CS 662
A General Data Structure for Efficient
Minimization of Deterministic Finite Automata

Ondftej Lhotak
96040603

December 6, 2000

DFA-MINIMIZE(Q (set of states), F' (set of final states))

1 equivalence class 1 « F

2 equivalence class 2 <+ Q \ F

3 while there is an equivalence class which must be split
4 do find an equivalence class which must be split

5 split it

Figure 1: Abstract DFA minimization algorithm

The Myhill-Nerode theorem states that for a deterministic finite automaton
(DFA), there is a unique equivalent minimal DFA. Further, the states of this
minimal DFA correspond to equivalence classes of the Myhill-Nerode equivalence
relation. This suggests an obvious approach to minimizing DFA’s by calculating
this equivalence relation.

Many algorithms using this approach to minimize DFA’s appear in the lit-
erature; Watson [4] gives a survey. Most of the well-known algorithms run in
O(n?) time or worse, where n is the number of states in the original DFA. The
published algorithms running in O(nlogn) time use complicated data struc-
tures, and are difficult to understand. It is the data structure, rather than the
algorithm, which permits these approaches to run in O(nlogn) time, yet the
papers describe and explain the algorithms, with only very brief explanations
of the data structures. The purpose of this paper is to identify the key features
that make these algorithms efficient, and to present and explain a comprehen-
sive data structure capturing all the information needed to minimize a DFA
efficiently.

Watson’s [4] survey paper classifies DFA minimization algorithms using
the Myhill-Nerode relation according to whether they compute E, the Myhill-
Nerode relation, D, its inverse, or [Q]g, the set of equivalence classes of the
relation. The algorithms computing D and E are simpler than ones computing
[Q]E, but they have no hope of running in better than ©(n?) time, since the
size of the equivalence relation is quadratic in the number of states. Thus, an
algorithm running in O(nlogn) time must compute [Q]g.

I am aware of three different published algorithms for minimizing DFA’s in
O(nlogn) time. All three have the general structure shown in figure 1, but each
fills in the details slightly differently.

The first is due to Hopcroft [3]. Hopcroft’s paper gives his algorithm, a proof
of correctness, and a proof of the running time including an informal description
of the data structures used to implement the algorithm.

The second is due to Gries [2]. He claims that Hopcroft’s algorithm and proof
are “very difficult to understand.” Gries presents pieces of his own algorithm
along with simple lemmas proving the correctness of each piece. This makes the
proof easier to understand. The algorithm of Gries is almost identical to that
of Hopcroft (and he explains the small differences between the two); the main
difference is in the presentation.

| | Hopcroft | Gries | Blum |

Partition not used not used not used
Splittable Sets L L K
Part B B not used
State s, t s not used
Transition Set | not named | not named A’
Transition not used not used L
State X Symbol | not used not used not named
StateSyms not used not used A
StateSymsIn not used not used A1
TransitionsOut not used not used r
TransitionsIn not used not used r-1
TranSets not used not used not mentioned

Table 1: Equivalent notation used for parts of the data structure

The third algorithm is due to Blum [1]. Its main distinguishing feature is the
complexity of its data structure. In particular, Blum’s data structure represents
explicitly the transitions between equivalence classes of states, whereas those of
Hopcroft and Gries only represent the equivalence classes themselves. Blum
describes his algorithm only informally, in words, leaving it to the reader to fill
in details. Blum’s proof of correctness and running time is much simpler than
those of Hopcroft and Gries, since many of the conditions that they had to prove
are represented explicitly in Blum’s data structure.

The data structure that I am presenting is a superset of the data structures
of Hopcroft, Gries and Blum. Their data structures and algorithms were de-
signed to be minimal, containing only the required information, to minimize
the computational resources required. My data structure, on the other hand,
represents as much information about the DFA as possible, while still being
efficient enough to implement the minimization algorithms to run in O(nlogn)
time. Having all the information available makes the data structure easier to
understand, and also makes it easier to use for implementing algorithms. Ta-
ble 1 shows the correspondence between parts of my data structure and those
of Hopcroft, Gries and Blum.

