
CS 662

A General Data Struture for EÆient

Minimization of Deterministi Finite Automata

Ond�rej Lhot�ak

96040603

Deember 6, 2000

DFA-Minimize(Q (set of states), F (set of �nal states))

1 equivalene lass 1 F

2 equivalene lass 2 Q n F

3 while there is an equivalene lass whih must be split

4 do �nd an equivalene lass whih must be split

5 split it

Figure 1: Abstrat DFA minimization algorithm

The Myhill-Nerode theorem states that for a deterministi �nite automaton

(DFA), there is a unique equivalent minimal DFA. Further, the states of this

minimal DFA orrespond to equivalene lasses of the Myhill-Nerode equivalene

relation. This suggests an obvious approah to minimizing DFA's by alulating

this equivalene relation.

Many algorithms using this approah to minimize DFA's appear in the lit-

erature; Watson [4℄ gives a survey. Most of the well-known algorithms run in

�(n

2

) time or worse, where n is the number of states in the original DFA. The

published algorithms running in O(n logn) time use ompliated data stru-

tures, and are diÆult to understand. It is the data struture, rather than the

algorithm, whih permits these approahes to run in O(n logn) time, yet the

papers desribe and explain the algorithms, with only very brief explanations

of the data strutures. The purpose of this paper is to identify the key features

that make these algorithms eÆient, and to present and explain a omprehen-

sive data struture apturing all the information needed to minimize a DFA

eÆiently.

Watson's [4℄ survey paper lassi�es DFA minimization algorithms using

the Myhill-Nerode relation aording to whether they ompute E, the Myhill-

Nerode relation, D, its inverse, or [Q℄

E

, the set of equivalene lasses of the

relation. The algorithms omputing D and E are simpler than ones omputing

[Q℄

E

, but they have no hope of running in better than �(n

2

) time, sine the

size of the equivalene relation is quadrati in the number of states. Thus, an

algorithm running in O(n logn) time must ompute [Q℄

E

.

I am aware of three di�erent published algorithms for minimizing DFA's in

O(n logn) time. All three have the general struture shown in �gure 1, but eah

�lls in the details slightly di�erently.

The �rst is due to Hoproft [3℄. Hoproft's paper gives his algorithm, a proof

of orretness, and a proof of the running time inluding an informal desription

of the data strutures used to implement the algorithm.

The seond is due to Gries [2℄. He laims that Hoproft's algorithm and proof

are \very diÆult to understand." Gries presents piees of his own algorithm

along with simple lemmas proving the orretness of eah piee. This makes the

proof easier to understand. The algorithm of Gries is almost idential to that

of Hoproft (and he explains the small di�erenes between the two); the main

di�erene is in the presentation.

1

Hoproft Gries Blum

Partition not used not used not used

Splittable Sets L L K

Part B B not used

State s, t s not used

Transition Set not named not named �

0

Transition not used not used L

State X Symbol not used not used not named

StateSyms not used not used �

StateSymsIn not used not used �

�1

TransitionsOut not used not used �

TransitionsIn not used not used �

�1

TranSets not used not used not mentioned

Table 1: Equivalent notation used for parts of the data struture

The third algorithm is due to Blum [1℄. Its main distinguishing feature is the

omplexity of its data struture. In partiular, Blum's data struture represents

expliitly the transitions between equivalene lasses of states, whereas those of

Hoproft and Gries only represent the equivalene lasses themselves. Blum

desribes his algorithm only informally, in words, leaving it to the reader to �ll

in details. Blum's proof of orretness and running time is muh simpler than

those of Hoproft and Gries, sine many of the onditions that they had to prove

are represented expliitly in Blum's data struture.

The data struture that I am presenting is a superset of the data strutures

of Hoproft, Gries and Blum. Their data strutures and algorithms were de-

signed to be minimal, ontaining only the required information, to minimize

the omputational resoures required. My data struture, on the other hand,

represents as muh information about the DFA as possible, while still being

eÆient enough to implement the minimization algorithms to run in O(n logn)

time. Having all the information available makes the data struture easier to

understand, and also makes it easier to use for implementing algorithms. Ta-

ble 1 shows the orrespondene between parts of my data struture and those

of Hoproft, Gries and Blum.

