Object Inlining

Ondrej Lhotak
November 12, 2001
308-762

Reference

« Julian Dolby, Andrew A. Chien. An
Automatic Object Inlining Optimization
and its Evaluation. PLDI 2000

Outline

e Introduction

« A bit about the analysis
- Greek letters omitted

« Experimental evaluation

e Conclusion

Problem

classList { class Record {
Record r; Int product_id,;
List next; Int department;
} float vaue;
}

C++ Java
product_id r product_id
department next department
value value
next

ICC++ and Concert Compiler

e [CC++:"alanguage with C++-like
syntax and Java-like semantics”

- Compiles C++ programs

- Turns all embedded objects into references,
like Java

« Concert compiler: "iterative adaptive
analysis”

One-to-One Fields

e Definition: I is a dynamic one-to-one field
if for a given execution, every parent
object corresponds to exactly one child
object through f.

Dynamic Field Inlining

e Definition: A dynamic field inlining of a
one-to-one field is a substitution of
parent objects for child objects wherever
they appear in the execution.

Proof

« The paper gives a 1-page proof that:

- Program is equivalent after object inlining
has been applied to a one-to-one field

- After inlining, the inlined field is no longer
needed

Finding one-to-one fields

e Verifying common creation

- parent and child must be created in same
inter-procedural control dependence region

« Verifying data flow

— check that the child creation and child
assignment sites must be aliased

Finding field uses

« Must find all uses of the field

- uses before it was assigned to parent

- uses after it was assigned to parent

Transformation

e Build fused classes based on inlinable
fields

« Replace object creations with fused
object creations

« Replace child state accesses with fused
object accesses

Building fused classes

« Fused object classes combine not only

data, but also met

nods

e If methods from c

nild class are to be

shared, data layout must be the same in
fused classes containing the child class

Example

classList { class Record { class Tree{
List next; Int product_id,; Tree left, right;
Record r; int department; Record r;
} float value; }
}
next | eft next |eft
product_id. right product_id—product_id
department. " product_id department — department
value department value value
value right

Approach

« Arrange classes into trees (like single-
inheritance hierarchy)

e Conflicts can arise only if two fields
appear in overlapping sets of classes,
neither a subset of the other.

Fieldl Field2

N
Classl Class?2 Class3

Fieldl Fieldl Field2
Field2

Solution

« Try all forests

Field\y Fidd2 Fied2’ Fieldl Fieldl’ /F'iildz
Classl Class? Class3 Classl Class?2 (Class3
Fieldl Fiedl Field2 Fieldl Fiedl Field2

Field2 Field2

« Take the one that minimizes code

growth

Evaluation

benchmark lines | inlinable data structures
oopack 760 | complex numbers

AT library (3000 lines) programs
demo3 300 | lists, search nodes, arrays
demo4 300 | lists, search nodes, arravs
demo6 200 | lists, arrays

NIHCL library (20000 lines) programs

bag 100 | bag, set, array, iterator
dict 100 | assoc, bag, set, array, iterator
orderedcltn 100 | collections, array, iterator
sets 100 | set, array, iterator

OATH library (18000 lines) programs
dIl10 150 | arrays, smart pointers

large programs

otest 30000 | lists, arrays, wrappers, parser
xpdf 25000 | streams, arrays, child

Evaluation

Fields

Inlinable
Benchmark | All | Hand || Precise | 1-CFA || %
oopack_v1lp7 4 0 0.5 0| 12
demo3 | 13 3 5 0| 38
demo4 14 3 6 0 || 42
demo6 14 b 6 0 || 42
dlo [17 2 || 2.74667 11 16
bag | 30 6 || 11.2022 85 || 37
dict | 31 6 || 11.4189 6.9 || 36
orderedcltn 27 4 || 10.4732 7.0 || 38
sets 27 4 10.381 7.0 || 38
otCst 38 5|l 15.7167 10.5 || 41
xpdf | 133 54 45,25 | 23.4348 || 34

++

Performance vs.

B runtime
B data reads

244

2.1

1.8 +

1.5+

1.2

0.9

0.6

0.3

Performance

o field reads

E P data loads

E 1.04— - L1 read mizzes
e B L1 read stalls
=

2 1

= 0.8

&

)

o
())
*‘5’@% %, .

%Q’o? v =R

L
"
ol

Figure 16: Field Read Counts and L1 cache misses with and without Object Inlining

Performance

objects allocated

| Dbytes allocated
I
%
%

=
J—

0.8

0.6 -
0.4
0.2+

Buiuiewal uoloel)

Performance

1nstruction count

_m
i

_ _ _ _ _

I 1 1 I 1
< oQ O =, ™ <
— S - S S -

Bulurewal uoljoel)

Conclusions

 Significant performance improvement

« Analysis requires "incremental adaptive”
implementation to be fast enough

« How would it do on Java?

- Probably more object inlining opportunities
- Probably harder to find them

