveyappears in [16].

6 Conclusions and Future Work
We have presented SPARK, a flexible framework for experimenting with points-to anal-
ysis for Java. Our empirical results have shown that SPARK is not only flexible, but
also competitive with points-to analyses that have been implemented in other frame-
works. Using SPARK, we studied various factors affecting the precision and efficiency
of points-to analysis. Our study led us to recommend three specific analyses, and we
showed that they compare favourably to other analyses that have been described in the
literature.

We plan several improvements to SPARK. First, we would like to create an on-the-
fly pointer assignment graph builder, so that the entire pointer assignment graph need
not be built for an on-the-fly call graph analysis. Second, wewould like to add Heintze
and Tardieu’s demand-driven propagation algorithm to SPARK.

We have several studies in mind that we would like to perform using SPARK. First,
we are implementing points-to analysis using Reduced Ordered Binary Decision Dia-
grams to store the large, often duplicated sets. Second, we plan to study the effects of
various levels of context-sensitivity on Java points-to analysis. Third, we will experi-
ment with various clients of the points-to analysis.

7 Acknowledgements
We are grateful to Feng Qian for work on the native method simulator, to Navindra
Umanee for help producing the list of methods called using reflection by the standard
class library, to Marc Berndl and John Jorgensen for helpfuldiscussions, to Atanas
Rountev, Ana Milanova, and Barbara Ryder for providing details about how their points-
to analysis determines the reachable call graph, and to JohnWhaley for answering our
questions about the assumptions made by his analysis, and the settings he used in his
experiments.

References
1. Ashes suite collection.http://www.sable.mcgill.ca/software/.
2. jEdit: Open source programmer’s text editor.http://www.jedit.org/.
3. Soot: a Java optimization framework.http://www.sable.mcgill.ca/soot/.
4. SPEC JVM98 benchmarks.http://www.spec.org/osg/jvm98/.
5. A. Aiken, M. Fähndrich, J. S. Foster, and Z. Su. A toolkit for constructing type- and

constraint-based program analyses. InTypes in Compilation, Second International Work-
shop, TIC ’98, volume 1473 ofLNCS, pages 78–96, 1998.



6. L. O. Andersen.Program Analysis and Specialization for the C Programming Language.
PhD thesis, University of Copenhagen, May 1994. (DIKU report 94/19).

7. D. F. Bacon and P. F. Sweeney. Fast static analysis of C++ virtual function calls. InProceed-
ings of the 1996 OOPSLA, pages 324–341, 1996.

8. M. Das. Unification-based pointer analysis with directional assignments. InProceedings of
PLDI’00, volume 35.5 ofACM Sigplan Notices, pages 35–46, June 2000.

9. J. Dean, D. Grove, and C. Chambers. Optimization of object-oriented programs using static
class hierarchy analysis. InECOOP’95—Object-Oriented Programming, 9th European Con-
ference, volume 952 ofLNCS, pages 77–101, Aug. 1995.

10. A. Diwan, K. S. McKinley, and J. E. B. Moss. Type-based alias analysis. InProceedings of
PLDI’98, pages 106–117, 1998.

11. M. Emami, R. Ghiya, and L. J. Hendren. Context-sensitiveinterprocedural points-to analysis
in the presence of function pointers. InProceedings of PLDI’94, pages 242–256, 1994.

12. M. Fähndrich, J. S. Foster, Z. Su, and A. Aiken. Partial online cycle elimination in inclusion
constraint graphs. InProceedings of PLDI’98, pages 85–96, June 1998.

13. N. Heintze. Analysis of large code bases: The compile-link-analyze model.
http://cm.bell-labs.com/cm/cs/who/nch/cla.ps, 1999.

14. N. Heintze and O. Tardieu. Demand-driven pointer analysis. In Proceedings of PLDI’01,
pages 24–34, 2001.

15. N. Heintze and O. Tardieu. Ultra-fast aliasing analysisusing CLA: A million lines of C code
in a second. InProceedings of PLDI’01, volume 36.5 ofACM SIGPLAN Notices, pages
254–263, June 2001.

16. M. Hind. Pointer analysis: Haven’t we solved this problem yet? InProceedings of PASTE’01,
pages 54–61, June 2001.

17. D. Liang, M. Pennings, and M. J. Harrold. Extending and evaluating flow-insensitive and
context-insensitive points-to analyses for Java. InProceedings of PASTE’01, pages 73–79,
2001.

18. P. Pominville, F. Qian, R. Vallée-Rai, L. Hendren, and C. Verbrugge. A framework for
optimizing Java using attributes. InCompiler Construction (CC 2001), volume 2027 of
LNCS, pages 334–554, 2001.

19. A. Rountev and S. Chandra. Off-line variable substitution for scaling points-to analysis. In
Proceedings of PLDI’00, pages 47 – 56, Jun 2000.

20. A. Rountev, A. Milanova, and B. G. Ryder. Points-to analysis for Java using annotated
constraints. InProceedings of the 2001 OOPSLA, pages 43–55, 2001.

21. M. Shapiro and S. Horwitz. Fast and accurate flow-insensitive points-to analysis. InConfer-
ence Record of 24th POPL ’97, pages 1–14, Jan. 1997.

22. B. Steensgaard. Points-to analysis in almost linear time. In Conference Record of 23rd
POPL’96, pages 32–41, Jan. 1996.

23. Z. Su, M. Fähndrich, and A. Aiken. Projection merging: reducing redundancies in inclusion
constraint graphs. InProceedings of the 27th POPL’00, pages 81–95, 2000.

24. V. Sundaresan, L. Hendren, C. Razafimahefa, R. Vallée-Rai, P. Lam, E. Gagnon, and
C. Godin. Practical virtual method call resolution for Java. In Proceedings of the 2000
OOPSLA, pages 264–280, 2000.

25. R. E. Tarjan. Efficiency of a good but not linear set union algorithm. Journal of the ACM
(JACM), 22(2):215–225, 1975.

26. R. Vallée-Rai, E. Gagnon, L. J. Hendren, P. Lam, P. Pominville, and V. Sundaresan. Opti-
mizing Java bytecode using the Soot framework: Is it feasible? InCompiler Construction
(CC 2000), volume 1781 ofLNCS, pages 18–34, 2000.

27. J. Whaley and M. Lam. An efficient inclusion-based points-to analysis for strictly-typed
languages. InStatic Analysis 9th International Symposium, SAS 2002, volume 2477 ofLNCS,
pages 180–195, 2002.


