
CS 662

A General Data Stru
ture for EÆ
ient

Minimization of Deterministi
 Finite Automata

Ond�rej Lhot�ak

96040603

De
ember 6, 2000

DFA-Minimize(Q (set of states), F (set of �nal states))

1 equivalen
e
lass 1 F

2 equivalen
e
lass 2 Q n F

3 while there is an equivalen
e
lass whi
h must be split

4 do �nd an equivalen
e
lass whi
h must be split

5 split it

Figure 1: Abstra
t DFA minimization algorithm

The Myhill-Nerode theorem states that for a deterministi
 �nite automaton

(DFA), there is a unique equivalent minimal DFA. Further, the states of this

minimal DFA
orrespond to equivalen
e
lasses of the Myhill-Nerode equivalen
e

relation. This suggests an obvious approa
h to minimizing DFA's by
al
ulating

this equivalen
e relation.

Many algorithms using this approa
h to minimize DFA's appear in the lit-

erature; Watson [4℄ gives a survey. Most of the well-known algorithms run in

�(n

2

) time or worse, where n is the number of states in the original DFA. The

published algorithms running in O(n logn) time use
ompli
ated data stru
-

tures, and are diÆ
ult to understand. It is the data stru
ture, rather than the

algorithm, whi
h permits these approa
hes to run in O(n logn) time, yet the

papers des
ribe and explain the algorithms, with only very brief explanations

of the data stru
tures. The purpose of this paper is to identify the key features

that make these algorithms eÆ
ient, and to present and explain a
omprehen-

sive data stru
ture
apturing all the information needed to minimize a DFA

eÆ
iently.

Watson's [4℄ survey paper
lassi�es DFA minimization algorithms using

the Myhill-Nerode relation a

ording to whether they
ompute E, the Myhill-

Nerode relation, D, its inverse, or [Q℄

E

, the set of equivalen
e
lasses of the

relation. The algorithms
omputing D and E are simpler than ones
omputing

[Q℄

E

, but they have no hope of running in better than �(n

2

) time, sin
e the

size of the equivalen
e relation is quadrati
 in the number of states. Thus, an

algorithm running in O(n logn) time must
ompute [Q℄

E

.

I am aware of three di�erent published algorithms for minimizing DFA's in

O(n logn) time. All three have the general stru
ture shown in �gure 1, but ea
h

�lls in the details slightly di�erently.

The �rst is due to Hop
roft [3℄. Hop
roft's paper gives his algorithm, a proof

of
orre
tness, and a proof of the running time in
luding an informal des
ription

of the data stru
tures used to implement the algorithm.

The se
ond is due to Gries [2℄. He
laims that Hop
roft's algorithm and proof

are \very diÆ
ult to understand." Gries presents pie
es of his own algorithm

along with simple lemmas proving the
orre
tness of ea
h pie
e. This makes the

proof easier to understand. The algorithm of Gries is almost identi
al to that

of Hop
roft (and he explains the small di�eren
es between the two); the main

di�eren
e is in the presentation.

1

Hop
roft Gries Blum

Partition not used not used not used

Splittable Sets L L K

Part B B not used

State s, t s not used

Transition Set not named not named �

0

Transition not used not used L

State X Symbol not used not used not named

StateSyms not used not used �

StateSymsIn not used not used �

�1

TransitionsOut not used not used �

TransitionsIn not used not used �

�1

TranSets not used not used not mentioned

Table 1: Equivalent notation used for parts of the data stru
ture

The third algorithm is due to Blum [1℄. Its main distinguishing feature is the

omplexity of its data stru
ture. In parti
ular, Blum's data stru
ture represents

expli
itly the transitions between equivalen
e
lasses of states, whereas those of

Hop
roft and Gries only represent the equivalen
e
lasses themselves. Blum

des
ribes his algorithm only informally, in words, leaving it to the reader to �ll

in details. Blum's proof of
orre
tness and running time is mu
h simpler than

those of Hop
roft and Gries, sin
e many of the
onditions that they had to prove

are represented expli
itly in Blum's data stru
ture.

