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Type systems usually characterize the shape of values but not their free variables. However, there are many

desirable safety properties one could guarantee if one could track how references can escape. For example, one

may implement algebraic effect handlers using capabilities – a value which permits one to perform the effect –

safely if one can guarantee that the capability itself does not escape the scope bound by the effect handler. To

this end, we study the CF<: calculus, a conservative and lightweight extension of System F
<: , to track how

values and their references can be captured and escape. We show that existing terms in System F
<: embed

naturally in our calculus, and that many natural problems can be expressed in a system that tracks variable

references like we do in CF<: . We also give mechanized proofs of the soundness properties of CF<: in Coq.

The type system presented in CF<: is powerful enough to reason about safety in the context of many natural

extensions of CF<: such as region-based memory-management, non-local returns, and effect handlers.

1 INTRODUCTION

Computing the free variables of a term is one of themost basic operations that students of program-
ming language theory are exposed with. Yet, it has significant relevance, not only in meta-theory –
but as we will study in this paper – also as a programming device. In particular, combined with an
object-capability discipline [Miller 2006] the free variables of a term inform us about the authority
of this term. In general, free variables can be used to express global capabilities, restricting access
to privileged operations (like using FFI, accessing the network, reading, writing to files, etc.) to the
holders of the corresponding capabilities. They also can be used to phrase effect safety in terms of
capability safety: to establish effect safety, it is important to guarantee that local capabilities, in-
troduced by exception (or effect) handlers, do not leave the corresponding handler. One particular
problem related to analyzing whether a capability escapes is capture, that is, function values clos-
ing over capabilities. By means of capture, a capability can indirectly (and potentially unnoticed)
flow to some other component, transferring the privileges.
Motivated by the above mentioned use cases, in this paper we internalize the concept of free

variables and introduceCF<: , a calculus equippedwith a type system based on the idea to track the
free variables of a value in its type, thereby making capture visible. CF<: builds on System F

<: and
enriches its types to allow tracking captured variables.

Tracking variables in capture sets. Specifically, we make two significant additions. First, we in-
troduce a notion of tracked variables to represent resources, capabilities, and other information
that should be tracked by the type system. Second, we augment System F

<: types with capture
sets {G1, . . . G=}. Terms of the type {G1, . . . , G=} * represent expressions of type * whose reduced
values may only refer to (i.e., capture) tracked variables in the set {G1, . . . , G=}. These concepts are
illustrated in the following example.

fileLogger : { File } Logger

fileLogger = _ (line) . File .append "log.txt" line
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Here the function type Logger = String → Unit is annotated with a capture set { File } making

visible in the type that the body of function fileLogger closes over the global capability File , which
is a tracked variable. In the same way, we can define alternative logger implementations that close
over different capabilities:

printLogger : { Console } Logger

printLogger = _ (line) . Console .println line

pureLogger : {} Logger

pureLogger = _ (line) . ()

Capture polymorphism. For additional expressivity, our calculus also supports some form of cap-
ture polymorphism. That is, variables bound by lambda abstractions can be used in types to refer
to the free variables (the capture set) of the evaluated argument.

warn : {} ∀(log : {∗} Logger) → {log} Logger

warn = _ (log). _ (line). log ("[WARN]" + line)

myLogger : { Console } Logger

myLogger = warn printLogger

The type of warn reads as “given an argument logger log, with an unknown capture set {∗}
the returned value of type Logger may close over log”. The type of the function shows that we
introduce a simple form of term dependency. For the reader’s convenience, we visually distinguish

capabilities (like File ) from variables (like log). The former will remain free under reduction while
the latter will eventually be substituted away in capture sets, as can be seen in the type ofmyLogger.
There, passing printLogger to the capture polymorphic function warn substitutes log in the result

of warn with { Console }, resulting in { Console } Logger.

Subcapturing. Building on System F
<: , our calculus enables subtyping on capture sets, which

we refer to as subcapturing. In our example, we have that {} Logger <: { File } Logger since {} is

a subset of { File }.

Capture prediction. From a programmers perspective, the capture set � on a function type like
� Logger provides us with an upper bound on the free variables of values of this type (Corollary
2.6). That is, the function body can only use those capabilities explicitly passed to the function

and those mentioned in � . For example, the type { Console } Logger informs us that printLogger

might at most use Console , but not (for example) access files by means of the File capability.
Capture prediction equips us with knowledge about the capture of values, not that of arbitrary
terms. The difference is illustrated in the following example term.

someLogger : { ? } Logger

someLogger = if (_ (log) . true) consoleLogger then printLogger else pureLogger

The term someLoggerwill either reduce to printLogger or pureLogger, but its definition mentions
consoleLogger as well. What should the highlighted capture set of someLogger be? In CF<: the
capture set on a type predicts the free variables of the value that term reduces to. In our example,
we can type someLogger with the following type

someLogger : { File } Logger
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since both branches can be typed against { File } Logger. The fact that the condition also refers to
consoleLogger is irrelevant for the typing of the returned value. Importantly, this correctly allows

us to predict that warn someLogger cannot possibly reference Console .

Applications. While the above examples can provide a good first intuition, it is important to
note that simply harnessing the power of free variables, our calculus is completely parametric
in the semantics of global capabilities. In general, being able to predict the free variables of the
value that a given term reduces to, we are able to develop soundness arguments for the following
applications:

(1) Safe algebraic effects: One can add safe algebraic effects to a purely functional core language
by modelling them as capabilities. Capabilities are regular values that are introduced by spe-
cial program constructs. For a concrete example, consider the algebraic effect of throwing an
exception. In the case of exceptions, the capability to raise an exception could be introduced
by a try handler. We would like to ensure that exceptions can be raised only when they are
handled by an enclosing try. This means we need to make sure that the "can-raise-exception"
capability (which is a regular value) cannot escape the scope of the try as a free variable
in its result value. The type system presented in this paper can be used to enforce such a
constraint, as we show in Sections 3.2 and 3.4.

(2) Regions:A region is a lexically delimited scope in which values can be allocated. One concrete
example would be a local variable to a function with stack-allocated local values. After the
region is exited, in order to be sound, one needs to ensure that there are no dangling references
to values that were allocated within the region. CF<: can be used to enforce this restriction
in order to ensure soundness, as we show in Section 3.3.

Moreover, there are many other applications which can be shown sound using similar arguments
to the ones we have presented in this work. For example, ensuring that a handle to a resource
does not leak after it has been closed is a very similar problem to ensuring that references to a stack
allocated value in a region do not leak after the region has been deallocated. In the remainder of the
paper, we introduce the calculus CF<: and illustrate its use. In particular, as we will see, while the
idea of tracking free variables in the type appears very intuitive, the interaction with subtyping
proved to be challenging and required several iterations of careful tradeoffs.

1.1 Contributions

Concretely, this paper makes the following contributions.

– We develop type-theoretic foundations of tracking free variables, resulting in a new calculus
CF<: (Section 2). The calculus enhances types with additional information about variable
capture, recorded in capture sets. Subset inclusion of capture sets immediately motivates the
need for subtyping. In consequence, we formalizeCF<: as a modest extension to System F

<: .
– We prove the standard soundness theorems (Section 2.8). We capture the essence of CF<: in
Corollary 2.6, which shows that capture sets are meaningful and provide a conservative ap-
proximation of the free variables of a value. The paper is accompanied by a fully mechanized
soundness proof using the Coq theorem prover.

– We show the applicability of CF<: to a wide range of interesting applications, including
systems describing regions, effects, or capabilities (Section 3). In various extensions to the
calculus, we make use of the fact that capture sets are meaningful, which implies that they
can be used as a sound mechanism to prevent variables from escaping.
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2 THE CF<: CALCULUS

In this section, we formally introduce CF<: , which allows us to discuss important meta theoretic
aspects, such as soundness (Theorems 2.3 and 2.4) and capture prediction (Corollary 2.6). The core
calculus presented in this language merely provides all necessary means to track free variables in
types. In Section 3, we extend CF<: with additional features that put the tracking into use.

