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Simple Reference Immutability for System F<:
Keeps objects fresh for up to 5X longer!

EDWARD LEE, University of Waterloo, Canada

ONDŘEJ LHOTÁK, University of Waterloo, Canada

Reference immutability is a type based technique for taming mutation that has long been studied in the

context of object-oriented languages, like Java. Recently, though, languages like Scala have blurred the lines

between functional programming languages and object oriented programming languages. We explore how

reference immutability interacts with features commonly found in these hybrid languages, in particular with

higher-order functions – polymorphism – and subtyping. We construct a calculus System F<:M which encodes

a reference immutability system as a simple extension of System F<: and prove that it satisfies the standard

soundness and immutability safety properties.
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1 INTRODUCTION
Code written in a pure, functional language is referentially transparent – it has no side effects

and hence can be run multiple times to produce the same result. Reasoning about referentially

transparent code is easier for both humans and computers. However, purely functional code can be

hard to write and inefficient, so many functional languages contain impure language features.

One important side effect that is difficult to reason about is mutation of state. Mutation arises

naturally, but can cause bugs which can be hard to untangle; for example, two modules which at

first glance are completely unrelated may interact through some shared mutable variable. Taming –

or controlling – where and how mutation can occur can reduce these issues.

One method of taming mutation is reference immutability [Huang et al. 2012; Tschantz and Ernst

2005]. In this setting, the type of each reference to a value can be either mutable or immutable. An

immutable reference cannot be used to mutate the value or any other values transitively reached

from it.

Mutable and immutable references can coexist for the same value, so an immutable reference

does not guarantee that the value will not change through some other, mutable reference. This is

in contrast to the stronger guarantee of object immutability, which applies to values, and ensures

that a particular value does not change through any of the references to it.

Reference immutability has long been studied in existing object-oriented programming languages

such as Java [Huang et al. 2012; Tschantz and Ernst 2005; Zibin et al. 2007] and C# [Gordon et al.

2012]. However, reference immutability is largely unexplored in the context of functional languages

with impure fragments – languages like Scala or OCaml, for example. Many programs in Scala are

mostly immutable [Haller and Axelsson 2017]. A system that formally enforces specified patterns

of immutability would help programmers and compilers better reason about immutability in such

programs.

One feature that is important in all languages but especially essential in functional programs is

polymorphism. The interaction of polymorphism and reference immutability raises interesting ques-

tions. Should type variables abstract over annotated types including their immutability annotations

(such as @readonly String), or only over the base types without immutability annotations (such

as String)? Should uses of type variables admit an immutability annotation like other types do? For
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1:2 Edward Lee and Ondřej Lhoták

example, should @readonly X be allowed, where X is a type variable rather than a concrete type?

If yes, then how should one interpret an annotated variable itself instantiated with an annotated

type? For example, what should the type @readonly X mean if the variable X is instantiated with

@mutable String?
Our contribution to this area is a simple and sound treatment of reference immutability in System

F<: [Cardelli et al. 1991]. Specifically, we formulate a simple extension System F<:M of System F<:
with the following properties:

• Immutability safety:When dealing with reference immutability, one important property

to show is immutability safety: showing that when a reference is given a read-only type, then

the underlying value is not modified through that reference. In System F<:M we introduce a
dynamic form of immutability, a term-level seal construct, which makes precise the runtime

guarantees that we expect from a reference that is statically designated as immutable by the

type system. We do this by formalizing System 𝜆M, an untyped calculus with references and

seals. Dynamic seals are transitive in that they seal any new references that are read from a

field of an object through a sealed reference.

• System F<:-style polymorphism: System F<:M preserves the same bounded-quantification

structure of System F<:. At the same time, it allows type variables to be further modified by

immutability modifiers.

• Immutable types are types: To allow for System F<:-style polymorphism, we need to treat

immutable types as types themselves. To do so, instead of type qualifiers, we introduce a type

operator readonly that can be freely applied to existing types (including type variables).

The readonly operator turns a type into an immutable version of the same type. While this

complicates the definition of subtyping and proofs of canonical forms lemmas, we resolve

these issues by reducing types to a normal form.

Our hope is to enable reference immutability systems in functional languages by giving simple,

sound foundations in System F<:, a calculus that underpins many practical functional programming

languages.

The rest of this paper is organized as follows. In Section 2 we give an overview of reference

immutability. In Section 3 we introduce an un-typed core calculus, System 𝜆M, to describe sealing
and how it relates to reference immutability safety at run time. In Section 4 we present System F<:M,
which enriches System 𝜆M with types, and show that it satisfies the standard soundness theorems.

In Section 5 we use the soundness results from System F<:M and the dynamic safety results from

System 𝜆M to show that our desired immutability safety properties hold in System F<:M. We survey

related and possible future work in Section 7 and we conclude in Section 8.

Our development is mechanized in the Coq artifact that we will submit to the OOPSLA artifact

evaluation process.

2 REFERENCE IMMUTABILITY
Reference immutability at its core is concerned with two key ideas:

• Immutable references: References to values can be made immutable, so that the underlying

value cannot be modified through that reference.

• Transitive immutability: An immutable reference to a compound value that contains other

references cannot be used to obtain a mutable reference to another value. For example, if x is

a read-only reference to a pair, the result of evaluating x.first should be viewpoint adapted

[Dietl et al. 2007] to be a read-only reference, even if the pair contains references that are

otherwise mutable.
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For example, consider the following snippet of Scala-like code that deals with polymorphic

mutable pairs.

case class Pair[X](var first: X, var second: X)

def good(x : Pair[Int]) = { x.first = 5 }

def bad1(y : @readonly Pair[Int]) = { y.first = 7 }

def bad2(y : @readonly Pair[Pair[Int]]) = { y.first.first = 5 }

def access(z: @readonly Pair[Pair[Int]]): @readonly Pair[Int] = { z.first }

A reference immutability system would deem the function good to be well-typed because it

mutates the pair through a mutable reference x. However, it would disallow bad1 because it mutates

the pair through a read-only reference y. Moreover, it would also disallow bad2 because it mutates

the pair referenced indirectly through the read-only reference y. This can also be seen by looking

at the access function, which returns a read-only reference of type @readonly Pair[Int] to the

first component of the pair referenced by z.

2.1 Why though?
Immutable values are crucial even in impure functional programming languages because pure

code is often easier to reason about. This benefits both the programmer writing the code, making

debugging easier, and the compiler when applying optimizations.

Although most values, even in impure languages, are immutable by default [Haller and Axelsson

2017], mutable values are sometimes necessary for various reasons. For example, consider a compiler

for a pure, functional, language. Such a compiler might be split into multiple passes, one which

first builds and generates a symbol table of procedures during semantic analysis, and one which

then uses that symbol table during code generation. For efficiency, we may wish to build both the

table and the procedures in that table with an impure loop.

object analysis {

class Procedure(name : String) {

val locals : mutable.Map[String , Procedure] = mutable.Map.empty

def addLocalProcedure(name: String , proc: Procedure) = {

local += (name -> proc)

}

}

val table : mutable.Map[String , Procedure] = mutable.Map.empty

val analyze(ast: AST) = {

ast.forEach (() => { table.add(new Procedure (...)) })

}

}

The symbol table and the properties of the procedure should not be mutable everywhere, though;

during code generation, our compiler should be able to use the information in the table to generate

code but shouldn’t be able to change the table nor the information in it! How do we enforce this

though?

One solution is to create an immutable copy of the symbol table for the code generator, but this

can be fragile. A naive solution which merely clones the table itself will not suffice, for example:

object analysis {

private val table[analysis] = ...
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1:4 Edward Lee and Ondřej Lhoták

def symbolTable : Map[String , Procedure] = table.toMap // create immutable

copy of table.

}

object codegen {

def go() = {

analysis.symbolTable["main"]. locals += ("bad" -> ...) // whoops ...

}

}

While this does create an immutable copy of the symbol table for the code generator, it does not

create immutable copies of the procedures held in the table itself! We would need to recursively

rebuild a new, immutable symbol table with new, immutable procedures to guarantee immutability,

which can be an expensive proposition, both in terms of code and in terms of runtime costs.

Moreover, creating an immutable copy might not even work in all cases. Consider an interpreter

for a pure, functional language with support for letrec x := e in f. The environment in which

𝑒 is interpreted contains a cyclic reference to 𝑥 , which necessitates mutation in the interpreter.

Without special tricks like lazyness this sort of structure cannot be constructed, let alone copied,

without mutation.

abstract class Value { }

type Env = Map[String , Value]

case class Closure(var env: Env , params: List[String], body: Exp) extends Value

def interpret_letrec(env: Env , x: String , e: Exp , f: Exp) : Value = {

val v = interpret(env + (x -> Nothing), e)

case v of {

Closure(env , params , body) => v.env = v.env + (x -> v) // Update binding

}

interpret (env + (x -> v), f)

}

Here, the closure that v refers to needs to be mutable while it is being constructed, but since the

underlying language is pure, it should be immutable afterwards. In particular, we should not be

able to mutate the closure through the self-referential reference v.env = env + (x -> v), nor
should we be able to mutate the closure while interpreting f.

We would like a system that prevents writes to v from the self-referential binding in its environ-

ment and from the reference we pass to interpret (env + (x -> v), f). This is what reference
immutability provides.

abstract class Value { }

type Env = Map[String , @readonly Value]

case class Closure(env: var Env , params: List[String], body: Exp)

def interpret_letrec(env: Env , x: String , e: Exp , f: Exp) : Value = {

val v = interpret(env + (x -> Nothing), e)

case v of {

Closure(env , params , body) => v.env = env + (x -> @readonly v) // update

binding

}

interpret (env + (x -> @readonly v), f)

}
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Simple Reference Immutability for System F<: 1:5

3 DYNAMIC IMMUTABILITY SAFETY
Now, to formalize reference immutability, we need to formalize exactly when references are used

to update the values they refer to. For example, from above, how do we check that access does
what it claims to do?

def access(z: @readonly Pair[Pair[Int]]): @readonly Pair[Int] = { z.first }

How do we check that access returns a reference to z.first that, at runtime, is never used to

write to z.first or any other values transitively reachable from it through other references? How

do we even express this guarantee precisely?

If we consider a reference as a collection of getter and setter methods for the fields of the object

it refers to, we could ensure that a reference is immutable by dropping all the setter methods. To

ensure that immutability is transitive, we would also need to ensure that the result of applying a

getter method is also immutable, i.e. by also dropping its setter methods and recursively applying

the same modification to its getter methods. We will make this precise by introducing the System

𝜆M calculus with a notion of sealed references.