The data stru
ture that I am presenting is a superset of the data stru
tures

of Hop
roft, Gries and Blum. Their data stru
tures and algorithms were de-

signed to be minimal,
ontaining only the required information, to minimize

the
omputational resour
es required. My data stru
ture, on the other hand,

represents as mu
h information about the DFA as possible, while still being

eÆ
ient enough to implement the minimization algorithms to run in O(n logn)

time. Having all the information available makes the data stru
ture easier to

understand, and also makes it easier to use for implementing algorithms. Ta-

ble 1 shows the
orresponden
e between parts of my data stru
ture and those

of Hop
roft, Gries and Blum.

The data stru
ture (see �gure 2)
onsists of sets of obje
ts of di�erent types,

most of them
onne
ted with one-to-many relations. Hop
roft, Gries, and Blum

represent ea
h of these relations using di�erent stru
tures. For example, some

may be implemented as simple linked lists, others need to be doubly-linked

lists, still others need to also keep tra
k of their size, or allow a

ess to the

ontaining obje
t from ea
h of the
ontained obje
ts. To simplify the stru
ture,

I implemented all the relations using the same stru
ture: a
ir
ular doubly-

linked list with a dummy node, keeping tra
k of its size, and maintaining a

pointer to the obje
t owning the list. This supports all the operations needed

by the algorithms. The same list
ode
an be used for all the relations, rather

than implementing a di�erent type of list for ea
h relation.

2

jQj

j�j

jQj

j�j

jQj

j�j

jQj

j�j

jQj

j�j

Q

Q

Q

Q

Q

Q

Q

Q

Q

�

�

�

�

�

�

�

�

"

"

"

"

"

"

"

"

"

"

"

"

"

E

E

E

E

E

E

E

E

Partition

1

n

1 1

1

1

nn

n

n

1

1

1

1111

1

n

Part State

Transition

State X Symbol

Transition Set

n 1

n

1

1

1

TransitionsInTransitionsOut StateSyms StateSymsIn

TranSets

Splittable Sets

1

n

n

Figure 2: A general data stru
ture for DFA minimization

3

The main obje
t in the data stru
ture is a Partition. This represents a parti-

tioning of the states of the DFA into a set of equivalen
e
lasses, represented by

Part obje
ts. Ea
h equivalen
e
lass
ontains the set of State obje
ts forming

the equivalen
e
lass. It also
ontains a set of Transition Set obje
ts. Ea
h of

these obje
ts represents a set of transitions leading out of states in the equiva-

len
e
lass on a given symbol. Thus, a Part obje
t
ontains one Transition Set

for ea
h symbol in the alphabet. Ea
h Transition Set
ontains a set of Tran-

sition obje
ts. A Transition obje
t represents a transition on a
ertain symbol

from one equivalen
e
lass into another single equivalen
e
lass. Note that an

equivalen
e
lass needs to be split if and only if there is a symbol for whi
h

there are transitions into more than one equivalen
e
lass. Put another way, a

Part needs to be split if and only if there are at least two Transition obje
ts

in any of its Transition Set obje
ts. The Splittable Sets obje
t
ontains a list

of all Transition Set obje
ts
ontaining at least two Transitions, fa
ilitating the

sele
tion of a Transition Set whi
h
an be used to split its Part. Ea
h Tran-

sition obje
t
ontains a list of the states in its sour
e equivalen
e
lass with

transitions into the destination equivalen
e
lass on the given symbol. These

are exa
tly the states that need to be moved into a new equivalen
e
lass when

the sour
e equivalen
e
lass is split. Be
ause ea
h state
an appear in di�erent

Transition obje
ts, one for ea
h symbol, I represent the states with a spe
ial

State X Symbol obje
t.