2.1 Syntax of Terms and Types

Figure 1 defines the syntax ofCF<: . Our language builds on System F
<: with the following changes:

Types and Pretypes. We make a distinction between pretypes* and types) . Each type has a single
capture set associated with it. In contrast, pretypes are “incomplete” types not yet associated with
a capture set. All System F

<: types save for type variables - are pretypes in our calculus. A type
variable stands for a complete type and, accordingly, is not a pretype. As usual, typing contexts Γ
can contain both term bindings G : ) and type bindings - <: ) .

Capture Sets. Values of type� * can be viewed as values of type* that might contain occurrences
of variables in � . Capture sets are � are either a finite set of variables or the special set {∗} that
conceptually represents a set containing every variable. Values of the type {} * are pure as they
cannot capture tracked variables.

Function types in CF<: are dependent. Function types in our calculus have a fundamental difference
compared to their kin in System F

<: ; instead of ( → ) , we write ∀(G : () → ) , where G names
the bound parameter. This binding is needed since G may be used as a variable in the capture sets
embedded in ) . Note that capture tracking is the only form of term-dependency in our calculus.
Observe that our core calculus does not have any base capabilities and does not even distinguish
syntactically between variables and capabilities. In 3, we will demonstrate that it is possible to
extend the core we present here with capabilities by treating them as variables.

2.2 Preliminaries

(1) The universal capture set {∗} conceptually represents a set of all tracked variables. Set union
and set difference are extended to the universal capture set {∗} as follows:

{∗} ∪� = � ∪ {∗} = {∗}

{∗} \� = {∗}

(2) Substitution of capture sets [G ↦→ �1]�2 is defined as follows:

[G ↦→ �1]�2 = (�2 \ {G}) ∪�1 if G ∈ �2

= �2 otherwise

Substitution is lifted as a homomorphism to types and pretypes, with

[G ↦→ �1] (�2 * ) = [G ↦→ �1]�2 [G ↦→ �1]*

and to terms [G ↦→ �] C , substituting capture sets in type positions.
(3) The free variables fv(C) of a term C only consider variables in term position; they do not

include variables that are free but only occur in a capture set in a type which occurs in C .
(4) The capture set cv() , Γ) of a type ) in a context Γ is defined as follows:

cv(� * , Γ) = �

cv(-, Γ) = cv() , Γ) if - <: ) ∈ Γ.

4
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Syntax

G,~ Term Variable

� ::= Capture set

{G1, G2, . . . , G=} concrete capture set

{∗} universal capture set

Γ ::= Environment

·

Γ, G : )

Γ, - <: )

E,F ::= Value

_ (G : ) ) . C term abstraction

Λ [- <: (] . C type abstraction

B, C ::= Term

E value

G variable

B C application

C [) ] type application

', (,) ::= Type

-,. type variable

� * U capturing C

* ,+ ,, ::= Pretype

⊤ top type

∀(G : () → ) term function

∀ [- <: (] → ) type function

Fig. 1. The syntax of the CF<: calculus.

2.3 Evaluation

Evaluation in CF<: is almost exactly the same as in call-by-value System F
<: . Figure 2 defines

the operational semantics with a single congruence rule that takes an evaluation context �. The
only major change to the reduction semantics in CF<: compared to System F

<: is that reducing a
term application (_ (G : ) ). C) E with (beta-v), we also need to substitute the occurrences of the
lambda parameter G in capture set positions inside C . A value captures exactly the free variables
it references, so we substitute with fv(E). The calculus we present is specialised for call-by-value
semantics, as we can see in Lemma 2.7 – term substitution preserves typing only if we substitute
with values. To see why, recall thewarn someLogger example from the introduction – the type we
assigned to this term took into account that someLogger will be reduced before the substitution.
If desired, the typing rules of CF<: could be adjusted to account for the fact that in call-by-name
semantics, function application can capture more than in call-by-value.

2.4 Subcapturing Rules

Subcapturing Γ ⊢ �1 <: �2 is defined on capture sets as shown in Figure 3 – both transitivity
and reflexivity are admissible. If one set subsets another, it also subcaptures it, but the opposite is
not necessarily true. The reason for that is that our capture sets are indirect. For instance, under
a variable binding G : {~} Logger, if a term captures G then intuitively it also indirectly captures
~. Such a term will have the capture set {G}, not {G,~}. Under such a binding, we would be able
to deduce that {G} <: {~}, using rule (sc-var). However, note that the converse is not true: we

5
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Evaluation C −→ C

(_ (G : ) ) . C) E −→ [G ↦→ E] [G ↦→ fv(E)] C (beta-v)

(Λ [G <: (] . C) [) ] −→ [G ↦→ ) ] C (beta-T)

C1 −→ C2

E[C1] −→ E[C2]
(context)

E ::= � | E C | E [) ] | E E Evaluation context

Fig. 2. Small step operational semantics of the CF<: calculus.

Subcapturing Γ ⊢ � <: �

Γ ⊢ � <: {∗} (sc-*)

Γ ⊢ {G1} <: �, . . . , Γ ⊢ {G=} <: �

Γ ⊢ {G1, . . . , G=} <: �
(sc-distl)

Γ ⊢ {G8 } <: {G1, G2, . . . , G=} (sc-distr)

Γ ⊢ G : ) Γ ⊢ cv(), �) <: �

Γ ⊢ {G} <: �
(sc-var)

Fig. 3. Subcapturing of capturesets in the CF<: calculus.

do not have {~} <: {G} as {~} is not as precise; G may be instantiated with a pure value which
can only capture pure values. In general, a term with a type of the form {G} * can capture no
more than G – however, it can potentially capture less. In other words, capture set ascriptions on
lambda parameters are upper bounds onwhat the actual argumentmay capture. These two notions
– indirect capture sets and capture sets being only upper bounds – are what enables our approach
to capture polymorphism. Recall the warn function:

warn : {} ∀(log : {∗} Logger) → {log} Logger

warn = _ (log) . _ (line) . log ("[WARN]" + line)

It is also possible to typewarn as {} ∀(log : {∗} Logger) → {∗} Logger – indeed, if our capture sets
directly contained all their transitive members, this would be the only logical choice. However, by
doing that we would lose the type-level knowledge that the result of warn captures no more than
its argument. And if we are to exploit this knowledge, we obviously must also allow arguments to
be typechecked with capture sets smaller than {∗}.
Finally, rule (sc-var) also allows pure variables to be dropped from capture sets; if G of type )

is pure, this means cv() , Γ) = {}, hence {G} is in a subcapturing relation with any capture set,
including the empty set. For a concrete example, we can derive ~ : {}⊤, G : {∗}⊤ ⊢ {G,~} <: {G}.

6
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Subtyping Γ ⊢ ) <: )

Γ ⊢ ) <: ) (refl-type)

Γ ⊢ ' <: ( Γ ⊢ ( <: )

Γ ⊢ ' <: )
(trans-type)

- <: ) ∈ Γ

Γ ⊢ - <: )
(tvar)

Γ ⊢ �1 <: �2 Γ ⊢ *1 <: *2

Γ ⊢ �1 *1 <: �2 *2
(capt)

Γ ⊢ * <: * (refl-pretype)

Γ ⊢ * <: + Γ ⊢ + <:,

Γ ⊢ * <:,
(trans-pretype)

Γ ⊢ * <: ⊤ (top)

Γ ⊢ (2 <: (1 Γ, G : (2 ⊢ )1 <: )2

Γ ⊢ ∀(G : (1) → )1 <: ∀(G : (2) → )2
(fun)

Γ ⊢ (2 <: (1 Γ, - <: (2 ⊢ )1 <: )2

Γ ⊢ ∀ [- <: (1] → )1 <: ∀ [- <: (2] → )2
(tfun)

Fig. 4. Subtyping of types (and pretypes, correspondingly) in the CF<: calculus.