3.1 System 𝜆M

To answer this question we introduce System 𝜆M, the untyped lambda calculus with collections of

mutable references – namely, records – extended with a mechanism for sealing references. System

𝜆M is adapted from the CS-machine of Felleisen and Friedman [1987] and extended with rules for

dealing with sealed references.

Sealed references: To address the question about dynamic, runtime safety – can we ensure that

read-only references are never used to mutate values – references can be explicitly sealed so that

any operation that will mutate the cell referenced will fail to evaluate; see Figure 1.

The seal form protects its result from writes. A term under a seal form reduces until it becomes

a value. At that point, values that are not records, like functions and type abstractions, are just

transparently passed through the seal construct. However, values that are – records – remain

protected by the seal form, and do not reduce further. For example:

seal ({𝑦 : 0x0001})

is an irreducible value – a sealed record where the first field is stored at location 1 in the store.

Intuitively, this can be viewed as removing the setter methods from an object reference. A sealed

reference seal 𝑣 behaves exactly like its unsealed variant 𝑣 except that writes to seal 𝑣 are forbidden
and reads from seal 𝑣 return sealed results.

Rules that mutate the cells corresponding to a record explicitly require an unsealed open record;

see (write-field). This ensures that any ill-behaved program that mutates a store cell through a

sealed record will get stuck, while an unsealed record can have its fields updated:

⟨{𝑥 : 10}.𝑥 = 5, []⟩ −→ ⟨{𝑥 : 0x0001}.𝑥 = 5, [0x0001 : 10]⟩
−→ ⟨10, [0x0001 : 5]⟩

A sealed record cannot have its fields written to. Unlike record field reads, for which there is a

sealed (sealed-field) counterpart to the standard record read rule (field), there is no corresponding

rule for writing to a sealed record for (write-field). Recall that (write-field) requires an open,

unsealed record as input:

𝑙 : 𝑣 ∈ 𝜎

⟨{. . . 𝑥 : 𝑙 . . .}.𝑥 = 𝑣 ′, 𝜎⟩ −→ ⟨𝑣, 𝜎 [𝑙 ↦→ 𝑣 ′]⟩
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𝑠, 𝑡 ::= Terms
| 𝜆𝑥 .𝑡 term abstraction

| 𝑥 term variable

| 𝑠 (𝑡) application

| {𝑓1 : 𝑠1, 𝑓2 : 𝑠2, . . .} records

| 𝑠 .𝑓 field read

| 𝑠 .𝑓 = 𝑡 field write

| seal 𝑠 sealing

𝑙 Location

𝑠, 𝑡 ::= Runtime Terms
| {𝑥1 : 𝑙1, 𝑥2 : 𝑙2, . . .} runtime record

𝑣 ::= Runtime Values
| 𝜆𝑥 .𝑡

| {𝑓1 : 𝑙1, 𝑓2 : 𝑙2, . . .}
| seal {𝑓1, 𝑙1, 𝑓2 : 𝑙2, . . .}

⟨(𝜆𝑥 .𝑡) (𝑣), 𝜎⟩ −→ ⟨𝑡 [𝑥 ↦→ 𝑣], 𝜎⟩ (beta-v)

𝑙𝑖 ∉ 𝜎

⟨{𝑥𝑖 : 𝑣𝑖 }, 𝜎⟩ −→ ⟨{𝑥𝑖 : 𝑙𝑖 }, (𝜎, 𝑙1 : 𝑣1, 𝑙2 : 𝑣2, . . .)⟩
(record-store)

𝑙 : 𝑣 ∈ 𝜎

⟨{. . . 𝑥 : 𝑙 . . .}.𝑥, 𝜎⟩ −→ ⟨𝑣, 𝜎⟩
(field)

𝑙 : 𝑣 ∈ 𝜎

⟨{. . . 𝑥 : 𝑙 . . .}.𝑥 = 𝑣 ′, 𝜎⟩ −→ ⟨𝑣, 𝜎 [𝑙 ↦→ 𝑣 ′]⟩
(write-field)

𝑙 : 𝑣 ∈ 𝜎

⟨ (seal {. . . 𝑥 : 𝑙 . . .}) .𝑥, 𝜎⟩ −→ ⟨ seal 𝑣 , 𝜎⟩
(sealed-field)

⟨ seal (𝜆𝑥 .𝑡) , 𝜎⟩ −→ ⟨𝜆𝑥 .𝑡, 𝜎⟩
(seal-elim-abs)

⟨ seal seal 𝑣 , 𝜎⟩ −→ ⟨seal 𝑣, 𝜎⟩
(seal-elim-multiple)

⟨𝑠, 𝜎⟩ −→ ⟨𝑡, 𝜎′⟩
⟨𝐸 [𝑠], 𝜎⟩ −→ ⟨𝐸 [𝑡], 𝜎′⟩

(context)

𝐸 ::= [] | 𝐸 (𝑡) | 𝑣 (𝐸) Evaluation Context
| {𝑥0 : 𝑣0, . . . , 𝑥𝑖 : 𝐸, 𝑥𝑖+1 : 𝑡𝑖+1, . . .}
| 𝐸.𝑥

| 𝐸.𝑥 = 𝑡 | 𝑣 .𝑥 = 𝐸

| seal 𝐸

Fig. 1. The syntax and semantics of 𝜆𝑚 .

The calculus does not contain any rule like the following, which would reduce writes on a sealed

record:

𝑙 : 𝑣 ∈ 𝜎

⟨ (seal {. . . 𝑥 : 𝑙 . . .}) .𝑥 = 𝑣 ′, 𝜎⟩ −→ ⟨𝑣, 𝜎 [𝑙 ↦→ 𝑣 ′]⟩

So a term like:

⟨(seal {𝑥 : 10}).𝑥 = 5, []⟩ −→ ⟨seal ({𝑥 : 0x0001}) .𝑥 = 5, [0x0001 : 10]⟩
−→ gets stuck.

Dynamic viewpoint adaptation: After reading a field from a sealed record, the semantics seals

that value, ensuring transitive safety – see (sealed-field).

𝑙 : 𝑣 ∈ 𝜎

⟨ (seal {. . . 𝑥 : 𝑙 . . .}) .𝑥, 𝜎⟩ −→ ⟨ seal 𝑣 , 𝜎⟩
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For example:

⟨(seal {𝑦 : {𝑥 : 10}}) .𝑦, []⟩ −→ ⟨seal ({𝑦 : {𝑥 : 0x001}}).𝑦, [0x001 : 10]⟩
−→ ⟨seal ({𝑦 : 0x002}) .𝑦, [0x001 : 10, 0x002 : {𝑥 : 0x001}]⟩
−→ ⟨seal ({𝑥 : 0x001}), [0x001 : 10, 0x002 : {𝑥 : 0x001}]⟩

Sealed references and dynamic viewpoint adaptation allow for a succinct guarantee of dynamic

transitive immutability safety – that no value is ever mutated through a read-only reference or any

other references transitively derived from it.

Aside from preventing writes through sealed references, we should show that sealing does

not otherwise affect reduction. For this we need a definition that relates pairs of terms that are

essentially equivalent except that one has more seals than the other.

Definition 3.1. Let 𝑠 and 𝑡 be two terms. We say 𝑠 ≤ 𝑡 if 𝑡 can be obtained from 𝑠 by repeatedly

replacing sub-terms 𝑠′ of 𝑠 with sealed subterms seal 𝑠′.

This implies a similar definition for stores:

Definition 3.2. Let 𝜎 and 𝜎 ′
be two stores. We say 𝜎 ≤ 𝜎 ′

if and only if they have the same

locations and for every location 𝑙 ∈ 𝜎 , we have 𝜎 (𝑙) ≤ 𝜎 ′ (𝑙).

The following three lemmas formalize how reduction behaves for terms that are equivalent

modulo seals. The first one is for a term 𝑡 that is equivalent to a value – it states that if 𝑡 reduces,

the resulting term is still equivalent to the same value. It also shows that the resulting term has

fewer seals than 𝑡 , which we’ll need later for an inductive argument.

Definition 3.3. Let 𝑠 be a term. Then |𝑠 | is the number of seals in s.

Lemma 3.4. Let 𝑣 be a value, 𝜎𝑣 be a store, 𝑡 be a term such that 𝑣 ≤ 𝑡 , and 𝜎𝑡 be a store such that

𝜎𝑣 ≤ 𝜎𝑡 .

If ⟨𝑡, 𝜎𝑡 ⟩ −→ ⟨𝑡 ′, 𝜎 ′
𝑡 ⟩ then 𝑣 ≤ 𝑡 ′, 𝜎𝑣 ≤ 𝜎 ′

𝑡 , and |𝑡 ′ | < |𝑡 |.

The next lemma is an analogue of Lemma 3.4 for terms. Given two equivalent terms 𝑠 and 𝑡 , if 𝑠

steps to 𝑠′ and 𝑡 steps to 𝑡 ′, then either 𝑠 and 𝑡 ′ are equivalent or 𝑠′ and 𝑡 ′ are equivalent. Moreover,

again, to show that reduction in 𝑡 is equivalent to reduction in 𝑠 , we have that |𝑡 ′ | < 𝑡 if 𝑠 ≤ 𝑡 ′.

Lemma 3.5. Let 𝑠, 𝑡 be terms such that 𝑠 ≤ 𝑡 and let 𝜎𝑠 , 𝜎𝑡 be stores such that 𝜎𝑠 ≤ 𝜎𝑡 . If ⟨𝑠, 𝜎𝑠⟩ −→
⟨𝑠′, 𝜎 ′

𝑠⟩ and ⟨𝑡, 𝜎𝑡 ⟩ −→ ⟨𝑡 ′, 𝜎 ′
𝑡 ⟩ then:

(1) Either 𝑠 ≤ 𝑡 ′, 𝜎𝑠 ≤ 𝜎 ′
𝑡 , and |𝑡 ′ | < |𝑡 |, or

(2) 𝑠′ ≤ 𝑡 ′ and 𝜎 ′
𝑠 ≤ 𝜎 ′

𝑡 .