Finally, the data stru
ture
ontains �ve arrays. The StateSyms array is

simply a mapping from states and symbols to the
orresponding State X Sym-

bol obje
t. The StateSymsIn array
ontains lists of State X Symbol obje
ts

from whi
h there are transitions on a given symbol into a given state. The

TransitionsOut and TransitionsIn arrays are used to �nd the Transition obje
t

representing the transitions from a
lass Q

i

into a
lass Q

j

on symbol a. Repre-

senting this dire
tly would require an array of size n

2

k, where n is the number

of states (the maximum number of equivalen
e
lasses) and k is the number of

symbols. Su
h an array would take more than O(n logn) time to initialize and

manipulate. Therefore, two arrays are used: TransitionsIn and TransitionsOut.

TransitionsOut maps (Q

i

; a) to the last
reated Transition from Q

i

on symbol

a. Fortunately, the algorithm only ever needs to �nd Transitions into the last

equivalen
e
lass
reated. When using the array TransitionsOut, the algorithm

must always
he
k whether the Transition it �nds in fa
t goes into the desired

equivalen
e
lass, sin
e if there is no Transition into the most re
ently
reated

equivalen
e
lass, the array will point to an old Transition. Similarly, the Tran-

sitionsIn array maps (a;Q

j

) to the last
reated Transition into Q

j

on symbol a,

and the algorithm must
he
k whether this Transition a
tually originates from

the desired equivalen
e
lass Q

i

. Finally, the TranSets array allows us to �nd

the TransitionSet obje
t given the Part from whi
h the transition originates,

and the symbol on whi
h the transition is taken.

Figures 3 through 9 give a formal des
ription of an O(n logn) algorithm for

minimizing DFA's using the data stru
ture just des
ribed. The algorithm is

based on the one due to Blum. Enough detail is given so that ea
h line
ould

be translated to one line of C++ or other programming language.

4

DFA-Minimize(Q (set of states), F (set of �nal states), Æ (transition fun
tion))

1 // Initialize the data stru
ture

2 Initialize(Q; Æ)

3 // Create a new part for �nal states

4 newpart Create-Part()

5 for state 2 F

6 do Move-State(state; newpart)

7 // Minimize the DFA

8 while SplittableSets:splittablesets transitionset:size() > 0

9 do transet SplittableSets:splittablesets transitionset:first()

10 tran1 transet:transitionset transition:first()

11 tran2 transet:transitionset transition:first():next()

12 if tran1:transition statesym:size() > tran2:transition statesym:size()

13 then Swap(tran1; tran2)

14 newpart Create-Part()

15 for statesym 2 tran1:transition statesym

16 do state statesym:state statesym:getOwner()

17 Move-State(state; newpart)

18 // Part obje
ts are now states of minimized DFA

19 // Transition obje
ts are now transitions of minimized DFA

Figure 3: DFA-Minimize

The algorithm begins by initializing the data stru
ture with a single equiva-

len
e
lass
ontaining all the states. It then usesMove-State to move all �nal

states into a se
ond equivalen
e
lass. Then, as long as there are equivalen
e

lasses whi
h need to be split, the algorithm splits them, always moving the

smaller half of the states in an equivalen
e
lass into a new equivalen
e
lass.

The Move-State pro
edure is the most
ompli
ated part of the algorithm,

as it updates all parts of the data stru
ture to re
e
t moving a state into a

di�erent equivalen
e
lass. First, it moves the a
tual State obje
t into the new

Part obje
t. It must then update information for all transitions into and out of

the moved state. This is a

omplished by the two main loops in Move-State.

Ea
h line in the algorithm (other than loops) takes a
onstant amount of

running time. It is easy to verify that Add-Transition-To-TransitionSet,

Remove-Transition-From-TransitionSet, andRemove-StateSym-From-

Transition run in
onstant time. Move-State and Create-Part run in

O(k) time, where k is the number of symbols in the alphabet �. Initialize

runs in O(kn) time, where n is the number of states in Q.