2.5 Subtyping Rules

Due to the type/pretype split, there are technically two subtyping judgements, as shown in Figure
4; one for types with rules (capt) and (tvar) and one for pretypes with rules (fun), (tfun), and
(top). Reflexivity and transitivity apply to each kind of judgement; they are the only duplicated
rules. Note that the subtyping rules are a straightforward extension of the subtyping rules for
System F

<: ; the only significant departure is the addition of (capt) for reasoning with capture
sets in types.

2.6 Typing Rules

There are four major differences between System F
<: typing rules and typing rules for CF<: , de-

scribed in Figure 5.

Capture sets on function values. The (abs) and (t-abs) rules augment the result type of the ab-
stracted function with all variables that are free in the abstracted term; the type of a value E well-
typed in Γ is of the form fv(E) * , that is the pretype * annotated with the capture set fv(E).
Observe here that cv(fv(E) * ) = fv(E), and in general, for a term C of type ) reducing to a value
E we have that Γ ⊢ fv(E) <: cv() , Γ). This is made formal in Section 2.8 and by Corollary 2.6.

7
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Typing Γ ⊢ C : )

G : � * ∈ Γ

Γ ⊢ G : {G} *
(var-concrete)

G : - ∈ Γ

Γ ⊢ G : -
(var-tvar)

Γ ⊢ C : ) Γ ⊢ ) <: (

Γ ⊢ C : (
(sub)

Γ, G : ( ⊢ C : ) Γ ⊢ ∀(G : () → ) wf

Γ ⊢ _ (G : (). C : � ∀(G : () → )

where� = fv(_ (G : (). C)

(abs)

Γ ⊢ C : � ∀(G : () → ) Γ ⊢ B : (

Γ ⊢ C B : [G ↦→ cv((, Γ)])
(app)

Γ, - <: ( ⊢ C : ) Γ ⊢ ∀ [G <: (] → ) wf

Γ ⊢ Λ [- <: (] . C : � ∀ [- <: (] → )

where� = fv(Λ [- <: (] . C)

(t-abs)

Γ ⊢ C : � ∀ [- <: '] → ) Γ ⊢ ( wf

Γ ⊢ ( <: '

Γ ⊢ C [(] : [- ↦→ (])
(t-app)

Fig. 5. Typing rules of the CF<: calculus.

Once again, note that one may immediately drop pure variables from that capture set by applying
subtyping and rule (sc-var).

Application. In rule (app), the result of the function application is the result type of the function
where the bound variable G is substituted with the capture set of the argument type ( . This resem-
bles function application for dependent function types except that the dependencies are restricted
to variable tracking. The capture set � of the function C itself is discarded in an application.

Split variable typing rules. Our calculus has two different rules for typing variables, depending on
whether a variable G is bound to a concrete type � * or to a type variable - in the environment.
Intuitively, the capture set of the variable should be the variable itself, which is indeed the case if it
is bound to a concrete type. This is not only intuitive, but also a desirable property – for example,
consider that the type of the term _ (G : {∗} ⊤). G should be ∀(G : {∗} ⊤) → {G} ⊤, reflecting
that the capture set of the returned value is the same as the capture set of the argument passed in
as G . However, since we may not further annotate a type variable with a capture set, the type of
_ (G : - ). G cannot be ∀(G : - ) → {G} - and has to be ∀(G : - ) → - . Accordingly, we have a
separate rule for typing term variables bound to type variables.

8
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Well-formedness constraints. Both (abs) and (t-abs) explicitly require the types they assign to
terms to be well-formed. We discuss this in the following section.

2.7 Well-formedness

In System F
<: , a type is well-formed simply if all type variables mentioned in it are bound in

the environment. Our corresponding judgment is more complicated: it also tracks the variance at
which term variables appear in capture sets embedded within a type.

We need this restriction because of a difference between evaluation and typing. When typing
term application with (app), we substitute the lambda’s parameter G with the cv of the argument’s
type ( – indeed, there is not much else we can do. In contrast, when reducing application with
rule (beta-v), we substitute G with the free variables of the argument. However, we only have that
Γ ⊢ fv(E) <: cv((, Γ) – this subcapturing relation may be strict. There are two ways to think
about this fact that we have found intuitive. One is that the capture set of the argument’s type can
be widened through subtyping and subcapturing; another is that the capture set of the argument’s
type is term-dependent, and hence can shrink under reduction. To illustrate this, let us consider
the term:

f = _ (G : {∗} * ). _ (~ : {G} * ). ~

applied to a pure value E of type {} * . Notice that G occurs contravariantly in the capture set of
parameter ~. By (beta-v), f (E) reduces to _ (~ : {} * ). ~, with type {} ∀(~ : {} * ) → {~} * .
However, by applying the subtyping rule (capt), we may also assign E the type {∗} * , and hence
type the application f (E) with the type {} ∀(~ : {∗} * ) → {~} * . This is unsound, as the function
type {} ∀(~ : {} * ) → {~} * is categorically not a subtype of {} ∀(~ : {∗} * ) → {~} * ; it can be
applied to strictly fewer values.

Well-formedness Γ ; �+ ; �− ⊢ ) wf

� ⊆ �+ ∀G8 ∈ �. G8 : (8 ∈ Γ Γ ; �+ ; �− ⊢ * wf

Γ ; �+ ; �− ⊢ � * wf
(capt-wf)

Γ ; �+ ; �− ⊢ * wf

Γ ; �+ ; �− ⊢ {∗} * wf
(universe-wf)

- <: ) ∈ Γ

Γ ; �+ ; �− ⊢ - wf
(tvar-wf)

Γ ; �− ; �+ ⊢ ( wf Γ, G : ( ; �+ ∪ {G} ; �− ⊢ ) wf

Γ ; �+ ; �− ⊢ ∀(G : () → ) wf
(fun-wf)

Γ ; �− ; �+ ⊢ ( wf Γ, - <: ( ; �+ ; �− ⊢ ) wf

Γ ; �+ ; �− ⊢ ∀ [- <: (] → ) wf
(tfun-wf)

Γ ; �+ ; �− ⊢ ⊤ wf (top-wf)

Fig. 6. Well-formedness of types in the CF<: calculus – term variables are only allowed to occur in covariant
positions.

9
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This motivates our well-formedness judgement, shown in Figure 6, which is defined over a
triple Γ ; �+ ; �− ⊢ ) wf. Here, Γ is the standard environment and �+ and �− are sets of term
variables. A term variable G can appear covariantly only if it occurs in�+, and contravariantly only
if it occurs in�−. For brevity, we write Γ ; �+ ; �− ⊢ ) wf where�+ and�− are sets of both term
and type variables in place of Γ ; �+ ∩ � ; �− ∩ � ⊢ ) wf where � is the set of term variables
bound in Γ. We also write Γ ⊢ ) wf in place of Γ ; dom(Γ) ; dom(Γ) ⊢ ) wf. To ensure that
subtyping holds with respect to our term-dependent capture sets, we enforce that a term variable
G in a type ) can only occur in covariant position with respect to its binding form in the type by
the rules (capt-wf), (fun-wf) and (tfun-wf). This notion is formalized in Section 2.8.
As we have seen, the well-formedness condition prevents direct coupling of capture sets at

different polarities. This is less of a restriction than it might seem, since we can express the same
coupling going through a type variable. Here is a version of function f that typechecks:

f′ = Λ [- <: {∗} * ] . _ (G : - ). _ (~ : - ). ~

Note also that the well-formedness restriction only applies to the variables bound locally in a type,
not to the variables in the global environment. So the function

g = _ (G : {∗} * ). (_ (~ : {G} * ). ~) G

is well typed with type ∀(G : {∗} * ) → {G} * , even though G is captured at negative polarity in
the second lambda.