The data structure (see figure 2) consists of sets of objects of different types,
most of them connected with one-to-many relations. Hopcroft, Gries, and Blum
represent each of these relations using different structures. For example, some
may be implemented as simple linked lists, others need to be doubly-linked
lists, still others need to also keep track of their size, or allow access to the
containing object from each of the contained objects. To simplify the structure,
I implemented all the relations using the same structure: a circular doubly-
linked list with a dummy node, keeping track of its size, and maintaining a
pointer to the object owning the list. This supports all the operations needed
by the algorithms. The same list code can be used for all the relations, rather
than implementing a different type of list for each relation.

Partition

1
Splittable Sets
1
n n
Transition Set—> L Part 1 L State
1 L 1|1 1
TranSet
|X]
Q]
0 n |n N n
1 Transition ——— — State X Symbol
1 n
TransitionsOut StateSyms StateSymsIn
|Z] =] =]
Q| Q Q) Q]
Y] 4 1 i\

Figure 2: A general data structure for DFA minimization

The main object in the data structure is a Partition. This represents a parti-
tioning of the states of the DFA into a set of equivalence classes, represented by
Part objects. Each equivalence class contains the set of State objects forming
the equivalence class. It also contains a set of Transition Set objects. Each of
these objects represents a set of transitions leading out of states in the equiva-
lence class on a given symbol. Thus, a Part object contains one Transition Set
for each symbol in the alphabet. Each Transition Set contains a set of Tran-
sition objects. A Transition object represents a transition on a certain symbol
from one equivalence class into another single equivalence class. Note that an
equivalence class needs to be split if and only if there is a symbol for which
there are transitions into more than one equivalence class. Put another way, a
Part needs to be split if and only if there are at least two Transition objects
in any of its Transition Set objects. The Splittable Sets object contains a list
of all Transition Set objects containing at least two Transitions, facilitating the
selection of a Transition Set which can be used to split its Part. Each Tran-
sition object contains a list of the states in its source equivalence class with
transitions into the destination equivalence class on the given symbol. These
are exactly the states that need to be moved into a new equivalence class when
the source equivalence class is split. Because each state can appear in different
Transition objects, one for each symbol, I represent the states with a special
State X Symbol object.

Finally, the data structure contains five arrays. The StateSyms array is
simply a mapping from states and symbols to the corresponding State X Sym-
bol object. The StateSymsIn array contains lists of State X Symbol objects
from which there are transitions on a given symbol into a given state. The
TransitionsOut and TransitionsIn arrays are used to find the Transition object
representing the transitions from a class (); into a class (); on symbol a. Repre-
senting this directly would require an array of size n?k, where n is the number
of states (the maximum number of equivalence classes) and k is the number of
symbols. Such an array would take more than O(nlogn) time to initialize and
manipulate. Therefore, two arrays are used: TransitionsIn and TransitionsOut.
TransitionsOut maps (@i, a) to the last created Transition from @); on symbol
a. Fortunately, the algorithm only ever needs to find Transitions into the last
equivalence class created. When using the array TransitionsOut, the algorithm
must always check whether the Transition it finds in fact goes into the desired
equivalence class, since if there is no Transition into the most recently created
equivalence class, the array will point to an old Transition. Similarly, the Tran-
sitionsIn array maps (a, ;) to the last created Transition into); on symbol a,
and the algorithm must check whether this Transition actually originates from
the desired equivalence class @);. Finally, the TranSets array allows us to find
the TransitionSet object given the Part from which the transition originates,
and the symbol on which the transition is taken.

Figures 3 through 9 give a formal description of an O(nlogn) algorithm for
minimizing DFA’s using the data structure just described. The algorithm is
based on the one due to Blum. Enough detail is given so that each line could
be translated to one line of C++ or other programming language.