Finally, I am left to analyze the running time of DFA-Minimize. This run-

ning time is bounded by the total time spent exe
utingMove-State. Whenever

any state is moved into a di�erent part, the new part
ontains at most half as

many states as the part that the state was moved from. Therefore, ea
h state

an be moved at most log

2

n times. Sin
e there are n states, Move-State is

5

Move-State(state; newpart)

1 // move the a
tual state obje
t

2 oldpart state:part state:getOwner()

3 state:part state:remove(state)

4 newpart:part state:add(state)

5 // now update transitions out of the moved state

6 for statesym 2 state:state statesym

7 do oldtransition statesym:transition statesym:getOwner()

8 oldtopart oldtransition:topart transition:getOwner()

9 Remove-StateSym-From-Transition(statesym)

10 newtransition TransitionsOut(oldtopart; statesym:symbol)

11 if newtransition:frompart transition:getOwner() 6= newpart

12 then oldtopart newtransition:topart transition:getOwner()

13 newtransition new Transition

14 newpart:frompart transition:add(newtransition)

15 oldtopart:topart transition:add(newtransition)

16 transet TranSets(newpart; statesym:symbol)

17 Add-Transition-To-TransitionSet(newtransition; transet)

18 TransitionsOut(oldtopart; statesym:symbol) newtransition

19 newtransition:transition statesym:add(statesym)

20 // now update transitions into the moved state

21 for symbol 2 �

22 do for statesym 2 StateSymsIn(state; symbol)

23 do oldtransition = statesym:transition statesym:getOwner()

24 oldfrompart = oldtransition:frompart transition:getOwner()

25 Remove-StateSym-From-Transition(statesym)

26 newtransition TransitionsIn(oldfrompart; statesym:symbol)

27 if newtransition:topart transition:getOwner() 6= newpart

28 then oldfrompart newtransition:frompart transition:getOwner()

29 newtransition new Transition

30 newpart:topart transition:add(newtransition)

31 oldfrompart:frompart transition:add(newtransition)

32 transet TranSets(oldfrompart; statesym:symbol)

33 Add-Transition-To-TransitionSet(newtransition; transet)

34 TransitionsIn(oldfrompart; statesym:symbol) newtransition

35 newtransition:transition statesym:add(statesym)

Figure 4: Move-State

6

Initialize(Q; Æ)

1 Partition new Partition

2 SplittableSets new SplittableSets

3 part Create-Part()

4 for q 2 Q

5 do state new State

6 part:part state:add(state)

7 for symbol 2 �

8 do statesym new StateSym

9 state:state statesym:add(statesym)

10 StateSyms(state; symbol) statesym

11 for state 2 Q

12 do for symbol 2 �

13 do StateSymsIn(Æ(state; symbol); symbol):add(StateSyms(state; symbol))

14 for symbol 2 �

15 do transition new Transition

16 part:frompart transition:add(transition)

17 part:topart transition:add(transition)

18 TransitionsIn(part; symbol) transition

19 TransitionsOut(part; symbol) transition

20 Add-Transition-To-TransitionSet(transition; T ranSets(part; symbol))

21 for state 2 Q

22 do transition:transition statesym:add(StateSyms(state; symbol))

Figure 5: Initialize

Create-Part()

1 part new Part

2 Partition:partition part:add(part)

3 for symbol 2 �

4 do transet new TransitionSet

5 part:part transitionset:add(transet)

6 TranSets(part; symbol) transet

Figure 6: Create-Part

Add-Transition-To-TransitionSet(transition; transet)

1 transet:transitionset transition:add(transition)

2 if transet:transitionset transition:size() = 2

3 then SplittableSets:splittablesets transitionset:add(transet)

Figure 7: Add-Transition-To-TransitionSet

7

Remove-Transition-From-TransitionSet(transition)

1 transet transition:transitionset transition:getOwner()

2 transition:transitionset transition:remove(transition)

3 if transet:transitionset transition:size() = 1

4 then SplittableSets:splittablesets transitionset:remove(transet)

Figure 8: Remove-Transition-From-TransitionSet

Remove-StateSym-From-Transition(statesym)

1 transition statesym:transition statesym:getOwner()

2 statesym:transition statesym:remove(statesym)

3 if transition:transition statesym:size() = 0

4 then Remove-Transition-From-TransitionSet(transition)

5

Figure 9: Remove-StateSym-From-Transition

alled O(n logn) times. Ea
h
all toMove-State takes O(k) time, so the total

running time if DFA-Minimize is O(kn logn). For more details, see [1℄.