Together, Lemmas 3.4 and 3.5 relate how terms 𝑠 and 𝑡 reduce when they are equivalent modulo

seals. Assuming that both 𝑠 and 𝑡 reduce, every step of 𝑠 corresponds to finitely many steps of 𝑡 ,

and they reduce to equivalent results as well. This shows that sealing is transparent when added

onto references that are never written to, allowing for a succinct guarantee of immutability safety.

Finally, the last lemma states that erasing seals will never cause a term to get stuck. Seals can

be safely erased without affecting reduction.

Lemma 3.6. Let 𝑠, 𝑡 be terms such that 𝑠 ≤ 𝑡 and let 𝜎𝑠 , 𝜎𝑡 be stores such that 𝜎𝑠 ≤ 𝜎𝑡 . If ⟨𝑡, 𝜎𝑡 ⟩ −→
⟨𝑡 ′, 𝜎 ′

𝑡 ⟩ then:
(1) Either 𝑠 ≤ 𝑡 ′, 𝜎𝑠 ≤ 𝜎 ′

𝑡 , and |𝑡 ′ | < |𝑡 |, or
(2) There exists 𝑠′ and 𝜎 ′

𝑠 such that ⟨𝑠, 𝜎𝑠⟩ −→ ⟨𝑠′, 𝜎 ′
𝑠⟩, 𝑠′ ≤ 𝑡 ′ and 𝜎 ′

𝑠 ≤ 𝜎 ′
𝑡 .

From this we can derive the following multi-step analogue, after observing the following lemma:
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Lemma 3.7. If 𝑠 is a term and 𝑣 is a value such that 𝑠 ≤ 𝑣 , then 𝑠 is also a value.

Hence:

Lemma 3.8. Suppose 𝑠 and 𝑡 are terms such that 𝑠 ≤ 𝑡 . If ⟨𝑡, 𝜎𝑡 ⟩ −→∗ ⟨𝑣𝑡 , 𝜎 ′
𝑡 ⟩ for some value 𝑣𝑡 ,

then for any 𝜎𝑠 ≤ 𝜎𝑡 we have ⟨𝑠, 𝜎𝑠⟩ −→∗ ⟨𝑣𝑠 , 𝜎 ′
𝑠⟩ such that 𝑣 ′𝑠 ≤ 𝑣 ′𝑠 and 𝜎

′
𝑠 ≤ 𝜎 ′

𝑡 .

Finally, it can be shown that the seals are to blame when two equivalent terms 𝑠 and 𝑡 reduce

differently – in particular, when one reduces but the other gets stuck.

Lemma 3.9. Let 𝑠, 𝑡 be terms such that 𝑠 ≤ 𝑡 , and let 𝜎𝑠 , 𝜎𝑡 be stores such that 𝜎𝑠 ≤ 𝜎𝑡 . If ⟨𝑠, 𝜎𝑠⟩ −→
⟨𝑠′, 𝜎 ′

𝑠⟩ and 𝑡 gets stuck, then the reduction performed on 𝑠 was a write to a record using rule (write-

field).

Proof. (Sketch) As 𝑠 cannot further reduce, the evaluation context of 𝑠 and 𝑡 must match; there

are no extraneous seals that need to be discharged. As such, from inspection of the reduction

rules, we see that in all cases except for (write-field), for every possible reduction that 𝑠 could

have taken, there is a possible reduction that 𝑡 could have taken as well, as desired. □

4 TYPING AND STATIC SAFETY
System 𝜆M provides a dynamic guarantee that a given programwill never modify its sealed references,

but it does not provide any static guarantees about the dynamic behavior of a given program.

To do that, we need a type system for System 𝜆M that will reject programs like access(seal
Pair(3,5)).first = 10, which we know will crash.

To ensure that well-typed programs do not get stuck, a type system for System 𝜆M needs a static

analogue of sealing – a way to turn an existing type into a read-only type. Read-only types denote

references that are immutable and that (transitively) adapt any other references read through them

to be immutable as well.

Issues arise, however, when we introduce polymorphism.

4.1 Polymorphism
Recall our earlier example – a polymorphic Pair object.

case class Pair[X](var first: X, var second: X)

In a functional language, it is only natural to write higher-order functions that are polymorphic

over the elements stored in the pair. Consider an in-place map function over pairs, which applies a

function to each element in the pair, storing the result in the original pair. This naturally requires

mutable access to a pair.

def inplace_map[X](pair: Pair[X], f: X => X): Unit = {

pair.first = f(pair.first);

pair.second = f(pair.second);

}

This is all well and good, but we may wish to restrict the behaviour of f over the elements of the

pair. It may be safer to restrict the behaviour of f so that it could not mutate the elements passed

to it. Note that we cannot restrict access to the pair, however, as we still need to mutate it.

// Is this well founded?

def inplace_map[X](pair: Pair[X], f: @readonly X => X): Unit = {

pair.first = f(pair.first);

pair.second = f(pair.second);

}
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Now, such a definition requires the ability to further modify type variables with immutability

qualifiers. This raises important questions – for example, is this operation even well founded? This

depends on what X ranges over.

X ranges over an unqualified type: If type variables range over types which have not been qualified

by @readonly, then this operation is clearly well founded – it is simply qualifying the unqualified

type that X will eventually be substituted by with the @readonly qualifier. This approach has been

used by ReIm for Java and for an immutability system for C# – [Gordon et al. 2012; Huang et al.

2012].

However, this raises the problem of polymorphism over immutability qualifiers as well – for

example, a Pair should be able to store both immutable and mutable object references. The only

natural solution is to then introduce a mutablity qualifier binder to allow for polymorphism over

immutability qualifiers, as thus:

case class Pair[M, X](var first: M X, var second: M X)

def inplace_map[M, X](pair: Pair[M, X], f: @readonly X => M X): Unit = {

pair.first = f(pair.first);

pair.second = f(pair.second);

}

Mutability qualifier binders have been used previously, most notably by [Gordon et al. 2012]. For

one, updating the binding structure of a language is not an easy task – ReIm notably omits this sort

of parametric mutability polymorphism [Huang et al. 2012]. However, this sort of solution has its

downsides; in particular, existing higher-order functions need to be updated with immutability

annotations or variables, as type variables no longer stand for a full type. For example, an existing

definition of List map which appears as thus originally:

def map[X](l: List[X], f: X => X): List[X]

needs to be updated to read as the following instead:

def map[M, X](l: List[M X], f: M X => M X): List[M X]

Instead, we would like to have X range over fully qualified types as well, but as we will see that

poses some issues as well.

X ranges over fully-qualified types: If type variables can range over types which have been already

qualified by @readonly, then we can avoid introducing mutability binders in the definitions for

Pair, inplace_map, and map above. A Pair can be polymorphic over its contents X without caring

about the underlying mutability of X. However, this raises the question – how do we interpret

repeated applications of the @readonly qualifier? For example, what if we applied inplace_map
on a Pair[@readonly Pair[Int]]? Then inplace_map would expect a function f with type

@readonly (@readonly Pair[Int]) => @readonly Pair[Int]. While our intuition would tell

us that @readonly (@readonly Pair[Int]) is really just a @readonly Pair[Int], discharging
this equivalence in a proof is not so easy.

One response is to explicitly prevent type variables from being further qualified. Calculi which

take this approach include [Tschantz and Ernst 2005; Zibin et al. 2007]. However, this restriction

prevents this version of inplace_map from being expressed. How can we address this?

Our approach, which we explain below, is to treat @readonly as a type operator that works over

all types. Following the intuition that sealing removes setters from references, @readonly should

be a type operator which removes setters from types. While this does cause complications, we

show below how types like @readonly @readonly Pair[Int] can be dealt with, using subtyping

and type normalization.
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𝑠, 𝑡 ::= Terms
| 𝜆𝑥 .𝑡 term abstraction

| Λ(𝑋 <: 𝑆).𝑡 type abstraction

| 𝑥 term variable

| 𝑠 (𝑡) application

| 𝑠 [𝑇 ] type application

| {𝑓1 : 𝑠1, 𝑓2 : 𝑠2, . . .} records

| 𝑠 .𝑥 field read

| 𝑠 .𝑥 = 𝑡 field write

| seal 𝑠 sealing

𝑆,𝑇 ::= Types
| 𝑋 type variable

| 𝑆 → 𝑇 function type

| ∀(𝑋<:𝑆).𝑇 for-all type

| 𝑆 ∧𝑇 intersection type

| {𝑓 : 𝑇 } record type

| readonly 𝑇 readonly type

Γ ::= Environment
| · empty

| Γ, 𝑥 : 𝑇 term binding

| Γ, 𝑋 <: 𝑇 type binding

𝑙 Location

𝑠, 𝑡 ::= Runtime Terms
| {𝑥1 : 𝑙1, 𝑥2 : 𝑙2, . . .} runtime record

𝑣 ::= Runtime Values
| 𝜆𝑥 .𝑡

| Λ(𝑋 <: 𝑆).𝑡
| {𝑓1 : 𝑙1, 𝑓2 : 𝑙2, . . .}
| seal {𝑓1, 𝑙1, 𝑓2 : 𝑙2, . . .}

𝜎 ::= Store
| · empty

| 𝜎, 𝑙 : 𝑣 cell 𝑙 with value 𝑣

Σ ::= Store Environment
| · empty

| 𝜎, 𝑙 : 𝑇 cell binding

Fig. 2. The syntax of System F<:M.

4.2 System F<:M

To address these issues, we introduce System F<:M, which adds a type system in the style of System

F<: to System 𝜆M. The syntax of System F<:M is given in Figure 2; changes from System F<: are noted
in grey.

System F<:M is a straightforward extension of System F<: with collections of mutable references –

namely, records – and with two new extensions: read-only types and sealed references. To be close

to existing functional languages with subtyping and records, records in System F<:M are modelled

as intersections of single-element record types, to support record subsumption, as in [Amin et al.

2016] and [Reynolds 1997]. See Figures 4 and 5 for full subtyping and typing rules respectively.

Read-only types: The readonly type operator transforms an existing type to a read-only version

of itself. Unlike the read-only mutability qualifier in Javari and ReIm, which is paired with a type to

form a pair of a qualifier and a type, a read-only type in System F<:M is itself a type. The readonly
operator can be seen as the static counterpart of sealing or of deleting setter methods from an

object-oriented class type.