DFA-MINIMIZE(Q (set of states), F' (set of final states), § (transition function))

1 // Initialize the data structure
2 INITIALIZE(Q, d)
3 // Create a new part for final states
4 newpart < CREATE-PART()
5 for state € F
6 do MOVE-STATE(state, newpart)
7 // Minimize the DFA
8 while SplittableSets.splittablesets transitionset.size() > 0
9 do transet < SplittableSets.splittablesets transitionset. first()
10 tranl < transet.transitionset_transition. first()
11 tran2 « transet.transitionset_transition. first().next()
12 if tranl.transition_statesym.size() > tran2.transition_statesym.size()
13 then SwaP(tranl,tran2)
14 newpart < CREATE-PART()
15 for statesym € tranl.transition_statesym
16 do state < statesym.state_statesym.getOwner ()
17 MOoVE-STATE(state, newpart)

18 // Part objects are now states of minimized DFA
19 // Transition objects are now transitions of minimized DFA

Figure 3: DFA-Minimize

The algorithm begins by initializing the data structure with a single equiva-
lence class containing all the states. It then uses MOVE-STATE to move all final
states into a second equivalence class. Then, as long as there are equivalence
classes which need to be split, the algorithm splits them, always moving the
smaller half of the states in an equivalence class into a new equivalence class.

The MOVE-STATE procedure is the most complicated part of the algorithm,
as it updates all parts of the data structure to reflect moving a state into a
different equivalence class. First, it moves the actual State object into the new
Part object. It must then update information for all transitions into and out of
the moved state. This is accomplished by the two main loops in MOVE-STATE.

Each line in the algorithm (other than loops) takes a constant amount of
running time. It is easy to verify that ADD-TRANSITION-TO-TRANSITIONSET,
REMOVE-TRANSITION-FROM-TRANSITIONSET, and REMOVE-STATESYM-FROM-
TRANSITION run in constant time. MOVE-STATE and CREATE-PART run in
O(k) time, where k is the number of symbols in the alphabet ¥. INITIALIZE
runs in O(kn) time, where n is the number of states in Q.

Finally, I am left to analyze the running time of DFA-MINIMIZE. This run-
ning time is bounded by the total time spent executing MOVE-STATE. Whenever
any state is moved into a different part, the new part contains at most half as
many states as the part that the state was moved from. Therefore, each state
can be moved at most log, n times. Since there are n states, MOVE-STATE is

MOVE-STATE(state, newpart)

00 ~J O Ui W N+

e e e el e e
O~ O Uik W KOO

19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

// move the actual state object
oldpart < state.part_state.getOwner()
state.part_state.remove(state)
newpart.part_state.add(state)
// now update transitions out of the moved state
for statesym € state.state_statesym
do oldtransition < statesym.transition_statesym.getOwner()
oldtopart < oldtransition.topart_transition.getOwner()
REMOVE-STATESYM-FROM-TRANSITION (statesym)
newtransition < TransitionsOut(oldtopart, statesym.symbol)
if newtransition. frompart_transition.getOwner() # newpart
then oldtopart < newtransition.topart_transition.getOwner()
newtransition < new Transition
newpart. frompart_transition.add(newtransition)
oldtopart.topart_transition.add(newtransition)
transet < TranSets(newpart, statesym.symbol)
ADD-TRANSITION-TO-TRANSITIONSET (newtransition, transet)
TransitionsOut(oldtopart, statesym.symbol) < newtransition
newtransition.transition_statesym.add(statesym)
// now update transitions into the moved state
for symbol € ¥
do for statesym € StateSymsIn(state, symbol)
do oldtransition = statesym.transition_statesym.getOwner()
oldfrompart = oldtransition. frompart_transition.getOwner()
REMOVE-STATES YM-FROM-TRANSITION (statesym)
newtransition < TransitionsIn(oldfrompart, statesym.symbol)
if newtransition.topart_transition.getOwner() # newpart
then oldfrompart < newtransition. frompart_transition.getOwner()
newtransition < new Transition
newpart.topart_transition.add(newtransition)
oldf rompart. frompart_transition.add(newtransition)
transet < TranSets(oldf rompart, statesym.symbol)
ADD-TRANSITION-TO-TRANSITIONSET (newtransition, transet)
TransitionsIn(oldfrompart, statesym.symbol) < newtransition
newtransition.transition_statesym.add(statesym)