To show
orre
tness, we �rst note that the SplittableSets list
ontains all

TransitionSet obje
ts
ontaining two or more Transition obje
ts. To verify this,

noti
e that Transition obje
ts are only added to or removed from TransitionSet

obje
ts in the fun
tions Add-Transition-To-TransitionSet and Remove-

Transition-From-TransitionSet, and that these fun
tions
orre
tly update

SplittableSets. I argued in the des
ription of the data stru
ture that there are

equivalen
e
lasses to split if and only if there are at least two Transition obje
ts

in any TransitionSet obje
t, that is, if SplittableSets is not empty. Sin
e Split-

tableSets must be empty for the algorithm to terminate, it
an only terminate

on
e the
orre
t answer is found. Finally, note that only equivalen
e
lasses

whi
h have to be split (those in SplittableSets) are ever split, and that
reating

a new Part and moving the States into it using Move-State
orre
tly splits

an equivalen
e
lass. Again, for more details, see [1℄.

I have presented and explained a general data stru
ture whi
h
an be used

to implement DFA minimization algorithms running in O(n logn) time, where

n is the number of states in the DFA. This stru
ture
ould also be used for other

eÆ
ient DFA manipulation algorithms. As an example, I have formalized and

modi�ed Blum's DFA minimization algorithm to use my general data stru
ture,

and implemented it in C++. The C++
ode is given in the appendi
es.

Referen
es

[1℄ Norbert Blum. An O(n logn) implementation of the standard method

for minimizing n-state �nite automata. Information Pro
essing Letters,

8

57(2):65{69, January 1996.

[2℄ David Gries. Des
ribing an algorithm by Hop
roft. A
ta Informati
a, 2:97{

109, 1973.

[3℄ Hop
roft. An n log n algorithm for minimizing states in a �nite automaton.

In Theory of Ma
hines and Computations, Ed. by Zvi Kohavi and Azaria

Paz, A
ademi
 Press. 1971.

[4℄ B. W. Watson. A taxonomy of �nite automata minimization algorithms.

Report, Department of Mathemati
s and Computing S
ien
e, Eindhoven

University of Te
hnology, The Netherlands, 1994.

9

A Code for one-to-many relations

/* implementation of a doubly-linked list template
lass */

/* ea
h fun
tion takes O(1) time */

template <
lass Owner,
lass Elem>
lass Reln

{

publi
:

// Member a

ess fun
tions

Elem* getElem() {

return _elem;

}

Owner* getOwner() {

return (Owner*) _root->_elem;

}

Reln<Owner, Elem>* next() {

return _next;

}

Reln<Owner, Elem>* prev() {

return _prev;

}

Reln<Owner, Elem>* first() {

return _root->next();

}

int size() {

return _root->_size;

}

// is_root_node - returns true iff this node

// is the root (dummy) node

bool is_root_node() {

return _root == this;

}

// insert - inserts a new node into the list after the
urrent node

void add(Reln<Owner, Elem>* new_node) {

new_node->unlink(); // make sure it's not linked

new_node->_next = _root->_next; // make new node point into the list

new_node->_prev = _root;

new_node->_root = _root;

_root->_next->_prev = new_node;

// make the list point to the new node

_root->_next = new_node;

_root->_size++;

}

// unlink - removes this node from any list in whi
h it may be

virtual void unlink() {

_root->_size--;

_next->_prev = _prev; // remove me from the list

_prev->_next = _next;

_next = this; // make me no longer point to the list

_prev = this;

_root = this;

_root->_size = 1;

}

//
onstru
tors

Reln<Owner, Elem>(Owner* owner) {

10

_elem = (Elem*) owner;

_next = this;

_prev = this;