The data struture (see �gure 2) onsists of sets of objets of di�erent types,

most of them onneted with one-to-many relations. Hoproft, Gries, and Blum

represent eah of these relations using di�erent strutures. For example, some

may be implemented as simple linked lists, others need to be doubly-linked

lists, still others need to also keep trak of their size, or allow aess to the

ontaining objet from eah of the ontained objets. To simplify the struture,

I implemented all the relations using the same struture: a irular doubly-

linked list with a dummy node, keeping trak of its size, and maintaining a

pointer to the objet owning the list. This supports all the operations needed

by the algorithms. The same list ode an be used for all the relations, rather

than implementing a di�erent type of list for eah relation.

2

jQj

j�j

jQj

j�j

jQj

j�j

jQj

j�j

jQj

j�j

Q

Q

Q

Q

Q

Q

Q

Q

Q

�

�

�

�

�

�

�

�

"

"

"

"

"

"

"

"

"

"

"

"

"

E

E

E

E

E

E

E

E

Partition

1

n

1 1

1

1

nn

n

n

1

1

1

1111

1

n

Part State

Transition

State X Symbol

Transition Set

n 1

n

1

1

1

TransitionsInTransitionsOut StateSyms StateSymsIn

TranSets

Splittable Sets

1

n

n

Figure 2: A general data struture for DFA minimization

3

The main objet in the data struture is a Partition. This represents a parti-

tioning of the states of the DFA into a set of equivalene lasses, represented by

Part objets. Eah equivalene lass ontains the set of State objets forming

the equivalene lass. It also ontains a set of Transition Set objets. Eah of

these objets represents a set of transitions leading out of states in the equiva-

lene lass on a given symbol. Thus, a Part objet ontains one Transition Set

for eah symbol in the alphabet. Eah Transition Set ontains a set of Tran-

sition objets. A Transition objet represents a transition on a ertain symbol

from one equivalene lass into another single equivalene lass. Note that an

equivalene lass needs to be split if and only if there is a symbol for whih

there are transitions into more than one equivalene lass. Put another way, a

Part needs to be split if and only if there are at least two Transition objets

in any of its Transition Set objets. The Splittable Sets objet ontains a list

of all Transition Set objets ontaining at least two Transitions, failitating the

seletion of a Transition Set whih an be used to split its Part. Eah Tran-

sition objet ontains a list of the states in its soure equivalene lass with

transitions into the destination equivalene lass on the given symbol. These

are exatly the states that need to be moved into a new equivalene lass when

the soure equivalene lass is split. Beause eah state an appear in di�erent

Transition objets, one for eah symbol, I represent the states with a speial

State X Symbol objet.

Finally, the data struture ontains �ve arrays. The StateSyms array is

simply a mapping from states and symbols to the orresponding State X Sym-

bol objet. The StateSymsIn array ontains lists of State X Symbol objets

from whih there are transitions on a given symbol into a given state. The

TransitionsOut and TransitionsIn arrays are used to �nd the Transition objet

representing the transitions from a lass Q

i

into a lass Q

j

on symbol a. Repre-

senting this diretly would require an array of size n

2

k, where n is the number

of states (the maximum number of equivalene lasses) and k is the number of

symbols. Suh an array would take more than O(n logn) time to initialize and

manipulate. Therefore, two arrays are used: TransitionsIn and TransitionsOut.

TransitionsOut maps (Q

i

; a) to the last reated Transition from Q

i

on symbol

a. Fortunately, the algorithm only ever needs to �nd Transitions into the last

equivalene lass reated. When using the array TransitionsOut, the algorithm

must always hek whether the Transition it �nds in fat goes into the desired

equivalene lass, sine if there is no Transition into the most reently reated

equivalene lass, the array will point to an old Transition. Similarly, the Tran-

sitionsIn array maps (a;Q

j

) to the last reated Transition into Q

j

on symbol a,

and the algorithm must hek whether this Transition atually originates from

the desired equivalene lass Q

i

. Finally, the TranSets array allows us to �nd

the TransitionSet objet given the Part from whih the transition originates,

and the symbol on whih the transition is taken.