Figure 4: Move-State

INITIALIZE(Q, §)

1

00 ~J O Ut ix W N

11
12
13
14
15
16
17
18
19
20
21
22

Partition < new Partition
SplittableSets < new SplittableSets
part < CREATE-PART()
for g€ Q
do state < new State
part.part_state.add(state)
for symbol € &
do statesym < new StateSym
state.state_statesym.add(statesym)
StateSyms(state, symbol) < statesym
for state €
do for symbol € ¥
do StateSymsIn(d(state, symbol), symbol).add(StateSyms(state, symbol))
for symbol € &
do transition < new Transition
part. frompart_transition.add(transition)
part.topart_transition.add(transition)
TransitionsIn(part, symbol) < transition
TransitionsOut(part, symbol) < transition
ADD-TRANSITION-TO-TRANSITIONSET(transition, TranSets(part, symbol))
for state €)
do transition.transition_statesym.add(StateSyms(state, symbol))

Figure 5: Initialize

CREATE-PART()

1
2
3
4
)
6

part < new Part

Partition.partition_part.add(part)

for symbol € &

do transet < new TransitionSet
part.part_transitionset.add(transet)
TranSets(part, symbol) < transet

Figure 6: Create-Part

ADD-TRANSITION-TO-TRANSITIONSET(transition, transet)

1
2
3

transet.transitionset_transition.add(transition)
if transet.transitionset_transition.size() = 2
then SplittableSets.splittablesets transitionset.add(transet)

Figure 7: Add-Transition-To-TransitionSet

REMOVE-TRANSITION-FROM-TRANSITIONSET (transition)

1 transet < transition.transitionset_transition.getOwner()

2 transition.transitionset_transition.remove(transition)

3 if transet.transitionset_transition.size() = 1

4 then SplittableSets.splittablesets_transitionset.remove(transet)

Figure 8: Remove-Transition-From-TransitionSet

REMOVE-STATESYM-FROM-TRANSITION (statesym,)

1 transition < statesym.transition_statesym.getOwner()

2 statesym.transition_statesym.remove(statesym)

3 if transition.transition_statesym.size() = 0

4 then REMOVE-TRANSITION-FROM-TRANSITIONSET(transition)
)

Figure 9: Remove-StateSym-From-Transition

called O(nlogn) times. Each call to MOVE-STATE takes O(k) time, so the total
running time if DFA-MINIMIZE is O(knlogn). For more details, see [1].

To show correctness, we first note that the SplittableSets list contains all
TransitionSet objects containing two or more Transition objects. To verify this,
notice that Transition objects are only added to or removed from TransitionSet
objects in the functions ADD-TRANSITION-TO-TRANSITIONSET and REMOVE-
TRANSITION-FROM-TRANSITIONSET, and that these functions correctly update
SplittableSets. I argued in the description of the data structure that there are
equivalence classes to split if and only if there are at least two Transition objects
in any TransitionSet object, that is, if SplittableSets is not empty. Since Split-
tableSets must be empty for the algorithm to terminate, it can only terminate
once the correct answer is found. Finally, note that only equivalence classes
which have to be split (those in SplittableSets) are ever split, and that creating
a new Part and moving the States into it using MOVE-STATE correctly splits
an equivalence class. Again, for more details, see [1].

I have presented and explained a general data structure which can be used
to implement DFA minimization algorithms running in O(nlogn) time, where
n is the number of states in the DFA. This structure could also be used for other
efficient DFA manipulation algorithms. As an example, I have formalized and
modified Blum’s DFA minimization algorithm to use my general data structure,
and implemented it in C++. The C++ code is given in the appendices.