Any type T is naturally a subtype of its readonly counterpart readonly T, which motivates the

choice of System F<: as a base calculus. This subtyping relationship is reflected in the subtyping

rule (mutable). The (seal) typing rule gives a read-only type to sealed references.
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Normal Forms

𝑆,𝑇 ::= Types in normal form
| ∧

𝑖 (𝑅𝑖 ) Intersection of components

𝑅 ::= Normal form type components
| ⊤ Top type

| 𝑆 → 𝑇 Normal function type

| ∀(𝑋 <: 𝑆).𝑇 Normal for-all type

| {𝑓 : 𝑆} Normal record type

| 𝑋 Type variable

| readonly {𝑓 : 𝑆} Read-only normal record type

| readonly 𝑋 Read-only type variable

Fig. 3. Normal forms for System F<:M.

Subtyping Γ ⊢ 𝑆 <: 𝑇

Γ ⊢ 𝑇 <: 𝑇 (refl)

Γ ⊢ 𝑅 <: 𝑆 Γ ⊢ 𝑆 <: 𝑇

Γ ⊢ 𝑅 <: 𝑇
(trans)

𝑋 <: 𝑇 ∈ Γ

Γ ⊢ 𝑋 <: 𝑇
(tvar)

Γ ⊢ 𝑈 <: ⊤ (top)

Γ ⊢ 𝑇1 <: 𝑆1 Γ ⊢ 𝑆2 <: 𝑇2
Γ ⊢ 𝑆1 → 𝑆2 <: 𝑇1 → 𝑇2

(arrow)

Γ ⊢ 𝑇1 <: 𝑆1 Γ, 𝑋 <: 𝑇1 ⊢ 𝑆2 <: 𝑇2
Γ ⊢ ∀(𝑋 <: 𝑆1) .𝑆2 <: ∀(𝑋 <: 𝑇1) .𝑇2

(all)

Γ ⊢ 𝑆 <: 𝑇 Γ ⊢ 𝑇 <: 𝑆

Γ ⊢ {𝑥 : 𝑆} <: {𝑥 : 𝑇 }
(record)

Γ ⊢ 𝑆 <: 𝑇

Γ ⊢ readonly {𝑥 : 𝑆} <: readonly {𝑥 : 𝑇 }
(readonly-record)

Γ ⊢ 𝑆 ∧𝑇 <: 𝑆 (inter-left)

Γ ⊢ 𝑆 ∧𝑇 <: 𝑇 (inter-right)

Γ ⊢ 𝑆 <: 𝑇1 Γ ⊢ 𝑆 <: 𝑇2

Γ ⊢ 𝑆 <: 𝑇1 ∧𝑇2
(inter)

Γ ⊢ 𝑆 <: 𝑇

Γ ⊢ readonly 𝑆 <: readonly 𝑇
(readonly)

Γ ⊢ 𝑆 <: 𝑇

Γ ⊢ 𝑆 <: readonly 𝑇
(mutable)

Γ ⊢ 𝑛𝑓 (𝑆) <: 𝑛𝑓 (𝑇 )
Γ ⊢ 𝑆 <: 𝑇

(denormalize)

Fig. 4. Subtyping rules of System F<:M.
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Typing and Runtime Typing Γ | Σ ⊢ 𝑡 : 𝑇 and Γ | Σ ⊢ 𝜎

𝑥 : 𝑇 ∈ Γ

Γ | Σ ⊢ 𝑥 : 𝑇
(var)

Γ, 𝑥 : 𝑆 ⊢ 𝑡 : 𝑇
Γ | Σ ⊢ 𝜆𝑥.𝑡 : 𝑆 → 𝑇

(abs)

Γ, 𝑋 <: 𝑆 ⊢ 𝑡 : 𝑇
Γ | Σ ⊢ Λ(𝑋 <: 𝑆).𝑡 : ∀(𝑋 <: 𝑆).𝑇

(t-abs)

Γ | Σ ⊢ 𝑡 : 𝑆 → 𝑇 Γ | Σ ⊢ 𝑠 : 𝑆
Γ | Σ ⊢ 𝑡 (𝑠) : 𝑇

(app)

Γ | Σ ⊢ 𝑡 : ∀(𝑋 <: 𝑆) .𝑇 Γ | Σ ⊢ 𝑆 ′ <: 𝑆
Γ | Σ ⊢ 𝑡 [𝑆 ′] : 𝑇 [𝑋 ↦→ 𝑆 ′]

(t-app)

Γ | Σ ⊢ 𝑡𝑖 : 𝑇𝑖
Γ | Σ ⊢ {𝑥𝑖 : 𝑡𝑖 . . .} :

∧
𝑖 {𝑥𝑖 : 𝑇𝑖 }
(record-intro)

Γ | Σ ⊢ 𝑡 : {𝑥 : 𝑇 }
Γ | Σ ⊢ 𝑡 .𝑥 : 𝑇

(record-elim)

Γ | Σ ⊢ 𝑠 : {𝑥 : 𝑇 } Γ ⊢ 𝑡 : 𝑇
Γ | Σ ⊢ 𝑠 .𝑥 = 𝑡 : 𝑇

(record-update)

Γ | Σ ⊢ 𝑠 : 𝑆 Γ ⊢ 𝑆 <: 𝑇

Γ | Σ ⊢ 𝑠 : 𝑇
(sub)

Γ | Σ ⊢ 𝑠 : 𝑆
Γ | Σ ⊢ seal 𝑠 : readonly 𝑆

(seal)

Γ | Σ ⊢ 𝑠 : readonly {𝑥 : 𝑆}
Γ | Σ ⊢ 𝑠 .𝑥 : readonly 𝑆

(readonly-record-elim)

𝑙𝑖 : 𝑇𝑖 ∈ Σ

Γ | Σ ⊢ {𝑥𝑖 : 𝑙𝑖 } :
∧
𝑖

{𝑥𝑖 : 𝑇𝑖 }

(runtime-record)

𝑑𝑜𝑚(𝜎) = 𝑑𝑜𝑚(Σ) ∀𝑙 ∈ 𝑑𝑜𝑚(Σ), Γ | Σ ⊢ 𝜎 (𝑙) : Σ(𝑙)
Γ | Σ ⊢ 𝜎

(store)

Fig. 5. Typing rules for System F<:M

Static viewpoint adaptation: The (readonly-record-elim) rule is a static counterpart of

the (sealed-field) reduction rule. Given a reference 𝑠 to a record with read-only type, it gives a

read-only type to the result of a read 𝑠 .𝑥 of a field 𝑥 from that reference. If 𝑆 is the type of field 𝑥 in

the record type given to 𝑠 , the rule viewpoint-adapts the type, giving 𝑠 .𝑥 the type readonly 𝑆 .

4.2.1 Normal Forms for Types. In System F<:M, readonly is a type operator that can be applied to

any type, which enables us to express types such as readonly 𝑋 , where 𝑋 is some type variable

of unknown mutability. However, if 𝑋 is itself instantiated with some readonly type readonly 𝑇 ,
the type readonly 𝑋 becomes readonly readonly 𝑇 , with two occurrences of the type operator.

Intuitively, such a type should have the same meaning as readonly 𝑇 .
Additionally, certain types should be equivalent under subtyping. For example, for both backwards

compatibility and simplicity, arrow 𝑆 → 𝑇 and for-all types ∀(𝑋 <: 𝑆).𝑇 should be equivalent under

subtyping to their read-only forms readonly (𝑆 → 𝑇 ) and readonly (∀(𝑋 <: 𝑆).𝑇 ), respectively,
as well.
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Normalization 𝑛𝑓 (𝑇 ) and𝑚𝑒𝑟𝑔𝑒 (𝑇 )

𝑛𝑓 (𝑇 ) ::= Normalization
| ⊤ => ⊤
| 𝑋 => 𝑋

| 𝑆 → 𝑇 => 𝑛𝑓 (𝑆) → 𝑛𝑓 (𝑇 )
| ∀(𝑋 <: 𝑆).𝑇 => ∀(𝑋 <: 𝑛𝑓 (𝑆)).𝑛𝑓 (𝑇 )
| 𝑆 ∧𝑇 => 𝑛𝑓 (𝑆) ∧ 𝑛𝑓 (𝑇 )
| {𝑓 : 𝑇 } => {𝑓 : 𝑛𝑓 (𝑇 )}
| readonly 𝑇 => 𝑚𝑒𝑟𝑔𝑒 (𝑇 )

𝑚𝑒𝑟𝑔𝑒 (𝑇 ) ::= Merging
| 𝑋 => readonly 𝑋
| {𝑓 : 𝑇 } => readonly {𝑓 : 𝑇 }
| 𝑆 ∧𝑇 => 𝑚𝑒𝑟𝑔𝑒 (𝑆) ∧𝑚𝑒𝑟𝑔𝑒 (𝑇 )
| _ => 𝑇

Fig. 6. Normalizing Types for System F<:M.

Having multiple representations for the same type, even infinitely many, complicates reasoning

about the meanings of types and proofs of soundness. Therefore, we define a canonical representa-

tion for types as follows:

Definition 4.1. A type 𝑇 is in normal form if:

(1) 𝑇 is the top type ⊤.
(2) 𝑇 is a function type 𝑆1 → 𝑆2, where 𝑆1 and 𝑆2 are in normal form.

(3) 𝑇 is an abstraction type ∀(𝑋 <: 𝑆1).𝑆2, where 𝑆1 and 𝑆2 are in normal form.

(4) 𝑇 is an intersection type 𝑆1 ∧ 𝑆2, where 𝑆1 and 𝑆2 are in normal form.

(5) 𝑇 is a record type {𝑥 : 𝑆}, where 𝑆 is in normal form.

(6) 𝑇 is a read-only record type readonly {𝑥 : 𝑆}, where 𝑆 is in normal form.

(7) Type variables 𝑋 and read-only type variables readonly 𝑋 are in normal form.

A type in normal form is simple – it is an intersection of function, abstraction, and record types,

each possibly modified by a single readonly operator. For example, {𝑥 : 𝑋 } ∧ readonly {𝑦 : 𝑌 }
is in normal form. The type readonly ({𝑥 : 𝑋 } ∧ {𝑦 : 𝑌 }) is not. A grammar for types in normal

form can be found in Figure 3.

This allows us to reason about both the shape of the underlying value being typed, and whether

or not it has been modified by a readonly operator. Naturally we need a theorem which states that

every type has a normal form and a function 𝑛𝑓 to compute that normal form. Such a function 𝑛𝑓

is shown in Figure 6. Normalization both computes a normal form and is idempotent – a type in

normal form normalizes to itself.