Figures 3 through 9 give a formal desription of an O(n logn) algorithm for

minimizing DFA's using the data struture just desribed. The algorithm is

based on the one due to Blum. Enough detail is given so that eah line ould

be translated to one line of C++ or other programming language.

4

DFA-Minimize(Q (set of states), F (set of �nal states), Æ (transition funtion))

1 // Initialize the data struture

2 Initialize(Q; Æ)

3 // Create a new part for �nal states

4 newpart Create-Part()

5 for state 2 F

6 do Move-State(state; newpart)

7 // Minimize the DFA

8 while SplittableSets:splittablesets transitionset:size() > 0

9 do transet SplittableSets:splittablesets transitionset:first()

10 tran1 transet:transitionset transition:first()

11 tran2 transet:transitionset transition:first():next()

12 if tran1:transition statesym:size() > tran2:transition statesym:size()

13 then Swap(tran1; tran2)

14 newpart Create-Part()

15 for statesym 2 tran1:transition statesym

16 do state statesym:state statesym:getOwner()

17 Move-State(state; newpart)

18 // Part objets are now states of minimized DFA

19 // Transition objets are now transitions of minimized DFA

Figure 3: DFA-Minimize

The algorithm begins by initializing the data struture with a single equiva-

lene lass ontaining all the states. It then usesMove-State to move all �nal

states into a seond equivalene lass. Then, as long as there are equivalene

lasses whih need to be split, the algorithm splits them, always moving the

smaller half of the states in an equivalene lass into a new equivalene lass.

The Move-State proedure is the most ompliated part of the algorithm,

as it updates all parts of the data struture to reet moving a state into a

di�erent equivalene lass. First, it moves the atual State objet into the new

Part objet. It must then update information for all transitions into and out of

the moved state. This is aomplished by the two main loops in Move-State.

Eah line in the algorithm (other than loops) takes a onstant amount of

running time. It is easy to verify that Add-Transition-To-TransitionSet,

Remove-Transition-From-TransitionSet, andRemove-StateSym-From-

Transition run in onstant time. Move-State and Create-Part run in

O(k) time, where k is the number of symbols in the alphabet �. Initialize

runs in O(kn) time, where n is the number of states in Q.

Finally, I am left to analyze the running time of DFA-Minimize. This run-

ning time is bounded by the total time spent exeutingMove-State. Whenever

any state is moved into a di�erent part, the new part ontains at most half as

many states as the part that the state was moved from. Therefore, eah state

an be moved at most log

2

n times. Sine there are n states, Move-State is

5

Move-State(state; newpart)

1 // move the atual state objet

2 oldpart state:part state:getOwner()

3 state:part state:remove(state)

4 newpart:part state:add(state)

5 // now update transitions out of the moved state

6 for statesym 2 state:state statesym

7 do oldtransition statesym:transition statesym:getOwner()

8 oldtopart oldtransition:topart transition:getOwner()

9 Remove-StateSym-From-Transition(statesym)

10 newtransition TransitionsOut(oldtopart; statesym:symbol)

11 if newtransition:frompart transition:getOwner() 6= newpart

12 then oldtopart newtransition:topart transition:getOwner()

13 newtransition new Transition

14 newpart:frompart transition:add(newtransition)

15 oldtopart:topart transition:add(newtransition)

16 transet TranSets(newpart; statesym:symbol)

17 Add-Transition-To-TransitionSet(newtransition; transet)

18 TransitionsOut(oldtopart; statesym:symbol) newtransition

19 newtransition:transition statesym:add(statesym)

20 // now update transitions into the moved state

21 for symbol 2 �

22 do for statesym 2 StateSymsIn(state; symbol)

23 do oldtransition = statesym:transition statesym:getOwner()

24 oldfrompart = oldtransition:frompart transition:getOwner()

25 Remove-StateSym-From-Transition(statesym)

26 newtransition TransitionsIn(oldfrompart; statesym:symbol)