2.8 Metatheory

We now discuss a few interesting metatheoretic properties of CF<: . The paper is accompanied by
a mechanization using the Coq theorem prover, described in more detail in Section 2.9. We start
by observing that CF<: is indeed a straightforward extension of System F

<: . In particular, erasing
capture sets from well-typed CF<: terms yields well-typed System F

<: terms.

Lemma 2.1 (Erasure). Let C be aCF<: term such that ⊢ C : ) for some type) . Let ⌈ · ⌉ be a function

fromCF<: terms and types to System F
<: terms and types that erases capture sets (and thereby all term

dependencies). Then we have that ⊢ : ⌈C⌉ : ⌈) ⌉.

Proof. Immediate from structural induction on the typing derivation of ⊢ C : ) . �

Moreover, System F
<: embeds naturally into CF<: , simply by annotating System F

<: function and
type abstraction types with either the empty or the universal capture set.

Lemma 2.2 (Embedding). Let � be either the empty or the universal capture set. Let C be a

System F
<: term such that ⊢ C : ) for some type ) . Let ⌊ · ⌋ be a function from System F

<: to

CF<: terms and types that annotates System F
<: types of function and type abstractions with� . Then

we have that ⊢ ⌊C⌋ : ⌊) ⌋.

Proof. Structural induction on the typing derivation, after observing that no matter what� is,
every term variable will be a subcapture of � . �

All of the following lemmas and theorems were mechanized in Coq.

Soundness. Our calculus satisfies the standard progress and preservation lemmas.

Theorem 2.3 (Progress). If ⊢ C : ) , then either C is a value, or there exists a term C ′ such that we

can take a step C −→ C ′.

Theorem 2.4 (Preservation). If Γ ⊢ C1 : ) and C1 −→ C2, then we have that Γ ⊢ C2 : ) .

10
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Meaning of capture sets. We observe that the capture set of a value’s type matches the capture set
of that value’s free variables:

Lemma 2.5 (Capture Prediction for Values). If Γ ⊢ E : ) , then Γ ⊢ fv(E) <: cv() , Γ).

Proof. Induction on the typing derivation Γ ⊢ E : ) . Now, as E is a value, the base case is either
an application of the typing rule (abs) or (t-abs), and hence ) = fv(E) * for some pretype * , as
desired. Inductively, we have an application of the typing rule (sub). Hence Γ ⊢ E : ) ′, ) ′

<: ) ,
and Γ ⊢ fv(E) <: cv() ′, Γ). Now, as E is a value, ) ′

= � ′ * ′ for some capture set � ′ and pretype
* ′, and hence ) = � * for some capture set � and pretype * . Hence fv(E) <: cv() ′, Γ) = � ′

<:
� = cv() , Γ), as desired. �

Note that fv(E) and cv() , Γ) do not need to be subsets - they need only be in a subcapturing
relationship; for example, consider a value E = _ (G : {∗} ⊤). ~ in an environment Γ = (G : {} ⊤).
Here we may assign E the type) = {} ({∗} ⊤ → ⊤) by subsuming away the capture set for G , but
we also have that Γ ⊢ fv(E) = {G} <: {} = cv() , Γ).

The following corollary captures the essence ofCF<: . From preservation and capture prediction
for values, it follows that our calculus accurately tracks the free variables (i.e., captured) of the
value a term reduces to.

Corollary 2.6 (Capture Prediction for Terms). Let Γ be an environment with only term vari-

ables. If Γ ⊢ C : ) and C −→∗ E , then Γ ⊢ fv(E) <: cv() , Γ).

While the corollary appears deceptively simple, it has important consequences. In a setting with
capabilities, the capture set of a term accurately reflects the capabilities retained by the value it
reduces to.

Substitution Lemmas. Due to the term dependency in CF<: , we needed to prove a few nonstandard
substitution lemmas for progress and preservation. This is apparent when comparing the typing
rule for term application with the reduction rule for term application; term substitution proceeds
with the exact capture set of the value – the free variables of the value, but the typing rule proceeds
with a capture set that subcaptures the free variables of the value. This necessitates the following
lemma, linking these two capture sets.

Lemma 2.7 (Term substitution preserves typing).

If Γ, G : ( ⊢ C : ) and Γ, G : ( ; {G} ∪ dom(Γ) ; dom(Γ) ⊢ ) wf, then for all E such that

Γ ⊢ E : ) , we have:

Γ ⊢ [G ↦→ E] [G ↦→ fv(E)] C : [G ↦→ cv((, Γ)])

Without the well-formedness condition, we would only be able to show that:

Γ ⊢ [G ↦→ E] [G ↦→ fv(E)] C : [G ↦→ fv(E)])

Now, as Γ ⊢ fv(E) <: cv((, Γ), and as G does not occur contravariantly in ) due to our well-
formedness constraints, we have that Γ ⊢ [G ↦→ fv(E)]) <: [G ↦→ cv((, Γ)]) . Formally, this is
stated below in the following lemma, which is needed to prove Lemma 2.7:

Lemma 2.8 (Monotonicity of covariant capture set substitution).

If Γ, G : ( ; G ∪ dom(Γ) ; dom(Γ) ⊢ ) wf, then for all �1,�2 such that Γ ⊢ �1 <: �2, we have:

Γ ⊢ [G ↦→ �1]) <: [G ↦→ �2])

11
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2.9 Mechanization

WemechanizedCF<: using the Coq theoremprover [development team 2004] [Bertot and Castéran
2004]. In addition, we wrote a simple typechecker for our terms and used it to verify that the
examples we used in our case studies typecheck correctly. We have also verified the correctness
of this typechecker by proving in Coq that the terms for nil and cons typecheck with the types
given by our simple typechecker.
As our calculus is an extension of System F

<: , augmented with sets of free variables meant to
track capture, we based our Coq implementation on the locally nameless proof of System F

<: by
Aydemir et al. [2008]. In particular, since our types can mention term variables, we chose the lo-
cally nameless approach to avoid problems with alpha-equivalence of types. We attempted to stay
as close as possible to the original proof of soundness of System F

<: . We highlight some of the
details below.

Formalizing Capture Sets. Capture sets in CF<: are formalized as an inductive data type with two
constructors representing universal capture sets {∗} or concrete capture sets, correspondingly. Due
to the locally nameless approach, a concrete capture set is represented by two sets to model free
variables using names and bound variables using de Bruijn indices. This worked well for the most
part, but we encountered some difficulties when dealing with sets, as we often had sets that were
equal propositionally, but not definitionally – for example, {1, 2, 3} instead of {1} ∪ {2} ∪ {3}.

Formalizing Well-formedness. As our calculus is dependently typed with respect to capture sets,
we need to enforce variance constraints on where term variables can be bound in a type, as noted
in Section 2.7. Our well-formedness judgement needs to keep track of two sets of term variables
�+ and�−, which describe the variables in covariant position relative to the current location in the
type, and contravariant position respectively. We modelled this in Coq by defining our inductive
well-formedness proposition over a triple (Γ, �+, �−), where Γ is the classical binding environment,
carried over from the System F

<: proof, and �+ and �− are two sets of names. We found this ap-
proach worked well for describing the modified well-formedness lemmas and also allowed us to
prove the necessary weakening and narrowing lemmas for the overall soundness proof. In particu-
lar, using sets as opposed to lists in thewell-formedness judgment allowed us to avoid mechanizing
a proof that well-formedness is preserved under permuting the sets of term variables. A downside
of this representation of well-formedness was that the large number of constraints imposed by
well-formedness conditions made it difficult to formalize example typing judgments.

3 LANGUAGE EXTENSIONS

The calculus we have presented in the previous section assigns no particular meaning to capture
sets - it merely tracks the free variables without giving them any concrete semantics.
This is fully intentional - we believe variable tracking to be a widely applicable idea and as such,

we did not want to privilege any single application above others by adding it to the base calculus.
Instead, in this section we show how the core calculus can be extended with different semantics
for free variables, and how its metatheory can be used to reason about the extensions.