Lemma 4.2. For any type 𝑇 , 𝑛𝑓 (𝑇 ) is in normal form. Moreover, if 𝑇 is in normal form, 𝑛𝑓 (𝑇 ) = 𝑇 .

Moreover, types are equivalent to their normalized forms under the subtyping relationship.

Lemma 4.3. Γ | Σ ⊢ 𝑛𝑓 (𝑇 ) <: 𝑇 and Γ | Σ ⊢ 𝑇 <: 𝑛𝑓 (𝑇 ).
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Proof. For one direction, note that 𝑛𝑓 (𝑛𝑓 (𝑇 )) = 𝑛𝑓 (𝑇 ), and hence 𝑛𝑓 (𝑛𝑓 (𝑇 )) <: 𝑛𝑓 (𝑇 ). Ap-
plying (denormalize) allows us to show that 𝑛𝑓 (𝑇 ) <: 𝑇 , as desired. The other case follows by a

symmetric argument. □

Not only does this allow us to simplify types to a normal form, this also allows us to state and

prove canonical form lemmas and inversion lemmas, necessary for preservation and progress:

Theorems 4.9 and 4.11. Below we give examples for record types. Similar lemmas exist and are

mechanized for function types and type-abstraction types as well.

Lemma 4.4 (Inversion of Record Subtyping). If 𝑆 is a subtype of {𝑓 : 𝑇 ′}, and 𝑆 is in normal

form, then at least one of its components is a type variable 𝑋 or a record type {𝑓 : 𝑆 ′}, where
Γ ⊢ 𝑇 ′ <: 𝑆 ′ <: 𝑇 ′

.

Lemma 4.5 (Canonical Forms for Records). If 𝑣 is a value and ∅ | Σ ⊢ 𝑣 : {𝑓 : 𝑇 }, then 𝑣 is a
record and 𝑓 is a field of 𝑣 that maps to some location 𝑙 .

Lemma 4.6 (Inversion of Read-Only Record Subtyping). If 𝑆 is a subtype of readonly {𝑓 : 𝑇 ′},
and 𝑆 is in normal form, then at least one of its components is a type variable 𝑋 , read-only type

variable readonly 𝑋 , a record type {𝑓 : 𝑆 ′} where Γ ⊢ 𝑇 ′ <: 𝑆 ′ <: 𝑇 ′
, or a read-only record type

readonly {𝑓 : 𝑆 ′} where Γ ⊢ 𝑇 ′ <: 𝑆 ′ <: 𝑇 ′
.

Lemma 4.7 (Canonical Forms for Read-Only Records). If 𝑣 is a value and ∅ | Σ ⊢ 𝑣 :

readonly {𝑓 : 𝑇 }, then 𝑣 is a record or a sealed record and 𝑓 is a field of 𝑣 that maps to some

location 𝑙 .

Note that normalization is necessary to state the inversion lemmas for read-only records, as

readonly {𝑓 : 𝑇 ′}, readonly readonly {𝑓 : 𝑇 ′}, etc, give an infinite series of syntactically in-

equivalent but semantically equivalent types describing the same object – a read-only record where

field 𝑓 has type 𝑇 ′
.

4.2.2 Operational Safety. Operationally, we give small-step reduction semantics coupled with a

store to System F<:M in Figure 7.

Again, these rules are a straightforward extension of System F<: with mutable boxes and records,

with additional rules for reducing sealed records. To prove progress and preservation theorems, we

additionally need to ensure that the store 𝜎 itself is well typed in the context of some store typing

environment Σ – see rule (store).

The crux of preservation for System F<:M is to show that sealed records are never given a

non-read-only type, so that the typing rule for reading from a mutable record – (record-elim) –

cannot be applied to sealed record values.

Lemma 4.8. Suppose Γ | Σ ⊢ seal 𝑟 : 𝑇 for some record 𝑟 . If𝑇 is in normal form, then the components

of 𝑇 are:

• The top type ⊤, or
• a read-only record type readonly {𝑓 : 𝑇 ′}.

From this key result we can show that preservation holds for System F<:M.

Theorem 4.9 (Preservation of System F<:M). Suppose ⟨𝑠, 𝜎⟩ −→ ⟨𝑡, 𝜎 ′⟩. If Γ | Σ ⊢ 𝜎 and

Γ | Σ ⊢ 𝑠 : 𝑇 for some type 𝑇 , then there is some environment extension Σ′
of Σ such that Γ | Σ′ ⊢ 𝜎 ′

and Γ | Σ′ ⊢ 𝑡 : 𝑇 .

Conversely, values given a non-read-only record typemust be an unsealed collection of references.
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Evaluation ⟨𝑠, 𝜎⟩ −→ ⟨𝑡, 𝜎 ′⟩

⟨(𝜆𝑥 .𝑡) (𝑣), 𝜎⟩ −→ ⟨𝑡 [𝑥 ↦→ 𝑣], 𝜎⟩ (beta-v)

𝑙𝑖 ∉ 𝜎

⟨{𝑥𝑖 : 𝑣𝑖 }, 𝜎⟩ −→ ⟨{𝑥𝑖 : 𝑙𝑖 }, (𝜎, 𝑙1 : 𝑣1, 𝑙2 : 𝑣2, . . .)⟩
(record-store)

𝑙 : 𝑣 ∈ 𝜎

⟨{. . . 𝑥 : 𝑙 . . .}.𝑥, 𝜎⟩ −→ ⟨𝑣, 𝜎⟩
(field)

𝑙 : 𝑣 ∈ 𝜎

⟨{. . . 𝑥 : 𝑙 . . .}.𝑥 = 𝑣 ′, 𝜎⟩ −→ ⟨𝑣, 𝜎 [𝑙 ↦→ 𝑣 ′]⟩
(write-field)

⟨(Λ(𝑋 <: 𝑆) .𝑡) [𝑇 ], 𝜎⟩ −→ ⟨𝑡 [𝑋 ↦→ 𝑇 ], 𝜎⟩
(beta-T)

𝑙 : 𝑣 ∈ 𝜎

⟨ (seal {. . . 𝑥 : 𝑙 . . .}) .𝑥, 𝜎⟩ −→ ⟨ seal 𝑣 , 𝜎⟩
(sealed-field)

⟨ seal (𝜆𝑥 .𝑡) , 𝜎⟩ −→ ⟨𝜆𝑥 .𝑡, 𝜎⟩
(seal-elim-abs)

⟨ seal (Λ(𝑋 <: 𝑆).𝑡) , 𝜎⟩ −→ ⟨Λ(𝑋 <: 𝑆) .𝑡, 𝜎⟩
(seal-elim-tabs)

⟨ seal seal 𝑣 , 𝜎⟩ −→ ⟨seal 𝑣, 𝜎⟩
(seal-elim-multiple)

⟨𝑠, 𝜎⟩ −→ ⟨𝑡, 𝜎′⟩
⟨𝐸 [𝑠], 𝜎⟩ −→ ⟨𝐸 [𝑡], 𝜎′⟩

(context)

𝐸 ::= [] | 𝐸 (𝑡) | 𝑣 (𝐸) | 𝐸 [𝑇 ] Evaluation Context
| {𝑥0 : 𝑣0, . . . , 𝑥𝑖 : 𝐸, 𝑥𝑖+1 : 𝑡𝑖+1, . . .}
| 𝐸.𝑥

| 𝐸.𝑥 = 𝑡 | 𝑣 .𝑥 = 𝐸

| seal 𝐸

Fig. 7. Reduction rules for System F<:M

Lemma 4.10. Suppose ∅ | Σ ⊢ 𝑣 : {𝑓 : 𝑇 } for runtime value 𝑣 . Then 𝑣 is an unsealed runtime record

where field 𝑓 maps to some location 𝑙 .

This lemma is needed to prove progress.

Theorem 4.11 (Progress for System F<:M). Suppose ∅ | Σ ⊢ 𝜎 and ∅, Σ ⊢ 𝑠 : 𝑇 . Then either 𝑠 is a

value or there is some 𝑡 and 𝜎 ′
such that ⟨𝑠, 𝜎⟩ −→ ⟨𝑡, 𝜎 ′⟩.

5 STATIC IMMUTABILITY SAFETY
Armed with Progress and Preservation, we can state immutability safety for full System F<:M. System
𝜆M allows us to show that sealed records are never used to mutate their underlying referenced values.

System F<:M shows that well-typed programs using seals do not get stuck. To prove immutability

safety for System F<:M, one problem still remains – System F<:M allows records that are not sealed
to be given a read-only type. We still need to show that records with such a type are not used to

mutate their values. In other words, we need to show that records with a read-only type could be

sealed, and that the resulting program would execute in the same way.

We will do this by showing that, given an original, well-typed System F<:M program 𝑠 , we can add

seals to its read-only subterms to obtain a new, well-typed System F<:M program 𝑡 , and furthermore

that 𝑡 behaves the same way as 𝑠 , up to having additional seals in the resulting state.

The first step is to show that sealing does not disturb the typing judgment for terms.

Lemma 5.1. Suppose Γ | Σ ⊢ 𝑡 : readonly 𝑇 . Then Γ | Σ ⊢ seal 𝑡 : readonly 𝑇 .
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Proof. By (seal), Γ | Σ ⊢ seal 𝑡 : readonly readonly 𝑇 . Then since readonly readonly 𝑇 <:

readonly 𝑇 , by (sub), Γ | Σ ⊢ seal 𝑡 : readonly 𝑇 , as desired. □

From this, given a term 𝑠 and a typing derivation for 𝑠 , 𝐷 = Γ | Σ ⊢ 𝑠 : 𝑇 , we can seal those

subterms of 𝑠 that are given a read-only type in 𝐷 .

Lemma 5.2. Let 𝐶 be a term context with 𝑛 holes, and let 𝑠 = 𝐶 [𝑠1, 𝑠2, 𝑠3, . . . , 𝑠𝑛] be a term. Suppose

𝐷 is a typing derivation showing that Γ | Σ ⊢ 𝑠 : 𝑇 . Suppose also that 𝐷 gives each subterm 𝑠𝑖 of 𝑠 a

type readonly 𝑇𝑖 . Then 𝑠
′ = 𝑠 [seal 𝑠1, seal 𝑠2, . . . , seal 𝑠𝑛] has the following properties:

(1) 𝑠 ≤ 𝑠′, and
(2) There exists a typing derivation 𝐷 ′

showing that Γ | Σ ⊢ 𝑠′ : 𝑇 as well.