27 if newtransition:topart transition:getOwner() 6= newpart

28 then oldfrompart newtransition:frompart transition:getOwner()

29 newtransition new Transition

30 newpart:topart transition:add(newtransition)

31 oldfrompart:frompart transition:add(newtransition)

32 transet TranSets(oldfrompart; statesym:symbol)

33 Add-Transition-To-TransitionSet(newtransition; transet)

34 TransitionsIn(oldfrompart; statesym:symbol) newtransition

35 newtransition:transition statesym:add(statesym)

Figure 4: Move-State

6

Initialize(Q; Æ)

1 Partition new Partition

2 SplittableSets new SplittableSets

3 part Create-Part()

4 for q 2 Q

5 do state new State

6 part:part state:add(state)

7 for symbol 2 �

8 do statesym new StateSym

9 state:state statesym:add(statesym)

10 StateSyms(state; symbol) statesym

11 for state 2 Q

12 do for symbol 2 �

13 do StateSymsIn(Æ(state; symbol); symbol):add(StateSyms(state; symbol))

14 for symbol 2 �

15 do transition new Transition

16 part:frompart transition:add(transition)

17 part:topart transition:add(transition)

18 TransitionsIn(part; symbol) transition

19 TransitionsOut(part; symbol) transition

20 Add-Transition-To-TransitionSet(transition; T ranSets(part; symbol))

21 for state 2 Q

22 do transition:transition statesym:add(StateSyms(state; symbol))

Figure 5: Initialize

Create-Part()

1 part new Part

2 Partition:partition part:add(part)

3 for symbol 2 �

4 do transet new TransitionSet

5 part:part transitionset:add(transet)

6 TranSets(part; symbol) transet

Figure 6: Create-Part

Add-Transition-To-TransitionSet(transition; transet)

1 transet:transitionset transition:add(transition)

2 if transet:transitionset transition:size() = 2

3 then SplittableSets:splittablesets transitionset:add(transet)

Figure 7: Add-Transition-To-TransitionSet

7

Remove-Transition-From-TransitionSet(transition)

1 transet transition:transitionset transition:getOwner()

2 transition:transitionset transition:remove(transition)

3 if transet:transitionset transition:size() = 1

4 then SplittableSets:splittablesets transitionset:remove(transet)

Figure 8: Remove-Transition-From-TransitionSet

Remove-StateSym-From-Transition(statesym)

1 transition statesym:transition statesym:getOwner()

2 statesym:transition statesym:remove(statesym)

3 if transition:transition statesym:size() = 0

4 then Remove-Transition-From-TransitionSet(transition)

5

Figure 9: Remove-StateSym-From-Transition

alled O(n logn) times. Eah all toMove-State takes O(k) time, so the total

running time if DFA-Minimize is O(kn logn). For more details, see [1℄.

To show orretness, we �rst note that the SplittableSets list ontains all

TransitionSet objets ontaining two or more Transition objets. To verify this,

notie that Transition objets are only added to or removed from TransitionSet

objets in the funtions Add-Transition-To-TransitionSet and Remove-

Transition-From-TransitionSet, and that these funtions orretly update

SplittableSets. I argued in the desription of the data struture that there are

equivalene lasses to split if and only if there are at least two Transition objets

in any TransitionSet objet, that is, if SplittableSets is not empty. Sine Split-

tableSets must be empty for the algorithm to terminate, it an only terminate

one the orret answer is found. Finally, note that only equivalene lasses

whih have to be split (those in SplittableSets) are ever split, and that reating

a new Part and moving the States into it using Move-State orretly splits

an equivalene lass. Again, for more details, see [1℄.

I have presented and explained a general data struture whih an be used

to implement DFA minimization algorithms running in O(n logn) time, where

n is the number of states in the DFA. This struture ould also be used for other

eÆient DFA manipulation algorithms. As an example, I have formalized and

modi�ed Blum's DFA minimization algorithm to use my general data struture,

and implemented it in C++. The C++ ode is given in the appendies.

Referenes

[1℄ Norbert Blum. An O(n logn) implementation of the standard method

for minimizing n-state �nite automata. Information Proessing Letters,

8

57(2):65{69, January 1996.