3.1 Data Structures in CF<: - List

To give some intuition for the calculus, we work out the type signatures of different versions of
the map function, which maps an arbitrary function argument over a strict list of pure values.
Below, we illustrate type signatures for the standard map function and a variant pureMap, which
only maps a function that is pure. pureMap is of interest in many contexts; for example, one may

12
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wish to map a function that possesses no capabilities for performing side-effects, in order to safely
parallelize the map.
We can encode List in CF<: using the standard right-fold Böhm-Berarducci encoding

[Böhm and Berarducci 1985]; we give terms and typings in Appendix A. All lists are annotated
with the empty capture set. Here is an example type signature for map:

map : {} ∀[�]

→ {} ∀[�]

→ {} ∀(xs : List[�])
→ {} ∀( 5 : {∗} ∀(0 : �) → �)

→ List[�]

We use here∀[- ] as an abbreviation for∀[- <: {} ⊤]. The function argument tomapmay capture
arbitrary capabilities. However, asmap is strict, that capability is not retained in the result type. If
the list and function arguments are reversed, the signature of map2 is as follows:

map2 : {} ∀[�]

→ {} ∀[�]

→ {} ∀( 5 : {∗} ∀(0 : �) → �)

→ {5 } ∀(xs : List[�])
→ List[�]

Now, there is an additional capture set {5 }, which reflects the fact that map2(5 ) is a partial ap-
plication that captures 5 . Finally, here’s the signature of pureMap; recall that pureMap accepts a
function 5 that must be pure:

pureMap : {} ∀[�]

→ {} ∀[�]

→ {} ∀(xs : List[�])
→ {} ∀( 5 : {} ∀(0 : �) → �)

→ List[�]

Here, 5 can only be instantiated with functions that may only capture pure values.

Conclusion. CF<: is expressive enough that we can embed List into it and assign accurate types
to functions operating on lists. We can express a capture-polymorphic map function, as well as one
that only accepts functions that have captured no free variables. In a setting where side effects are
mediated through capabilities tracked with capture sets, the latter function can be useful when
implementing a parallel map function.
One limitation with this encoding in CF<: is that List can only contain pure elements. One

could specialize the list datatype and the type variables � and � to work with some fixed, given
capture set, up to and including the universal capture set; however this causes some loss of preci-
sion. In a nutshell, CF<: models capture polymorphic operations well, but does not model capture
polymorphic data types as well. We aim to resolve this situation in a future extension of CF<: .

3.2 Non-Local Returns

We now study the applicability ofCF<: to perform simple effect checking. The principal idea is that
instead of extending the language with an effect system, we represent the ability to perform an
effect with a capability. If we can guarantee that a capability cannot leave a particular scope, this
model scales to handling exceptions (or effect handlers as we will see in Section 3.4). To illustrate
the general idea, we start bymodeling a language feature, which is slightly simpler than exceptions:
non-local returns. Performing a non-local return allows us to transfer the control flow to the end of
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Syntax

* ::= . . . Pretypes

Return[) ] return capability

E ::= . . . Values

G variables

C ::= . . . Terms

handleG : ) in C return-able block

C .return B explicit return

E ::= . . . Evaluation context

handleG : ) in E
E.return C

G.return E

Reduction C −→ C

handleG : ) in E −→ E (beta-return)

handleG : ) in E[G.return E] −→ E (context-return)

Type assignment Γ ⊢ C : )

Γ, G : {∗} Return[) ] ⊢ C : ) Γ, G : {∗} Return[) ] 0 {G} <: cv(), Γ)

Γ ⊢ handleG : ) in C : )
(return)

Γ ⊢ C : {�} Return[) ] Γ ⊢ B : )

Γ ⊢ C .return B : (
(do-return)

Fig. 7. Extending CF<: with support for non-local returns.

a particular block, without necessarily being within the lexical scope of that block. The extension
is defined in Figure 7.

Operational semantics. We introduce two new reduction rules and three new evaluation contexts.
The latter two of the three new contexts are standard, but let us pay closer attention to first one,
which mentions handle. Here, we allow reducing under a binder for the return capability. There
are two ways for reduction to remove the binder - either by reducing to a value and applying rule
(beta-return), which corresponds to normally returning from a block; alternatively, the term
inside the block can invoke the return capability and explicitly return from it, which corresponds
to the (context-return) reduction rule. Note that if a term tried to invoke the capability after we
have removed the binder from the evaluation context, the term would be stuck.

Soundness. In order for the semantics of our extension to be sound, the capability to return from
a block should not outlive the block itself. There are two ways it could do so: either by being
returned from it normally (with rule (beta-return)), or by being returned from it explicitly (with
rule (context-return)). We prevent both with the non-derivation subcapturing precondition in
rule (return). To see the precise reason why, consider the following. If returning a value E of
type ) could leak the capability G , then G ∈ fv(E). Then by Lemma (2.5) and by inspecting the
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subcapturing rules, it follows that {G} <: cv() , Γ). However, this is forbidden by (return); it is
not possible for a capability to return from a block to outlive the block itself.

Example. To demonstrate non-local returns, we present a small program that sums up the square
roots of a list of numbers, returning NaN if one of the numbers is negative.

root : Double → ({∗} Double → Double) → Double

root = _ (G) . _ (ret) .

if G < 0 then retNaN else sqrtG

sumRoots : List[Double] → ({∗} Double → Double) → Double

sumRoots (G :: GB) = rootG ret + sumRoots GB ret

sumRoots [] = 0.0

handle r : Double in

sumRoots [1.0, 2.0, 3.0,−1.0] (_ (G) . r .return G)

The program is partitioned into three parts. Firstly, the root function takes the square root of
its argument. If the argument is negative it signals this fact by invoking the passed ret function
with the special value NaN as argument. Secondly, the sumRoots function applies root to each
element of a list and sums up the results. It simply passes the ret function to root. Thirdly, the
handle expression introduces the r capability. It further creates a function that captures the r
capability and passes it to sumRoots. The example shows how non-local returns allow transferring
the control to a surrounding handler. Note how the call to ret in function root is not in the lexical
scope of the handler that introduces r .
The program typechecks since it can be shown that the capability r is not captured by the

result of application of sumRoots. On the other hand, the following variation gives a type error:

handle r : Unit → Double in

_ () . sumRoots [1.0, 2.0, 3.0,−1.0] (_ (G) . r .return (_ () . G))

Here, by rule (abs), r does appear in the capture set of the handler’s body, which violates the
requirement for (return).

Conclusion. The type system of CF<: can indeed support the notion of non-escaping variables,
which we have used in this extension to model blocks that safely allow non-local returns. We have
also seen that functions can be naturally used in our system to mediate access to capabilities. If
our extensions allowed capability-based exceptions, we would be able to call sumRoots with an
exception-throwing ret without any changes to the function’s definition.

3.3 Regions

In another extension, we study the applicability of CF<: to region-based memory management
[Tofte and Talpin 1997]. Briefly, the idea of regions is as follows: we can manually allocate data
in regions, which are lexically delimited scopes. We statically ensure that after a region is left, no
reference to data allocated in the region remains, which means that we can safely deallocate the
entire region. As such, this approach is a natural fit for being expressed with CF<: .
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Syntax

* ::= . . . Pretype

Region Region handle

Ptr[) ] Pointer

C ::= . . . Terms

region G in C Region block

G.new[) ] C Pointer allocation

! C Pointer de-reference

E ::= . . . Values

G variables

Type assignment Γ ⊢ C : )

Γ, G : {∗} Region ⊢ C : ) Γ, G : {∗} Region 0 {G} <: cv(), Γ)

Γ ⊢ region G in C : )
(region)

G : � Region ∈ Γ Γ ⊢ C : )

Γ ⊢ G.new[) ] C : {G} Ptr[) ]
(new)

Γ ⊢ C : � Ptr[) ]

Γ ⊢ ! C : )
(deref)

Fig. 8. Extending CC<:: with support for region-based memory-management.