Proof. (1) is by definition. As for (2), to construct 𝐷 ′
, walk through the typing derivation 𝐷

showing that Γ | Σ ⊢ 𝑠 : 𝑇 . When we reach the point in the typing derivation that shows that 𝑠𝑖
is given the type readonly 𝑇𝑖 , note that seal 𝑠𝑖 can also be given the type readonly 𝑇𝑖 by the

derivation given by Lemma 5.1. Replace the sub-derivation in 𝐷 with the derivation given by

Lemma 5.1 to give a derivation in 𝐷 ′
for seal 𝑠𝑖 , as desired. □

This motivates the following definition.

Definition 5.3. Let 𝑠 be a term and let 𝐷 = Γ | Σ ⊢ 𝑠 : 𝑇 be a typing derivation for 𝑠 . Define

crest(𝑠, 𝐷) to be the term constructed from 𝑠 by replacing all subterms 𝑠𝑖 of 𝑠 given a read-only

type in 𝐷 by seal 𝑠𝑖 .

A crested term essentially seals any sub-term of the original term that is given a read-only type

in a particular typing derivation. By definition, for any term 𝑠 and typing derivation 𝐷 for 𝑠 , we

have 𝑠 ≤ crest(𝑠, 𝐷). Moreover, a crested term can be given the same type as its original term as

well.

Lemma 5.4. Let 𝑠 be a term and let 𝐷 = Γ | Σ ⊢ 𝑠 : 𝑇 be a typing derivation for 𝑠 . Then 𝑠 ≤
crest(𝑠, 𝐷), and there exists a typing derivation showing that Γ | Σ ⊢ crest(𝑠, 𝐷) : 𝑇 as well.

Now by progress – Theorem 4.11 – we have that for any well typed term 𝑠 with typing derivation

𝐷 = ∅ | Σ ⊢ 𝑠 : 𝑇 , its protected – crested – version crest(𝑠, 𝐷) will also step. By preservation –

Theorem 4.9 – we have that crest(𝑠, 𝐷) either eventually steps to a value or runs forever, but never
gets stuck. It remains to relate the reduction steps of crest(𝑠, 𝐷) to those of 𝑠 , and specifically

to show that if one reduces to some specific value and store, then the other also reduces to an

equivalent pair of value and store.

We will do so by using the dynamic immutability safety properties proven in Section 3. System

F<:M satisfies the same sealing-equivalence properties as System 𝜆M – seals do not affect reduction,

except perhaps by introducing other seals. The following are analogues of Lemmas 3.4, 3.5, and 3.6

for System F<:M.

Lemma 5.5. Let 𝑣 be a value, 𝜎𝑣 be a store, 𝑡 be a term such that 𝑣 ≤ 𝑡 , and 𝜎𝑡 be a store such that

𝜎𝑣 ≤ 𝜎𝑡 .

If ⟨𝑡, 𝜎𝑡 ⟩ −→ ⟨𝑡 ′, 𝜎 ′
𝑡 ⟩ then 𝑣 ≤ 𝑡 ′, 𝜎𝑣 ≤ 𝜎 ′

𝑡 , and |𝑡 ′ | < |𝑡 |.
Lemma 5.6. Let 𝑠, 𝑡 be terms such that 𝑠 ≤ 𝑡 and let 𝜎𝑠 , 𝜎𝑡 be stores such that 𝜎𝑠 ≤ 𝜎𝑡 . If ⟨𝑠, 𝜎𝑠⟩ −→

⟨𝑠′, 𝜎 ′
𝑠⟩ and ⟨𝑡, 𝜎𝑡 ⟩ −→ ⟨𝑡 ′, 𝜎 ′

𝑡 ⟩ then:
(1) Either 𝑠 ≤ 𝑡 ′, 𝜎𝑠 ≤ 𝜎 ′

𝑡 , and |𝑡 ′ | < |𝑡 |, or
(2) 𝑠′ ≤ 𝑡 ′ and 𝜎 ′

𝑠 ≤ 𝜎 ′
𝑡 .

Lemma 5.7. Let 𝑠, 𝑡 be terms such that 𝑠 ≤ 𝑡 and let 𝜎𝑠 , 𝜎𝑡 be stores such that 𝜎𝑠 ≤ 𝜎𝑡 . If ⟨𝑡, 𝜎𝑡 ⟩ −→
⟨𝑡 ′, 𝜎 ′

𝑡 ⟩ then:
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(1) Either 𝑠 ≤ 𝑡 ′, 𝜎𝑠 ≤ 𝜎 ′
𝑡 , and |𝑡 ′ | < |𝑡 |, or

(2) There exists 𝑠′ and 𝜎 ′
𝑠 such that ⟨𝑠, 𝜎𝑠⟩ −→ ⟨𝑠′, 𝜎 ′

𝑠⟩, 𝑠′ ≤ 𝑡 ′ and 𝜎 ′
𝑠 ≤ 𝜎 ′

𝑡 .

Stepping back, we can see using Lemma 5.6 that one step of 𝑠 to a term 𝑠′ corresponds to finitely

many steps of crest(𝑠, 𝐷); every step that crest(𝑠, 𝐷) takes either removes a seal or corresponds
to a reduction step that 𝑠 originally took. Hence crest(𝑠, 𝐷) eventually steps to a term 𝑡 ′ such that

𝑠′ ≤ 𝑡 ′, preserving the desired equivalence of reduction between 𝑠 and crest(𝑠, 𝐷). The following
is a generalization of the previous statement to two arbitrarily chosen well-typed terms 𝑠 and 𝑡

satisfying 𝑠 ≤ 𝑡 .

Lemma 5.8. Suppose ∅, Σ ⊢ 𝜎𝑠 and ∅, Σ ⊢ 𝑠 : 𝑇 . Suppose ⟨𝑠, 𝜎𝑠⟩ −→ ⟨𝑠′, 𝜎 ′
𝑠⟩. For 𝜎𝑠 ≤ 𝜎𝑡 , and

𝑠 ≤ 𝑡 , such that Γ, Σ ⊢ 𝜎𝑠 and Γ, Σ ⊢ 𝑡 : 𝑇 , we have that ⟨𝑡, 𝜎𝑡 ⟩ −→∗ ⟨𝑡 ′, 𝜎 ′
𝑡 ⟩ where 𝑠′ ≤ 𝑡 ′ and

𝜎 ′
𝑠 ≤ 𝜎 ′

𝑡 .

Proof. From Theorem 4.11 we have that there exists a 𝑡 ′ and 𝜎 ′
𝑡 that ⟨𝑡, 𝜎𝑡 ⟩ −→ ⟨𝑡 ′, 𝜎 ′

𝑡 ⟩. By
Lemma 5.6 we have that either 𝑠 ≤ 𝑡 ′, 𝜎𝑠 ≤ 𝜎 ′

𝑡 , and |𝑡 ′ | < |𝑡 |, or that 𝑠′ ≤ 𝑡 ′ and 𝜎 ′
𝑠 ≤ 𝜎 ′

𝑡 . If 𝑠
′ ≤ 𝑡 ′

and 𝜎 ′
𝑠 ≤ 𝜎 ′

𝑡 we are done. Otherwise, observe that since |𝑡 ′ | < |𝑡 |, a seal was removed. This can only

occur a finite number of times, as 𝑡 and 𝑡 ′ have at most a finite number of seals, so we can simply

loop until we obtain a 𝑡 ′ and 𝜎 ′
𝑡 such that 𝑠′ ≤ 𝑡 ′ and 𝜎 ′

𝑠 ≤ 𝜎 ′
𝑡 . Note that Preservation – Theorem

4.9 allows us to do so as each intermediate step 𝑡 ′ can be given the same type Γ | Σ ⊢ 𝑡 ′ : 𝑇 . □

Finally, when 𝑠 eventually reduces to a value 𝑣 , we can use Lemma 5.5 to show that crest(𝑠, 𝐷)
reduces to a similar value 𝑣 ′ as well. Again, the following is a generalization of the previous

statement to two arbitrarily chosen well-typed terms 𝑠 and 𝑡 satisfying 𝑠 ≤ 𝑡 .

Lemma 5.9. Suppose∅, Σ ⊢ 𝜎𝑠 and∅, Σ ⊢ 𝑠 : 𝑇 such that 𝑠 eventually reduces to a value 𝑣𝑠 – namely,

that ⟨𝑠, 𝜎𝑒⟩ −→∗ ⟨𝑣𝑠 , 𝜎 ′
𝑠⟩ for some 𝜎 ′

𝑠 .

Then for any 𝑡 such that 𝑠 ≤ 𝑡 and ∅, Σ ⊢ 𝑡 : 𝑇 , we have that 𝑡 eventually reduces to some value 𝑣𝑡 ,

– namely ⟨𝑡, 𝜎𝑒⟩ −→∗ ⟨𝑣𝑡 , 𝜎 ′
𝑡 ⟩, such that 𝑣𝑠 ≤ 𝑣𝑡 and 𝜎

′
𝑠 ≤ 𝜎 ′

𝑡 .

Proof. For each step in the multi-step reduction from ⟨𝑠, 𝜎𝑒⟩ −→∗ ⟨𝑣𝑠 , 𝜎 ′
𝑠⟩ we can apply Lemma

5.8 to show that ⟨𝑡, 𝜎𝑡 ⟩ eventually reduces to ⟨𝑡 ′, 𝜎 ′
𝑡 ⟩ where 𝑣𝑠 ≤ 𝑡 ′ and 𝜎 ′

𝑠 ≤ 𝜎 ′
𝑡 . Now by Theorem

4.11 and Lemma 5.5 we have that either 𝑡 ′ is a value, in which case we are done, or that ⟨𝑡 ′, 𝜎 ′
𝑡 ⟩

steps to ⟨𝑡 ′′, 𝜎 ′
𝑠⟩ where 𝑣𝑠 ≤ 𝑡 ′′. Again, we can only take a finite number of steps of this fashion as

the rule which reduces 𝑡 ′ −→ 𝑡 ′′ can only be one that removed a seal, so eventually we obtain

a value 𝑣𝑠 such that ⟨𝑡, 𝜎𝑠⟩ −→∗ ⟨𝑣𝑡 , 𝜎 ′
𝑡 ⟩ with 𝑣𝑠 ≤ 𝑣𝑡 , and 𝜎 ′

𝑠 ≤ 𝜎 ′
𝑡 , as desired. Again, note that

Preservation – Theorem 4.9 allows us to do so as each intermediate step 𝑡 ′ can be given the same

type Γ | Σ ⊢ 𝑡 ′ : 𝑇 . □

Now from Lemma 5.9 we obtain our desired immutability safety results as a consequence –

namely, given a well-typed term 𝑠 that reduces to a value 𝑣𝑠 , any references in 𝑠 with a readonly
type are never actually mutated, since they can be transparently sealed (which does not change the

typing) to no ill effect. Formally, our main result is:

Theorem 5.10. Suppose 𝑠 is a term, 𝐷 = ∅ | Σ ⊢ 𝑠 : 𝑇 is a typing derivation for 𝑠 , and let 𝜎𝑠 be

some initial store such that ∅ | Σ ⊢ 𝜎𝑠 . Then:
• crest(𝑠, 𝐷) can be given the same type as 𝑠 – ∅ | Σ ⊢ 𝑐𝑟𝑒𝑠𝑡 (𝑠, 𝐷) : 𝑇 .