[2℄ David Gries. Desribing an algorithm by Hoproft. Ata Informatia, 2:97{

109, 1973.

[3℄ Hoproft. An n log n algorithm for minimizing states in a �nite automaton.

In Theory of Mahines and Computations, Ed. by Zvi Kohavi and Azaria

Paz, Aademi Press. 1971.

[4℄ B. W. Watson. A taxonomy of �nite automata minimization algorithms.

Report, Department of Mathematis and Computing Siene, Eindhoven

University of Tehnology, The Netherlands, 1994.

9

A Code for one-to-many relations

/* implementation of a doubly-linked list template lass */

/* eah funtion takes O(1) time */

template <lass Owner, lass Elem> lass Reln

{

publi:

// Member aess funtions

Elem* getElem() {

return _elem;

}

Owner* getOwner() {

return (Owner*) _root->_elem;

}

Reln<Owner, Elem>* next() {

return _next;

}

Reln<Owner, Elem>* prev() {

return _prev;

}

Reln<Owner, Elem>* first() {

return _root->next();

}

int size() {

return _root->_size;

}

// is_root_node - returns true iff this node

// is the root (dummy) node

bool is_root_node() {

return _root == this;

}

// insert - inserts a new node into the list after the urrent node

void add(Reln<Owner, Elem>* new_node) {

new_node->unlink(); // make sure it's not linked

new_node->_next = _root->_next; // make new node point into the list

new_node->_prev = _root;

new_node->_root = _root;

_root->_next->_prev = new_node;

// make the list point to the new node

_root->_next = new_node;

_root->_size++;

}

// unlink - removes this node from any list in whih it may be

virtual void unlink() {

_root->_size--;

_next->_prev = _prev; // remove me from the list

_prev->_next = _next;

_next = this; // make me no longer point to the list

_prev = this;

_root = this;

_root->_size = 1;

}

// onstrutors

Reln<Owner, Elem>(Owner* owner) {

10

_elem = (Elem*) owner;

_next = this;

_prev = this;

_root = this;

_size = 0;

}

Reln<Owner, Elem>(Elem* elem) {

_elem = elem;

_next = this;

_prev = this;

_root = this;

_size = 1;

}

private:

Elem* _elem;

Reln<Owner, Elem>* _next;

Reln<Owner, Elem>* _prev;

Reln<Owner, Elem>* _root;

int _size;

};

// maro to iterate over all elements in the list

#define FORALL(owner_type, elem_type, elem, list) \

for(Reln<owner_type,elem_type>* iterator = (list).first(); \

!iterator->is_root_node();) { \

elem_type* elem = iterator->getElem(); \

iterator = iterator->next();

#define ADD(relation, element) \

relation.add(&(element->relation))

B Delarations of data struture

strut Partition;

strut Part;

strut TransitionSet;

strut Transition;

strut StateSym;

strut State;

strut SplittableSets;

strut Partition {

Reln<Partition, Part> partition_part;

Partition()

: partition_part(this)

{}

};

strut Part {

Reln<Part, Transition> frompart_transition;

Reln<Part, Transition> topart_transition;

Reln<Part, TransitionSet> part_transitionset;

Reln<Part, State> part_state;

Reln<Partition, Part> partition_part;

int part;

Part(int part)

: frompart_transition(this)

, topart_transition(this)

, part_transitionset(this)

, part_state(this)

, partition_part(this)

11

, part(part)

{}

};

strut TransitionSet {

Reln<TransitionSet, Transition> transitionset_transition;

Reln<Part, TransitionSet> part_transitionset;

Reln<SplittableSets, TransitionSet> splittablesets_transitionset;

TransitionSet()

: transitionset_transition(this)

, part_transitionset(this)

, splittablesets_transitionset(this)

{}

};

strut Transition {

Reln<TransitionSet, Transition> transitionset_transition;

Reln<Part, Transition> frompart_transition;

Reln<Part, Transition> topart_transition;

Reln<Transition, StateSym> transition_statesym;

Transition()

: transitionset_transition(this)

, frompart_transition(this)