We draft the extension in Figure 8. We assume standard store-based operational semantics
[Grossman et al. 2002]; in particular, we assume that the value for pointers mentions the region in
its free variables. The overall approach is analogous to the one in the non-local return extension.
We add a binder for regions and reduce under it; the binder introduces a handle for the region into
scope, which can be used to allocate data in the region. Similar to the non-local return extension
(Section 3.2), if either the region handle or a pointer allocated in the region leaves the region, the
extension would be unsound. We again prevent this with the non-derivation subcapturing precon-
dition on rule (region).

Conclusion. CF<: can be used to model a discipline for safe memory management as well as effects.
We can define region-polymorphic functions without needing explicit region polymorphism. As
an example, consider the following function, which simply de-references an arbitrary pointer:

Λ [. <: {∗} ⊤] . _ (~ : {∗} Ptr[. ]). ! ~

This does not rule out explicitly qualifying functions with regions where necessary. Consider the
following function, which accepts a handle to a region and a pointer allocated on that region, and
duplicates the pointer it received:

Λ [. <: {∗} ⊤] . _ (G : {∗} Region). _ (~ : {G} Ptr[. ]). G .new[. ] (! ~)

We can use the capture sets of functions to reason about the regions that they can access. In
particular, we can know which regions they cannot possibly access.
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Syntax

* ::= . . . Pretypes

Eff[�, �] effect capabilities

E ::= . . . Values

G variables

C ::= . . . Terms

handleG : Eff[�, �] = _ (~ :) . B in C effect handling

G. do C effect operation calls

E ::= . . . Evaluation contexts

handleG : Eff[�, �] = _ (~ :) . B in E
G. do E

Fig. 9. Extended syntax of CF<: with support for algebraic effect handlers.

3.4 Effect Handlers

As a final case study, we generalize the system of non-local returns to algebraic effects and han-
dlers [Plotkin and Power 2003; Plotkin and Pretnar 2013]. Effect handlers are a program structur-
ing paradigm that allows to model complex control-flow patterns in a structured way. We build
our presentation on effect handlers in capability-passing style [Brachthäuser and Schuster 2017;
Brachthäuser et al. 2020a; Zhang and Myers 2019], since it perfectly fits our framework of reason-
ing about free variables and binders. To keep the presentation of the calculus simple, we follow
Zhang and Myers [2019] and limit our effect handlers to only a single operation and no return
clauses.
Figure 9 extends the basic CF<: calculus with additional syntax for effect handling. To type

capabilities, we add a new pretype Eff[�, �] that represents effect operations from � to �. That is,
the type parameter� indicates the type of values passed to an effect operation and type � indicates
the type of values returned by an effect operation. There are two new forms of expressions: First,
the expression handle G : Eff[�, �] = _ (~ :). B in C acts as a binder and introduces a capability G :
{∗} Eff [�, �] in the handled program C . The handler implementation _ (~ :). B has two parameters.
Parameter ~ will be bound to the argument of type � passed to the effect operation. Parameter :
represents the continuation. To avoid having to annotate the type of the continuation, we slightly
diverge from our notation of function binders here, since the type annotation on G suffices. We also
sometimes use the shorthand handleG = ℎ in B . Second, within the handled program C , calling
an effect operation with G. do E suspends the current computation, passing the argument E to the
handler bound to G .
Our description of the operational semantics of handlers closely follows the open semantics pre-

sented by Biernacki et al. [2020]. In this style, effect handlers are treated as binders for capabilities.
Effect operations are reduced by evaluating under those binders, while preserving the usual call-
by-value left to right evaluation strategy for all other abstractions. As a consequence, like with
non-local returns, we add variables to the syntactic category of values. This way, capability refer-
ences can be passed as arguments to functions. Treating effect handlers as binders is a perfect fit
for CF<: , since the core idea of CF<: is to track free variables in the type of abstractions – equally
relying on lexical binding.

Operational Semantics. There are two new reduction rules. The first rule removes a handler ab-
straction if the program F is already evaluated to a value. Importantly, this is only safe when F
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Reduction C −→ C

handleG = ℎ in F −→ F (beta-handle)

E = handleG = _ (~ :) . B in E′

E[G. do E] −→ [: ↦→ _ (I). E[I]] [~ ↦→ E] B
(context-handle)

Fig. 10. Extended operational semantics of CF<: with support for algebraic effect handlers.

Type assignment Γ ⊢ C : )

(1a) Γ, G : {∗} Eff [�, �] 0 {G} <: cv(�, Γ)

(1b) Γ, G : {∗} Eff[�, �] 0 {G} <: cv(', Γ)

(2) Γ, ~ : �, : : �: � → ' ⊢ B : ' �: = (fv(C) \ {G}) ∪ (fv(B) \ {~,:})

(3) Γ, G : {∗} Eff [�, �] ⊢ C : '

Γ ⊢ handleG : Eff [�, �] = _ (~ :). B in C : '
(handle)

Γ ⊢ G : � Eff[�, �]
Γ ⊢ C : �

Γ ⊢ G. do C : �
(do)

Fig. 11. CC<:: algebraic effect extension typing rules

does not contain G free. As we will see, our extended typing rules prevent this source of unsound-
ness. The second rule connects effect operation calls on G with the corresponding handler binding
it. To reduce an effect call G. do E in a context E, the context needs to provide a handler for G .
Furthermore, the evaluation context between the handler and the effect operation call is denoted
by E′. We evaluate the effect operation call by substituting the argument E for ~, and the con-
tinuation _ (I). E[I] for : into the handler body B . Calling the continuation will reinstantiate the
delimited evaluation context E that also contains the handler binding G . Our operational semantics
thus implements deep handlers [Kammar et al. 2013].

Typing Rules. The typing rules for general effect handlers are naturallymore complex than the ones
for non-local returns, but a core principle stays the same: In both cases the (handle) rule requires
that the locally defined handler G does not escape in the handled expression’s result. We can group
the premises into two categories: The first two rows of premises (1a) and (1b) are well-formedness
conditions to assert non-escaping. The other two rows of premises type check the handler body
(2) and the handled program (3). Starting from the last premise, we will now work through the
different premises, highlighting important aspects. Premise (3) type checks the handled program
and brings a capability of type Eff[�, �] into scope. By annotating it with the universal capture
set, we mark the capability as tracked. Premise (2) types the body of the handler. It not only binds
the argument of the effect operation ~, but also the continuation, to which we assign the type
�: � → '. Interestingly, the type expresses that the continuation captures exactly the union of
free variables of our handled program and the free variables of the handler. Finally, to guarantee
that capabilities cannot escape, premises (1a) and (1b) require that the singleton capture set {G} is
not a subcapture of cv(�, Γ) (and cv(', Γ) respectively). This has an interesting consequence: the
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capture sets of� and ' need to be concrete capture sets – they cannot be the universal capture set,
since then subcapturing would hold. This restriction lets us rule out programs such as:

handle x = E in _ (~). x . do ~ −→ _ (~) . x . do ~

where x is unbound after reduction.
In addition to restricting the answer type', we also restrict the argument type�. Themotivation

for this is more subtle. Let us assume the following example adapted from Biernacki et al. [2020]:

handle x : Eff[{∗} Unit → Unit,Unit] = _ (thunk :). thunk() in

handle y = ℎ in

x . do _ (). y . do ()

The example reduces in the following way

[thunk ↦→ ...] [: ↦→ ...] (thunk ())

−→

(_ (). y . do ()) ()

−→

y . do ()

again leading to an unbound, that is unhandled, effect call on y . To avoid this, we need to rule

out the possibility that lambda abstractions closing over capabilities at the call site can be passed
to effect operations. By requiring that the capture set on � needs to be concrete, we rule out the
type of

Eff [{∗} Unit → Unit,Unit]

instead we would need to give the more precise type Eff[{ y } Unit → Unit,Unit]. However, this

is again ruled out, since it is not well-formed in the outer typing context. y is not bound at the

handling site of x .