References

[1] Norbert Blum. An O(nlogn) implementation of the standard method
for minimizing n-state finite automata. Information Processing Letters,

57(2):65-69, January 1996.

David Gries. Describing an algorithm by Hopcroft. Acta Informatica, 2:97-
109, 1973.

Hopcroft. An n log n algorithm for minimizing states in a finite automaton.
In Theory of Machines and Computations, Ed. by Zvi Kohavi and Azaria
Paz, Academic Press. 1971.

B. W. Watson. A taxonomy of finite automata minimization algorithms.
Report, Department of Mathematics and Computing Science, Eindhoven
University of Technology, The Netherlands, 1994.

A Code for one-to-many relations

/* implementation of a doubly-linked list template class */
/* each function takes 0(1) time */

template <class Owner, class Elem> class Reln
{
public:
// Member access functions
Elem* getElem() {
return _elem;

}

Owner* getOwner() {
return (Owner*) _root->_elem;

}

Reln<Owner, Elem>* next() {
return _next;

}

Reln<QOwner, Elem>* prev() {
return _prev;

}

Reln<Owner, Elem>* first() {
return _root->next();

}

int size() {
return _root->_size;

}

// is_root_node - returns true iff this node
// is the root (dummy) node
bool is_root_node() {

return _root == this;

}

// insert - inserts a new node into the list after the current node
void add(Reln<Owner, Elem>* new_node) {
new_node->unlink(); // make sure it’s not linked

new_node->_next = _root->_next; // make new node point into the list
new_node->_prev = _root;
new_node->_root = _root;

_root->_next->_prev = new_node;
// make the list point to the new node
_root->_next = new_node;

_root->_size++;

}

// unlink - removes this node from any list in which it may be
virtual void unlink() {
_root->_size--;
_next->_prev = _prev; // remove me from the list
_prev—>_next = _next;

_next = this; // make me no longer point to the list
_prev = this;

_root = this;

_root->_size = 1;

}

// constructors
Reln<Owner, Elem>(Owner* owner) {

10

_elem (Elem*) owner;
_next this;

_prev = this;

_root = this;

_size = 0;

}

Reln<Owner, Elem>(Elem* elem) {
_elem = elem;
_next = this;
_prev = this;
_root = this;
_size = 1;

}

private:
Elem* _elem;
Reln<Owner, Elem>* _next;
Reln<Owner, Elem>* _prev;
Reln<Owner, Elem>* _root;
int _size;

};

// macro to iterate over all elements in the list
#define FORALL(owner_type, elem_type, elem, list) \
for(Reln<owner_type,elem_type>* iterator = (list).first(); \
literator->is_root_node();) { \
elem_typex elem = iterator->getElem(); \
iterator = iterator->next();

#define ADD(relation, element) \
relation.add(&(element->relation))

B Declarations of data structure

struct Partition;
struct Part;

struct TransitionSet;
struct Transition;
struct StateSym;
struct State;

struct SplittableSets;

struct Partition {
Reln<Partition, Part> partition_part;

Partition()
: partition_part(this)
{3
};

struct Part {
Reln<Part, Transition> frompart_transition;
Reln<Part, Transition> topart_transition;
Reln<Part, TransitionSet> part_transitionset;
Reln<Part, State> part_state;
Reln<Partition, Part> partition_part;

int part;

Part(int part)
: frompart_transition(this)
, topart_transition(this)
, part_transitionset(this)
part_state(this)
, partition_part(this)

11

, part(part)
{3
};

struct TransitionSet {
Reln<TransitionSet, Transition> transitionset_transition;
Reln<Part, TransitionSet> part_transitionset;
Reln<SplittableSets, TransitionSet> splittablesets_transitionset;

TransitionSet ()
: transitionset_transition(this)
, part_transitionset(this)
, splittablesets_transitionset(this)
{3
};

struct Transition {
Reln<TransitionSet, Transition> transitionset_transition;
Reln<Part, Transition> frompart_transition;
Reln<Part, Transition> topart_transition;
Reln<Transition, StateSym> transition_statesym;