, topart_transition(this)

, transition_statesym(this)

{}

};

strut StateSym {

Reln<Transition, StateSym> transition_statesym;

Reln<State, StateSym> state_statesym;

Reln<void, StateSym> statesymsin_statesym;

int state;

int symbol;

StateSym(int state, int symbol)

: transition_statesym(this)

, state_statesym(this)

, statesymsin_statesym(this)

, state(state)

, symbol(symbol)

{}

};

strut State {

Reln<State, StateSym> state_statesym;

Reln<Part, State> part_state;

int state;

State(int state)

: state_statesym(this)

, part_state(this)

, state(state)

{}

};

strut SplittableSets {

Reln<SplittableSets, TransitionSet> splittablesets_transitionset;

SplittableSets()

: splittablesets_transitionset(this)

{}

};

Transition* TransitionsOut[NUM_STATES ℄[NUM_SYMBOLS ℄;

12

Transition* TransitionsIn[NUM_STATES ℄[NUM_SYMBOLS ℄;

StateSym* StateSyms[NUM_STATES ℄[NUM_SYMBOLS ℄;

Reln<void,StateSym>* StateSymsIn[NUM_STATES ℄[NUM_SYMBOLS ℄;

TransitionSet* TranSets[NUM_STATES ℄[NUM_SYMBOLS ℄;

C Code for DFA minimization algorithm

stati Partition* partition;

stati SplittableSets* splittablesets;

stati int last_part = -1;

stati State* states[NUM_STATES℄;

void DFAMinimize(int NUM_FINAL_STATES, int delta[NUM_STATES℄[NUM_SYMBOLS℄);

void MoveState(State* state, Part* newpart);

void Initialize(int delta[NUM_STATES℄[NUM_SYMBOLS℄);

Part* CreatePart();

void AddTransitionToTransitionSet(Transition* transition,

TransitionSet* transet);

void RemoveTransitionFromTransitionSet(Transition* transition);

void RemoveStateSymFromTransition(StateSym* statesym);

void DFAMinimize(int NUM_FINAL_STATES, int delta[NUM_STATES℄[NUM_SYMBOLS℄) {

// assume that states 0..NUM_FINAL_STATES are final states

// Initialize the data struture

Initialize(delta);

// Create a new part for final states

Part* newpart = CreatePart();

for(int state = 0; state < NUM_FINAL_STATES; state++) {

MoveState(states[state℄, newpart);

}

// Minimize the DFA

while(splittablesets->splittablesets_transitionset.size() > 0) {

TransitionSet* transet =

splittablesets->splittablesets_transitionset.first()->getElem();

Transition* tran1 =

transet->transitionset_transition.first()->getElem();

Transition* tran2 =

transet->transitionset_transition.first()->next()->getElem();

if(tran1->transition_statesym.size() >

tran2->transition_statesym.size()) {

Transition* temp = tran1; tran1 = tran2; tran2 = temp;

}

Part* newpart = CreatePart();

FORALL(Transition, StateSym, statesym, tran1->transition_statesym)

State* state = statesym->state_statesym.getOwner();

MoveState(state, newpart);

}

}

}

void MoveState(State* state, Part* newpart) {

// move the atual state objet

Part* oldpart = state->part_state.getOwner();

state->part_state.unlink();

newpart->ADD(part_state, state);

// now update transitions out of the moved state

FORALL(State, StateSym, statesym, state->state_statesym)

Transition* oldtransition = statesym->transition_statesym.getOwner();

Part* oldtopart = oldtransition->topart_transition.getOwner();

13

RemoveStateSymFromTransition(statesym);

Transition* newtransition =

TransitionsOut[oldtopart->part ℄[statesym->symbol ℄;

if(!newtransition || newtransition->frompart_transition.getOwner() != newpart) {

newtransition = new Transition;

newpart->ADD(frompart_transition, newtransition);

oldtopart->ADD(topart_transition, newtransition);

TransitionSet* transet =

TranSets[newpart->part ℄[statesym->symbol ℄;

AddTransitionToTransitionSet(newtransition, transet);