Conclusion. Capture sets allow us to reason about capability safety: without equipping the lan-
guage with an additional effect system, we can be sure that all effects are handled simply by estab-
lishing that capabilities do not leave their corresponding effect handlers. Capture sets also allow us
to reason about the effects used by a function. Inspecting the capture set on the type of a function
value, we can conclude which effects can potentially be used by this function and in particular,
which effects cannot be used.

4 RELATED WORK

The key distinction between our approach and similar work in the literature is that our calculus is
descriptive rather than prescriptive. That is, our calculus can be understood as tracking aliasing with
types, throughwhich we can express many different concepts. Broadly speaking, other approaches
such as ownership systems, linear types or borrowing use types to restrict some terms to follow a
concrete aliasing hygiene.
Related literature ranges from object capabilities, effect systems, algebraic effects and handlers,

to region-based memory management. Here we offer a comparison to the work that we believe is
closely related.
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Second-Class Values. Motivated by goals very similar to our work, Osvald et al. [2016] present a
type-based escape analysis [Hannan 1998] that allows the tracking of capabilities and prevents
them from escaping. They achieve this by distinguishing between first-class values and second-

class values. First-class values can be passed to, returned from, and closed over by functions. In
contrast, second-class values are restricted in that they can never be returned from functions and
can only be closed over by other second-class values. This distinction is an elegant and simple
solution that can also encode borrowing [Osvald and Rompf 2017] and enables a lightweight form
of effect polymorphism [Brachthäuser et al. 2020a]. However, what makes their calculus so simple
also makes it restrictive: Second-class values cannot be returned under any circumstances, even
when this would be sound. In our present work, we relax this restriction by generalizing first and
second-class values to accurately track the captured variables in the type. First-class values and
types are translated into CF<: terms and types annotated with the empty capture set {}. That is,
they can freely be passed to, closed over, and returned from all other functions. Second-class values
and types are translated into CF<: terms and types annotated with the universal capture set {∗}.
That is, they are tracked and cannot be returned or closed over by first-class functions. Yet, they
can close over other second-class values annotated with the universal capture set.

Effect Systems. Effect systems extend the static guarantees of type systems to additionally describe
the side-effects a computation may perform [Lucassen and Gifford 1988]. This enables program-
mers to reason about purity and perform semantics-preserving refactorings and security analysts
to determine the privileges required by a computation to be executed. While the CF<: calculus
can be used to achieve effect safety, there is an important difference to traditional effect systems.
Effect systems typically track the use of effectful operations, while in CF<: we track the mention

of resources / capabilities [Gordon 2020]. This manifests in two ways.
First, typing in the CF<: calculus is about values, while typing in effect systems is about side-

effecting expressions. This becomes visible in Lemma 2.5, which relates the free variables of a value
with the capture set in its types. Let us assume the following example expression

C : {} Unit C = abort (); ()

that is a call to abort followed by returning the unit value. Effect systems would register the call

to abort in the type of the expression, while the CF<: calculus assigns it the type {} Unit.
This might seem counter-intuitive at first, but is resolved by the second difference with effect

systems: Reasoning with CF<: is about the context, while reasoning with effect systems is about

programs. Since the context includes a binding for abort (that is, the capability is in scope) we take
it for granted that the expression can use it. Delaying a computation with a (type or term) abstrac-

tion externalizes the dependencies on the context and we obtain: _ (). C : { abort } () → Unit.
Since we only track the dependencies on the context (that is, mention) and not the use of effect

operations, we assign the exact same type to C ′ = _ (). abort ; (). In contrast, traditional effect sys-
tems would assign a pure type to C ′ since it is observationally equivalent to _ (). (). In consequence,
while effect systems suggest to reason about purity, in CF<: it makes sense to reason about contex-
tual purity [Brachthäuser et al. 2020a]. Delaying computation allows to partially navigate between
the two modes of reasoning.

Capabilities. In the (object-)capability model of programming [Boyland et al. 2001; Crary et al.
1999; Miller 2006], performing security critical operations requires access to a capability. Such a
capability can be seen as the constructive proof that the holder is entitled to perform the critical
operation. Reasoning about which operations a module can perform is reduced to reasoning
about which references to capabilities a module holds.
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The Wyvern programming language [Melicher et al. 2017], embraces this mode of reasoning
and establishes authority safety by restricting access to capabilities. The language distinguishes
between stateful resource modules and pure modules. Access to resource modules is restricted and
only possible through capabilities. Determining the authority granted by a module amounts to
manually inspecting its type signature and all of the type signatures of its transitive imports. To
support this analysis, Melicher [2020] extends the language with a fine-grained effect system that
tracks access of capabilities in the type of methods. The extended language supports effect ab-
straction via abstract effect members, which can also be bounded [Fish et al. 2020] to integrate
well with the structural subtyping of Wyvern. Using this effect system, Melicher [2020] formalizes
the authority of a module by collecting the set of effects annotated on methods and transitively of
all modules returned by those methods.
In the CF<: calculus, reasoning about authority and capability safety is very similar. However,

access to capabilities is immediately recorded in the capture set. Modelling modules via function
abstraction, the capture set of a function directly reflects the authority of that function. As an
important difference, the CF<: calculus does not include an effect system and thus tracks men-

tion rather than use. Wyvern allows effect abstraction to be expressed directly via (abstract) effect
members on modules; we envision that CF<: can express an analogous form of effect abstraction
indirectly via term abstraction and capture polymorphism, similarly to how existential quantifica-
tion can be encoded using universal quantification.

Coeffects. Effect systems can be understood as tracking additional information about the output of
a typing judgement Γ ⊢ 4 : Y g . Dually, coeffect systems [Petricek et al. 2014] equip the context in

which an expression is typecheckedwith additional structure Γ @ C ⊢ 4 : g . Petricek et al. [2014]

show that coeffects can be instantiated to express linearity of resources, implicit parameters, and
many more. Very similarly, the capture set on term and type abstractions expresses requirements
about the context in which these abstractions can be executed. While Petricek et al. present a very
general framework that can be instantiated with many different use cases, their work is based on
simply typed lambda calculus. In contrast, in the present paper we embrace subtyping (alongside
with all its advantages and challenges) that arises from the notion of capture sets and base our
calculus on System F

<: .
With the goal to retrofit existing impure languages with a mechanism to reason about purity,

Choudhury and Krishnaswami [2020] introduce a calculus that distinguishes between safe (that
is, pure) terms and impure terms. A special type �) witnesses that the term cannot close over
any impure bindings, that is over potentially effectful resources. The type comes with an intro-
duction form box 4 , which type checks the expression 4 in a context that only contains pure bind-
ings, and an elimination form let G = 4 in 42, which introduces a pure binding in the context.
Similarly, our capture sets serve as a type-level certificate that the value only closes over those
tracked bindings mentioned in the capture set. To facilitate the comparison with the work by
Choudhury and Krishnaswami, we can conceptually rephrase our typing rule for abstractions to:

Γ
� , G : ( ⊢ C : )

Γ ⊢ _ (G : (). C : � ∀(G : () → )
(abs-filter)

This rule filters all bindings from the typing context Γ that are not captured by � . Furthermore,
a binding of type G : {∗} % ∈ Γ corresponds to an impure binding, whereas G : {} % ∈ Γ

models a pure binding. As in the work by Choudhury and Krishnaswami, pure bindings cannot
close over impure bindings and our type {} % thus corresponds to the purity witness �) . As
such, CF<: can very similarly be used to gradually recover purity in an impure language. Dual to
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the encoding proposed in the comparison with second-class values, we can annotate all existing
terms and types with the universal capture set and selectively mark those functions that are pure
with the empty capture set. Furthermore, our calculus not only allows to express pure and impure
bindings, but extends the binary notion of purity to concrete, finite capture sets. While the system
of Choudhury and Krishnaswami has an appealing simplicity, CF<: incorporates subtyping and
a limited form of term dependency, naturally leading to a naturally more complex system with
additional well-formedness conditions.