Moreover, if ⟨𝑠, 𝜎𝑠⟩ −→∗ ⟨𝑣𝑠 , 𝜎 ′
𝑠⟩, for some value 𝑣𝑠 , then:

• crest(𝑠, 𝐷) will reduce to a value 𝑣𝑡 – ⟨𝑐𝑟𝑒𝑠𝑡 (𝑠, 𝐷), 𝜎𝑒⟩ −→∗ ⟨𝑣𝑡 , 𝜎 ′
𝑡 ⟩, such that

• 𝑣𝑡 and 𝜎 ′
𝑡 are equivalent to 𝑣𝑠 and 𝜎 ′

𝑠 , modulo additional seals – namely, that 𝑣𝑠 ≤ 𝑣𝑡 and

𝜎 ′
𝑠 ≤ 𝜎 ′

𝑡 .
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Finally, it is useful to show that the converse result is also true; seals can be safely removed

without affecting reduction. First note that seals themselves can be transparently removed without

affecting the types assigned to the term.

Lemma 5.11. Suppose Γ | Σ ⊢ seal 𝑠 : 𝑇 . Then Γ | Σ ⊢ 𝑠 : 𝑇 .
Moreover, the following analogue of Lemma 3.8 holds in System F<:M.

Lemma 5.12. Suppose 𝑠 and 𝑡 are terms such that 𝑠 ≤ 𝑡 . If ⟨𝑡, 𝜎𝑡 ⟩ −→∗ ⟨𝑣𝑡 , 𝜎 ′
𝑡 ⟩ for some value 𝑣𝑡 ,

then for any 𝜎𝑠 ≤ 𝜎𝑡 we have ⟨𝑠, 𝜎𝑠⟩ −→∗ ⟨𝑣𝑠 , 𝜎 ′
𝑠⟩ such that 𝑣𝑠 ≤ 𝑣𝑡 and 𝜎

′
𝑠 ≤ 𝜎 ′

𝑡 .

While Lemma 5.12 is enough to show when 𝑠 ≤ 𝑡 , if 𝑡 reduces to a value then so does 𝑠 , we need

Lemma 5.13 to reason about the types of 𝑠 and 𝑣𝑠 .

Lemma 5.13. Suppose 𝑠 and 𝑡 are terms such that 𝑠 ≤ 𝑡 . If ⟨𝑡, 𝜎𝑡 ⟩ −→∗ ⟨𝑣𝑡 , 𝜎 ′
𝑡 ⟩ for some value 𝑣𝑡 ,

then for any 𝜎𝑠 ≤ 𝜎𝑡 we have ⟨𝑠, 𝜎𝑠⟩ −→∗ ⟨𝑣𝑠 , 𝜎 ′
𝑠⟩ for some value 𝑣𝑠 such that 𝑣 ′𝑠 ≤ 𝑣 ′𝑠 and 𝜎

′
𝑠 ≤ 𝜎 ′

𝑡 .

Moreover, Γ | Σ ⊢ 𝑠 : 𝑇 and Γ | (Σ′, Σ) ⊢ 𝑣𝑠 : 𝑇 for some Σ′
as well.

Proof. By Lemma 5.11 we can show that Γ | Σ ⊢ 𝑠 : 𝑇 . By Lemma 5.12 we have that 𝑣 reduces to

some value 𝑣𝑠 . By preservation – Theorem 4.9 we have that 𝑣𝑠 has type 𝑇 , as desired. □

6 MECHANIZATION
Our mechanization of System F<:M is based on the mechanization of System F<: by Aydemir et al.

[2008]. Our mechanization is a faithful model of System F<:M as described in this paper except for one
case. To facilitate mechanization, reduction in our mechanization is done via explicit congruence

rules in each reduction rule instead of an implicit rule for reducing inside an evaluation context,

similar to how Aydemir et al. [2008] originally mechanize System F<: as well.
Proofs for all lemmas except for Theorem 5.10 and Lemmas 3.9, 5.2, and 5.4 have been mechanized

using Coq 8.15 in the attached artifact. Theorem 5.10 and Lemmas 5.2, 5.4, and 5.13 have not been

mechanized as they require computation on typing derivations which is hard to encode in Coq

as computation on Prop cannot be reflected into Set. Lemma 3.9 has been omitted from our

mechanization as it is hard to formally state, let alone prove, in a setting where reduction is done

by congruence, though it almost follows intuitively from how the reduction rules are set up.

As the proofs of Lemmas 5.5, 5.6, 5.7, and 5.12 do not rely on any extra structure present in

System F<:M over System 𝜆M, proofs for their System 𝜆M analogues Lemmas 3.4, 3.5, 3.6, and 3.8 have

been omitted, as they can be recovered by erasing the appropriate cases from their System F<:M
analogues.

7 RELATED AND FUTUREWORK
7.1 Limitations – Parametric Mutability Polymorphism
Unlike other systems, System F<:M does not support directly mutability polymorphism, neither

through a restricted @polyread modifier as seen in Huang et al. [2012], nor through explicit

mutability variables as seen in Gordon et al. [2012].

This is a true limitation of System F<:M, however, we note that it is possible to desugar parametric

mutability polymorphism from a surface language into a core calculus like System F<:M. As Huang
et al. [2012] point out in their work, parametric mutability polymorphism can be desugared via

overloading, noting that overloading itself can be dealt with in a surface language before desugaring

into a base calculus, as seen before with Featherweight Java [Igarashi et al. 2001].

For example, consider the following top-level parametric function, access, which is parametric

on mutability variable M:

def access[M](z: [M] Pair[Pair[Int]]): M Pair[Int] = { z.first }
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This function can be rewritten instead as two functions with the same name access, one taking in

a regular, mutable pair, and one taking in a a readonly pair:

def access(z: Pair[Pair[Int]]): Pair[Int] = { z.first }

def access(@readonly z: Pair[Pair[Int]]): @readonly Pair[Int] = { z.first }

Nested and first-class functions are a little trickier but one can view a polymorphic, first-class

function value as a read-only record packaging up both overloads.

{

access: (z: Pair[Pair[Int]]) => { z.first },

access: (@readonly z: Pair[Pair[Int]]) => { z.first }

}

It would be interesting future work to see how one could add parametric mutability polymorphism

to System F<:M.

7.2 Future Work – Algorithmic Subtyping
The subtyping rules of System F<:M are fairly involved and it is difficult to see if an algorithmic

subtyping system could be devised.Wewould conjecture that one could do so, using techniques from

Muehlboeck and Tate [2018]’s integrated subtyping work, but nonetheless algorithmic subtyping

for System F<:M remains an interesting and open problem.

7.3 Viewpoint Adaptation
Viewpoint adaptation has been used in reference immutability systems to denote the type-level

adaptation which is enforced to guarantee transitive immutability safety. When a field 𝑟 .𝑓 is read

from some record 𝑟 , the mutability of the resulting reference needs to be adapted from both the

mutability of 𝑟 and from the type of 𝑓 in the record itself. While this notion of adaptation was

known as early as Javari [Tschantz and Ernst 2005], the term “viewpoint adaptation” was first

coined by Dietl et al. [2007]. They realized that this notion of adaptation could be generalized

to arbitrary qualifiers – whether or not the type of a field read 𝑟 .𝑓 should be qualified by some

qualifier @𝑞 should depend on whether or not 𝑓 ’s type is qualified and whether or not 𝑟 ’s type is

qualfied as well – and used it to implement an ownership system for Java references in order to

tame aliasing in Java programs.

7.4 Reference Immutability
Reference immutability has long been studied in the context of existing object-oriented languages

such as Java and C#, and more recently has been studied in impure, functional languages like Scala.

roDOT [Dort and Lhoták 2020]: roDOT extends the calculus of Dependent Object Types [Amin

et al. 2016] with support for reference immutability. In their system, immutability constraints are

expressed through a type member field 𝑥 .𝑀 of each object, where 𝑥 is mutable if and only if𝑀 ≤ ⊥,
and 𝑥 is read-only if and only if𝑀 ≥ ⊤. Polymorphism in roDOT is out of all reference immutability

systems closest to how polymorphism is done in System F<:M. Type variables quantify over full

types, and type variables can be further restricted to be read-only as in System F<:M. Constructing a
read-only version of a type, like how we use readonly in System F<:M, is done in roDOT by taking

an intersection with a bound on the type member𝑀 . For example, inplace_map from before could

be expressed in roDOT using an intersection type to modify immutability on the type variable X:

def inplace_map[X](Pair[X]: pair , f: (X & {M :> Any}) => X): Unit

Dort et. al. also prove that roDOT respects immutability safety, but with different techniques than

how we show immutability safety in System F<:M. Instead of giving operational semantics with
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special forms that guard references from being mutated, and relying on progress and preservation

to imply static safety, they take a different approach and show instead that values on the heap

that change during reduction must be reachable by some statically-typed mutable reference in the

initial program. roDOT is a stronger system than System F<:M, as in particular mutabilities can be

combined. For example, one could write a generic getF function which reads a field f out of any
record that has f as a field polymorphic over both the mutabilities of the record x and the field f:

def getF[T](x: {M: *, f : T}) : T & {M :> x.M} = x.f

Here, the return type of getF will give the proper, tightest, viewpoint-adapted type for reading x.f
depending on both the mutabilities of x and f. This is not directly expressible in System F<:M and
can only be expressed using overloading:

def getF[T](x: @readonly {f : T}): @readonly T = x.f

def getF[T](x: {f : T}) : T = x.f

However, in contrast, roDOT is significantly more complicated than System F<:M.