TransitionsOut[oldtopart->part ℄[statesym->symbol ℄ =

newtransition;

}

newtransition->ADD(transition_statesym, statesym);

}

// now update transitions into the moved state

for(int symbol = 0; symbol < NUM_SYMBOLS; symbol++) {

FORALL(void, StateSym, statesym,

*(StateSymsIn[state->state ℄[symbol ℄))

Transition* oldtransition = statesym->transition_statesym.getOwner();

Part* oldfrompart = oldtransition->frompart_transition.getOwner();

RemoveStateSymFromTransition(statesym);

Transition* newtransition =

TransitionsIn[oldfrompart->part ℄[statesym->symbol ℄;

if(!newtransition || newtransition->topart_transition.getOwner() != newpart) {

newtransition = new Transition;

newpart->ADD(topart_transition, newtransition);

oldfrompart->ADD(frompart_transition, newtransition);

TransitionSet* transet =

TranSets[oldfrompart->part ℄[statesym->symbol ℄;

AddTransitionToTransitionSet(newtransition, transet);

TransitionsIn[oldfrompart->part ℄[statesym->symbol ℄ =

newtransition;

}

newtransition->ADD(transition_statesym, statesym);

}

}

}

void Initialize(int delta[NUM_STATES℄[NUM_SYMBOLS℄) {

partition = new Partition;

splittablesets = new SplittableSets;

Part* part = CreatePart();

for(int q = 0; q < NUM_STATES; q++) {

for(int symbol = 0; symbol < NUM_SYMBOLS; symbol++) {

StateSymsIn[q℄[symbol℄ = new Reln<void, StateSym>((void*) NULL);

}

}

for(int q = 0; q < NUM_STATES; q++) {

State* state = new State(q);

states[q℄ = state;

part->ADD(part_state, state);

for(int symbol = 0; symbol < NUM_SYMBOLS; symbol++) {

StateSym* statesym = new StateSym(q, symbol);

state->ADD(state_statesym, statesym);

StateSyms[q℄[symbol℄ = statesym;

}

}

for(int q = 0; q < NUM_STATES; q++) {

for(int symbol = 0; symbol < NUM_SYMBOLS; symbol++) {

StateSymsIn[delta[q℄[symbol℄ ℄[symbol℄->

add(&(StateSyms[q℄[symbol℄->statesymsin_statesym));

}

}

for(int symbol = 0; symbol < NUM_SYMBOLS; symbol++) {

Transition* transition = new Transition;

part->ADD(frompart_transition, transition);

14

part->ADD(topart_transition, transition);

TransitionsIn[last_part℄[symbol℄ = transition;

TransitionsOut[last_part℄[symbol℄ = transition;

AddTransitionToTransitionSet(transition,

TranSets[last_part℄[symbol℄);

for(int q = 0; q < NUM_STATES; q++) {

transition->ADD(transition_statesym, StateSyms[q℄[symbol℄);

}

}

}

Part* CreatePart() {

Part* part = new Part(++last_part);

partition->ADD(partition_part, part);

for(int symbol = 0; symbol < NUM_SYMBOLS; symbol++) {

TransitionSet* transet = new TransitionSet;

part->ADD(part_transitionset, transet);

TranSets[last_part℄[symbol ℄ = transet;

}

return part;

}

void AddTransitionToTransitionSet(Transition* transition,

TransitionSet* transet) {

transet->ADD(transitionset_transition, transition);

if(transet->transitionset_transition.size() == 2) {

splittablesets->ADD(splittablesets_transitionset, transet);

}

}

void RemoveTransitionFromTransitionSet(Transition* transition) {

TransitionSet* transet =

transition->transitionset_transition.getOwner();

transition->transitionset_transition.unlink();

if(transet->transitionset_transition.size() == 1) {

transet->splittablesets_transitionset.unlink();

}

}

void RemoveStateSymFromTransition(StateSym* statesym) {

Transition* transition = statesym->transition_statesym.getOwner();

statesym->transition_statesym.unlink();

if(transition->transition_statesym.size() == 0) {

RemoveTransitionFromTransitionSet(transition);

}

}

15