Capabilities in Scala. Modeling resources as capabilities and passing them explicitly to other mod-
ules can quickly become tedious. The Scala language comes equipped with contextual abstractions

that allow programmers to abstract over capabilities without having to pass them explicitly. This
includes type-directed implicit parameters and implicit function types [Odersky et al. 2017] which
have been introduced in Scala 3. Here is an example of how operations tracking exception capa-
bilities can be modeled in Scala 31.

class Exc // Exception classes

class DivByZero extends Exc

class CanRaise [E <: Exc] // Capability class

infix type raises[A, E <: Exc] = // Capability wrapper

CanRaise[E] ?=> A

// Basic exception operations

def handleWith [A, E <: Exc](body : CanRaise[E] ?=> A)( handler: E => A): A = ...

def raise[E <: Exc](exc: E): CanRaise[E] ?=> Nothing = ...

def safeDiv(x: Int , y: Int): Int raises DivByZero =

if y == 0 then raise(DivByZero ()) else x / y

Here, we use the implicit function type CanRaise[E] ?=> A to represent expressions that return
a value of type A but that also have the capability to raise an exception of type E. That type can
be abbreviated by means of the given type alias to A raises E . Hence, as can be seen in func-
tion safeDiv, programmers need not bind or pass the capability explicitly. While very useful for
modeling contextual abstractions, implicits do not guarantee effect safe usage of capabilities. It
has been proposed to combine them with second-class values [Brachthäuser and Schuster 2017;
Osvald et al. 2016], or an embedding of an effect system using other advanced type-level machin-
ery of Scala [Brachthäuser et al. 2020b]. With CF<: , in this paper, we propose another mechanism
to statically guarantee capability safety that is more expressive than second-class values, and more
lightweight than the embedding by Brachthäuser et al. [2020b]. In an imaginary extension of Scala
with capture sets, the handleWithoperation would create a local capability of class CanRaise that
it passes to its body, while checking that the result of body does not contain the local capability in
its capture set, similar to the technique used in Section 3.2.

Regions. Earlier in Section 3.3 we showed that we could extend CF<: with support for simple,
stack-based regions. Here, we compare our extension with Cyclone [Grossman et al. 2002], a C-
like language featuring region-based memory management.
Our extension is, in some ways, limited compared to Cyclone. Because CF<: does not support

data structures containing tracked references, we cannot stack-allocate data structures containing
pointers. However, we see no reason to believe this is a fundamental limitation - with an improved

1In practice, one would rather equip the language-defined ‘try‘ and ‘throw‘ constructs with similar types.
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version ofCF<: that does support impure data structures, the extension should naturally allow data
structures to mention pointers.
Our extension also does not support sub-regioning. The sub-region problem can be defined as

follows: given two regions G and ~, with ~ being shorter-lived (or more nested), can we pass a
pointer of type {G} Ptr[) ] where a pointer of type {~} Ptr[) ] is expected? We would be able to
do so if we knew that {G} <: {~} based on the bounds of G ; however, since ~ is the more nested
region, that is not possible. To support sub-regioning, CF<: needs the reverse bound: the ability to
know that {~} <: {G} based on the bounds of ~, i.e. the ability to put lower bounds on capture sets
of term variables.
However, our extension as presented already supports simple regions while using the more

widely applicable type system ofCF<: . In comparison, Cyclone hasmuchmore specialised features.
It has a separate concept of region variables d and region handles region(d). Region-polymorphic
functions need to be explicitly qualified with region variables. It tracks the use of regions with
an effect system, and, to avoid explicit effect polymorphism, defines a bespoke regions_of type
operator. To contrast that with our calculus CF<: , observe that we do not need to introduce an
effect system to support regions; we support region polymorphism without introducing region
variables (as have discussed in in Section 3.3), and we do not need to qualify region-polymorphic
functions with regions unnecessarily. Furthermore, we conjecture that one could lift both of the
limitations we discussed previously without introducing any region-specific features to CF<: .

5 CONCLUSION

In this paper, we introduced the CF<: calculus, a type-theoretic foundation for tracking free vari-
ables. The calculus is a modest addition to System F

<: , integrating the tracking of free variables
with subtyping. However, subtyping also required us to equip the calculus with additional well-
formedness conditions to establish soundness. The calculus satisfies interesting meta-theoretical
properties. In particular, capture sets soundly approximate the free variables captured by a value,
giving rise to reasoning about effect safety in terms of capability safety. We evaluated the practi-
cal applicability of the calculus by presenting several language extensions, each making use of the
newly gained expressive power of the type system. Capture polymorphismprovides a uniformway
to express region and effect polymorphism. In the future, it would be interesting to fully implement
the calculus in a practical programming language, to further explore the gained expressivity.
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A APPENDIX: TYPING List

We can represent a list using a function that takes a function 6 and applies it to the elements of the
list. Specifically, 6 takes an element of the list E and an already accumulated result B and returns
a new accumulated result. The list applies 6 to the elements of the list in turn to yield a final
accumulated result. Concretely, the type of a list of elements of type) is:

List[) ] ≡ {} ∀ [� <: {∗} ⊤] → {} ∀(6 : {∗} ∀(E : ) ) → {∗} ∀(B : �) → �) → {6} ∀(B : �) → �

We define an abbreviation for the type of the function 6:

Op[) ,�] ≡ {∗} ∀(E : ) ) → {∗} ∀(B : �) → �

Then the list type can be abbreviated to:

List[) ] ≡ {} ∀ [� <: {∗} ⊤] → {} ∀(6 : Op[) ,�]) → {6} ∀(B : �) → �

The term representing an empty list ignores 6 and just applies an identity function to the initial
accumulated result:

nil ≡ Λ [) <: {∗} ⊤] . Λ [� <: {∗} ⊤] . _ (6 : Op[) ,�]). _ (B : �). B

The term representing a cons cell first recurses on the tail of the list, and finally applies 6 to the
head:

cons ≡

Λ [) <: {∗} ⊤] . _ (ℎ3 : ) ). _ (C; : List[) ]). Λ [� <: {∗} ⊤]. _ (6 : Op[) ,�]). _ (B : �). 6 ℎ3 (C; [�] 6 B)

We can now implement the map function from Section 3.1 as follows:

map ≡

Λ [� <: {} ⊤] .

Λ [� <: {} ⊤] .

_ (GB : List[�]).

_ (5 : {∗} ∀(0 : �) → �).

GB [List[�]] _ (4;4< : �). _ (022D< : List[�]). cons [�] (5 4;4<) 022D< (nil [�])
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Themap2 function, which swaps the order of 5 and GB , can be implemented as follows with the
same function body:

map2 ≡

Λ [� <: {} ⊤] .

Λ [� <: {} ⊤] .

_ (5 : {∗} ∀(0 : �) → �).

_ (GB : List[�]).

GB [List[�]] _ (4;4< : �). _ (022D< : List[�]). cons [�] (5 4;4<) 022D< (nil [�])

Finally, the pureMap function also has the same function body, but the parameter type for the
function 5 enforces that this function is pure:

pureMap ≡

Λ [� <: {} ⊤] .

Λ [� <: {} ⊤] .

_ (GB : List[�]).

_ (5 : {} ∀(0 : �) → �).

GB [List[�]] _ (4;4< : �). _ (022D< : List[�]). cons [�] (5 4;4<) 022D< (nil [�])

We have constructed typing derivations for all of these terms to make sure that they have the
claimed types.
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