Transition()
: transitionset_transition(this)
, frompart_transition(this)
, topart_transition(this)
, transition_statesym(this)

{3
};

struct StateSym {
Reln<Transition, StateSym> transition_statesym;
Reln<State, StateSym> state_statesym;
Reln<void, StateSym> statesymsin_statesym;
int state;
int symbol;

StateSym(int state, int symbol)
: transition_statesym(this)
, state_statesym(this)
, statesymsin_statesym(this)
, state(state)
, symbol(symbol)

{3

};

struct State {
Reln<State, StateSym> state_statesym;
Reln<Part, State> part_state;

int state;

State(int state)
: state_statesym(this)
, part_state(this)
, state(state)
{3
};

struct SplittableSets {
Reln<SplittableSets, TransitionSet> splittablesets_transitionset;

SplittableSets()
: splittablesets_transitionset(this)
{3
};

Transition* TransitionsOut[NUM_STATES][NUM_SYMBOLS 1;

12

Transition* TransitionsIn[NUM_STATES][NUM_SYMBOLS];
StateSym* StateSyms[NUM_STATES][NUM_SYMBOLS 1;
Reln<void,StateSym>* StateSymsIn[NUM_STATES][NUM_SYMBOLS 1;
TransitionSet* TranSets[NUM_STATES][NUM_SYMBOLS];

C Code for DFA minimization algorithm

static Partition* partition;

static SplittableSets* splittablesets;
static int last_part = -1;

static Statex states[NUM_STATES];

void DFAMinimize(int NUM_FINAL_STATES, int delta[NUM_STATES] [NUM_SYMBOLS]);
void MoveState(Statex state, Part* newpart);
void Initialize(int delta[NUM_STATES] [NUM_SYMBOLS]);
Part* CreatePart();
void AddTransitionToTransitionSet(Transition* transition,
TransitionSet* transet);
void RemoveTransitionFromTransitionSet(Transition* transition);
void RemoveStateSymFromTransition(StateSym* statesym);

void DFAMinimize(int NUM_FINAL_STATES, int delta[NUM_STATES] [NUM_SYMBOLS]) {
// assume that states O..NUM_FINAL_STATES are final states

// Initialize the data structure
Initialize(delta);

// Create a new part for final states

Part* newpart = CreatePart();

for(int state = 0; state < NUM_FINAL_STATES; state++) {
MoveState(states[state], newpart);

}

// Minimize the DFA
while(splittablesets->splittablesets_transitionset.size() > 0) {
TransitionSet* transet =
splittablesets->splittablesets_transitionset.first()->getElem();
Transition* tranl =
transet->transitionset_transition.first()->getElem();
Transition* tran2 =
transet->transitionset_transition.first()->next()->getElem();

if (tranl->transition_statesym.size() >
tran2->transition_statesym.size()) {
Transition* temp = tranl; tranl = tran2; tran2 = temp;

}

Part* newpart = CreatePart();
FORALL(Transition, StateSym, statesym, tranl->transition_statesym)

Statex state = statesym->state_statesym.getOwner();
MoveState(state, newpart);

}

void MoveState(Statex state, Part* newpart) {
// move the actual state object
Part* oldpart = state->part_state.getOwner();
state->part_state.unlink();
newpart->ADD(part_state, state);

// now update transitions out of the moved state

FORALL(State, StateSym, statesym, state->state_statesym)
Transition* oldtransition = statesym->transition_statesym.getOwner();
Part* oldtopart = oldtransition—)topart_transition.getaner();

13

RemoveStateSymFromTransition(statesym);
Transition* newtransition =
TransitionsOut[oldtopart->part][statesym->symbol];
if (!newtransition || newtransition->frompart_transition.getOwner() !'= newpart) {
newtransition = new Transition;
newpart->ADD(frompart_transition, newtransition);
oldtopart->ADD(topart_transition, newtransition);
TransitionSet* transet =
TranSets[newpart->part][statesym->symbol];
AddTransitionToTransitionSet(newtransition, transet);
TransitionsOut[oldtopart->part][statesym->symbol] =
newtransition;
}

newtransition->ADD (transition_statesym, statesym)