Immutability for C# [Gordon et al. 2012]: Of all the object calculi with reference immutability

the calculus of Gordon et al. [2012] is closest to that of roDOT in terms of flexibility. Polymorphism

is possible over both mutabilities and types in Gordon’s system, but must be done separately; type

variables instead quantify over base types that have not been qualified with some immutability

annotation, whether that be read-only or mutable. The inplace_map function that we discussed

earlier would be expressed with both a base-type variable as well as a mutability variable:

def inplace_map[M, X](Pair[M X]: pair , f: @readonly X => M X): Unit

Like roDOT, Gordon’s system also allows for mutability annotations to be combined in types, in

effect allowing viewpoint adaptation to be expressed at the type level using the mutability operator

~>. For example, getF could be written as the following in Gordon’s system:

def getF[MS , MT, T, S <: {f : MT T}](x: MS S) : (MS ~> MT) T = x.f

Unlike roDOT however, which allows for inferences to be drawn about the mutability of the type

(T & {M :> x.M}).M depending on the bounds on 𝑇 and 𝑆 , the only allowable judgment we can

draw about MS ~> MT is that it can be widened to @readonly. We cannot conclude, for example,

that MS ~> MT <: M in the following, even though both MS <: M and MT <: M:

def getF[M, MS <: M, MT <: M, T, S <: {f : MT T}](x: MS S) : (MS ~> MT) T = x.

f

Gordon et. al. also demonstrate the soundness and immutability safety of their system but through

an embedding into a program logic [Dinsdale-Young et al. 2013].

Javari [Tschantz and Ernst 2005]: Reference immutability was first modelled in the context

of Java; Javari is the earliest such extension. In Javari’s formalization, Lightweight Javari, type

variables X stand in for either other type variables, class types, and readonly-qualified class types.

Unlike roDOT and System F<:M, in Lightweight Javari, type variables cannot be further qualified
by the readonly type qualifier. Lightweight Javari, however, does support parametric mutability

polymorphism for class types, but does not support parametric mutability polymorphism directly

on methods. Instead, limited parametric mutability method polymorphism in Javari, denoted with

the keyword romaybe, is desugared using overloading into the two underlying methods handling

the read-only case and the mutable case replacing romaybe in the source. Our earlier example,

getF, can be written using romaybe as follows:
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class HasF <T> {

T f;

romaybe T getF() romaybe { return f; }

}

However, this example is inexpressible in the core calculus Lightweight Javari, as @readonly T is

ill-formed. As for safety, immutability safety is done in Lightweight Javari through a case analysis

on how typed Lightweight Javari program terms can reduce. [Tschantz and Ernst 2005] claim that

the soundness of Lightweight Javari reduces to showing the soundness of Lightweight Java, but no

formal proof is given.

ReIm: [Huang et al. 2012]: ReIm simplifies Javari to enable fast, scalable mutability inference

and analysis. Like Javari, ReIm supports two type qualifiers – readonly and polyread, where
readonly marks a read-only type and polyread is an analogue of romaybe from Javari. Like

Lightweight Javari, and unlike roDOT and System F<:M, ReIm restricts how qualifiers interact with

generics. ReIm’s polymorphism model is similar to that of Gordon et al. [2012] – type variables

range over unqualified types. However, ReIm has no mechanism for mutability polymorphism, and

therefore getF cannot be written in ReIm at all. Unlike other related work, neither soundness nor

immutability safety is proven to hold for ReIm.

Immutability Generic Java: [Zibin et al. 2007]: Immutability Generic Java is a scheme for

expressing immutability using Java’s existing generics system. The type List<Mutable> denotes
a mutable reference to a List, whereas the type List<Readonly> denotes a read-only reference

to a list. Viewpoint adaptation is not supported, and transitive immutability must be explicitly

opted into. For example, in the following snippet, the field value of C is always mutable. Transitive

immutability must be explicitly opted into by instantiating List with the immutability parameter

ImmutOfC.

class C<ImmutOfC > {

List <Mutable /* ImmutOfC for transitivity */, Int > value;

}

Moreover, transitive immutability cannot be expressed at all over fields given a generic type. Type

variables by the nature of how immutability is expressed in IGJ range over fully qualified types,

and there is no mechanism for re-qualifying a type variable with a new immutability qualifier. For

example, the mutability of value in any Box below depends solely on whether or not T is mutable.

Hence the value field of a Box is mutable even if it was read through a read-only Box reference –
that is, a reference of type Box<ReadOnly>.

class Box <ImmutOfBox , T> {

T value;

}

Box <Readonly , List <Mutable ,Int >> b = new Box (...)

b.value.add (10); // OK -- even though it mutates the underlying List.

7.5 Languages with Immutability Systems
Finally, some languages have been explicitly designed with immutability in mind.

C++: const-qualified methods and values provide limited viewpoint adaptation. Reading a

field from a const-qualified object returns a const-qualified field, and C++ supports function

and method dispatching based on the constness of its arguments [Stroustrup 2007]. Mutability
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polymorphism is not explicitly supported but can be done with a combination of templates and

overloading.

struct BoxedInt {

int v{0};

};

template <typename T> struct HasF <T> {

T f;

T& getF() { return f; }

const T& getF() const { return f; }

}

const HasF <BoxedInt > x;

x.getF() // Calls const qualified getF()

const BoxedInt& OK = x.f; // OK, as x.f is of type const BoxedInt.

BoxedInt& Bad = x.f; // Bad , discards const -qualifier.

In this example a C++ compiler would disallow Bad because the type of x.f has been adapted to a

l-value of const BoxedInt. However, viewpoint adaptation does not lift to reference or pointer

types in C++. For example, if instead we had a pointer-to-T in HasF:

template <typename T> struct HasF <T> {

T* f;

}

BoxedInt b{5};

const HasF <BoxedInt > x{&b};

BoxedInt* NotGreat = x.f; // OK, as x stores a constant pointer to a mutable

BoxedInt

NotGreat ->v = 10; // Modifies b!

C++’s limited viewpoint adaptation gives x.f the type BoxedInt * const, which is a constant

pointer to a mutable BoxedInt, not the type BoxedInt const * const, which would be a constant

pointer to a constant BoxedInt. This allows the underlying field to be mutated.

D:. In contrast to C++, where const becomes useless for pointer and reference fields, D supports

full reference immutability and viewpoint adaptation with a transitive const extended to work for

pointer and reference types [Bright et al. 2020]. Again, mutability polymorphism is not directly

supported but can be encoded with D’s compile-time meta-programming system.

Rust: In Rust, references are either mutable or read-only, and only one mutable reference can

exist for any given value. Read-only references are transitive, like they are in System F<:M, roDOT,
and other reference immutability systems, and unlike C++. Here, in this example, we cannot write

to s3.f as it s3 is an read-only reference to s2, even though s2.f has type &mut String.

struct HasF <T> {

f: T

}

fn main() {

let mut s1 = String ::from("hello");

let s2 = HasF { f: &mut s1 };

s2.f.push_str("OK");

let s3 = &s2;

s3.f.push_str("BAD");
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}

Unlike other languages, though, the mutability of a reference is an intrinsic property of the

reference type itself. Instead of having a type operator readonly that, given a reference type T,
creates a read-only version of that reference type, Rust instead defines & and &mut, type operators
that, given a type T, produce the type of a read-only reference to a T and the type of a mutable

reference to a T, respectively. Here, in the following example, s1 is a String, s2 is a mutable

reference to a s1 – &mut String, and s3 is a read-only reference to s2 – & (&mut String), where
all three of s1, s2, and s3 are stored at distinct locations in memory.

let s1 = String ::from("hello");

let mut s2 = &s1;

let s3 = &s2;

As such, in Rust, one cannot create a read-only version of an existing reference type. This makes

higher-order functions over references that are polymorphic over mutability, like inplace_map
from above, inexpressible in Rust. However, if we instead had a Pair that owned its elements, we

could write the following version of inplace_map:

struct Pair <T> {

fst: T,

snd: T

}

fn inplace_map <T>(p: &mut Pair <T>, f: fn (&T) -> T) {

p.fst = f(&p.fst);

p.snd = f(&p.snd);

}

Note, though, that in this setting, the elements p.fst and p.snd are embedded in the pair p and
owned by it.

7.6 TypeQualifiers and Polymorphism
Foster et al. [1999] formalize a system for enriching types with qualifiers with support for polymor-

phism over both ground, unqualified types and qualifiers themselves. In this setting, readonly can

be viewed as a type qualifier, similar to how C++’s const can be viewed as a qualifier in [Foster

et al. 1999]. The resulting calculus which arises is similar to the calculus of [Gordon et al. 2012]

restricted only to reference immutability qualifiers.

7.7 Contracts
Our approach to sealing references is similar to and was inspired by practical programming

experience with Racket contracts – [Strickland et al. 2012]. Sealing, in particular, can be viewed as

attaching a chaperone contract which raises an exception whenever the underlying chaperoned

value is written to, and attaches fa similar chaperone to every value read out of the value. For

example, a dynamic reference immutability scheme for Racket vectors could be implemented with

the following chaperone contract:

(define (chaperone-read vec idx v)

(seal v))

(define (chaperone-write vec idx v)

(error 'seal "Tried to write through an immutable reference."))

(define (seal v)
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(cond

[( vector? v) (chaperone-vector vec chaperone-read chaperone-write))

[else v]))

Strickland et. al. prove that chaperones can be safely erased without changing the behaviour of the

underlying program when it reduces to a value. Our results on dynamic safety, Lemmas 3.4, 3.5,

and 3.6 can be viewed as an analogue of [Strickland et al. 2012, Theorem 1] specialized to reference

immutability. In this setting, our static immutability safety results show that a well-typed program

will never raise an error by writing to a chaperoned vector.

8 CONCLUSION
We contributed a simple and sound treatment of reference immutability in System F<:. We show

how a simple idea, sealing references, can provide dynamic immutability safety guarantees in an

untyped context – System 𝜆M– and how soundness and System F<:-style polymorphism can be

recovered in a typed calculus System F<:M which builds on both System 𝜆M and System F<:. Our
hope is to enable reference immutability systems in functional languages via this work, by giving

simple soundness foundations in a calculus (System F<:) which underpins many impure functional

languages today.
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