}

// now update transitions into the moved state
for(int symbol = 0; symbol < NUM_SYMBOLS; symbol++) {
FORALL(void, StateSym, statesym,
*(StateSymsIn[state->state][symbol 1))
Transition* oldtransition = statesym->transition_statesym.getOwner();
Part* oldfrompart = oldtransition—)frompart_transition.getaner();
RemoveStateSymFromTransition(statesym);
Transition* newtransition =
TransitionsIn[oldfrompart->part][statesym->symbol];
if (!newtransition || newtransition->topart_transition.getOwner() != newpart) {
newtransition = new Transition;
newpart->ADD(topart_transition, newtransition);
oldfrompart->ADD(frompart_transition, newtransition);
TransitionSet* transet =
TranSets[oldfrompart->part][statesym->symbol];
AddTransitionToTransitionSet(newtransition, transet);
TransitionsIn[oldfrompart->part][statesym->symbol] =
newtransition;
}

newtransition->ADD (transition_statesym, statesym)

}

void Initialize(int delta[NUM_STATES] [NUM_SYMBOLS]) {
partition = new Partition;
splittablesets = new SplittableSets;
Part* part = CreatePart();
for(int q = 0; q < NUM_STATES; q++) {
for(int symbol = 0; symbol < NUM_SYMBOLS; symbol++) {
StateSymsIn[q] [symbol] = new Reln<void, StateSym>((voidx) NULL);
}
}
for(int q = 0; q < NUM_STATES; q++)y {
State* state = new State(q);
states[q] = state;
part->ADD(part_state, state);
for(int symbol = 0; symbol < NUM_SYMBOLS; symbol++) {
StateSym* statesym = new StateSym(q, symbol);
state->ADD(state_statesym, statesym);
StateSyms[q] [symbol] = statesym;
}
}
for(int q = 0; q < NUM_STATES; q++)y {
for(int symbol = 0; symbol < NUM_SYMBOLS; symbol++) {
StateSymsIn[deltalql[symbol]l][symboll->
add(&(StateSyms[ql [symboll->statesymsin_statesym));
}
}
for(int symbol = 0; symbol < NUM_SYMBOLS; symbol++) {
Transition* transition = new Transition;
part->ADD(frompart_transition, transition);

14

part->ADD(topart_transition, transition);
TransitionsIn[last_part] [symbol]l = transition;
TransitionsQOut[last_part] [symbol] = transition;
AddTransitionToTransitionSet(transition,

TranSets[last_part] [symboll);
for(int q = 0; q < NUM_STATES; q++) {

transition->ADD(transition_statesym, StateSyms[q][symbol]);
}

}

Part* CreatePart() {

Part* part = new Part (++last_part)

partition->ADD(partition_part, part);

for(int symbol = 0; symbol < NUM_SYMBOLS; symbol++) {
TransitionSet* transet = new TransitionSet;
part->ADD(part_transitionset, transet);
TranSets[last_part][symbol] = transet;

}

return part;

}

void AddTransitionToTransitionSet(Transition* transition,
TransitionSet* transet) {

transet->ADD(transitionset_transition, transition);
if(transet->transitionset_transition.size() == 2) {
splittablesets—)ADD(splittablesets_transitionset, transet)
}
}

void RemoveTransitionFromTransitionSet(Transition* transition) {
TransitionSet#* transet =
transition->transitionset_transition.getOwner();
transition->transitionset_transition.unlink();
if(transet->transitionset_transition.size() == 1) {
transet->splittablesets_transitionset.unlink();
}
}

void RemoveStateSymFromTransition(StateSym* statesym) {
Transition* transition = statesym—)transition_statesym.getaner();
statesym->transition_statesym.unlink();
if(transition->transition_statesym.size() == 0) {
RemoveTransitionFromTransitionSet (transition);

}

15