_root = this;

_size = 0;

}

Reln<Owner, Elem>(Elem* elem) {

_elem = elem;

_next = this;

_prev = this;

_root = this;

_size = 1;

}

private:

Elem* _elem;

Reln<Owner, Elem>* _next;

Reln<Owner, Elem>* _prev;

Reln<Owner, Elem>* _root;

int _size;

};

// ma
ro to iterate over all elements in the list

#define FORALL(owner_type, elem_type, elem, list) \

for(Reln<owner_type,elem_type>* iterator = (list).first(); \

!iterator->is_root_node();) { \

elem_type* elem = iterator->getElem(); \

iterator = iterator->next();

#define ADD(relation, element) \

relation.add(&(element->relation))

B De
larations of data stru
ture

stru
t Partition;

stru
t Part;

stru
t TransitionSet;

stru
t Transition;

stru
t StateSym;

stru
t State;

stru
t SplittableSets;

stru
t Partition {

Reln<Partition, Part> partition_part;

Partition()

: partition_part(this)

{}

};

stru
t Part {

Reln<Part, Transition> frompart_transition;

Reln<Part, Transition> topart_transition;

Reln<Part, TransitionSet> part_transitionset;

Reln<Part, State> part_state;

Reln<Partition, Part> partition_part;

int part;

Part(int part)

: frompart_transition(this)

, topart_transition(this)

, part_transitionset(this)

, part_state(this)

, partition_part(this)

11

, part(part)

{}

};

stru
t TransitionSet {

Reln<TransitionSet, Transition> transitionset_transition;

Reln<Part, TransitionSet> part_transitionset;

Reln<SplittableSets, TransitionSet> splittablesets_transitionset;

TransitionSet()

: transitionset_transition(this)

, part_transitionset(this)

, splittablesets_transitionset(this)

{}

};

stru
t Transition {

Reln<TransitionSet, Transition> transitionset_transition;

Reln<Part, Transition> frompart_transition;

Reln<Part, Transition> topart_transition;

Reln<Transition, StateSym> transition_statesym;

Transition()

: transitionset_transition(this)

, frompart_transition(this)

, topart_transition(this)

, transition_statesym(this)

{}

};

stru
t StateSym {

Reln<Transition, StateSym> transition_statesym;

Reln<State, StateSym> state_statesym;

Reln<void, StateSym> statesymsin_statesym;

int state;

int symbol;

StateSym(int state, int symbol)

: transition_statesym(this)

, state_statesym(this)

, statesymsin_statesym(this)

, state(state)

, symbol(symbol)

{}

};

stru
t State {

Reln<State, StateSym> state_statesym;

Reln<Part, State> part_state;

int state;

State(int state)

: state_statesym(this)

, part_state(this)

, state(state)

{}

};

stru
t SplittableSets {

Reln<SplittableSets, TransitionSet> splittablesets_transitionset;

SplittableSets()

: splittablesets_transitionset(this)

{}

};

Transition* TransitionsOut[NUM_STATES ℄[NUM_SYMBOLS ℄;

12

Transition* TransitionsIn[NUM_STATES ℄[NUM_SYMBOLS ℄;

StateSym* StateSyms[NUM_STATES ℄[NUM_SYMBOLS ℄;

Reln<void,StateSym>* StateSymsIn[NUM_STATES ℄[NUM_SYMBOLS ℄;

TransitionSet* TranSets[NUM_STATES ℄[NUM_SYMBOLS ℄;

C Code for DFA minimization algorithm

stati
 Partition* partition;

stati
 SplittableSets* splittablesets;

stati
 int last_part = -1;

stati
 State* states[NUM_STATES℄;

void DFAMinimize(int NUM_FINAL_STATES, int delta[NUM_STATES℄[NUM_SYMBOLS℄);

void MoveState(State* state, Part* newpart);

void Initialize(int delta[NUM_STATES℄[NUM_SYMBOLS℄);

Part* CreatePart();

void AddTransitionToTransitionSet(Transition* transition,

TransitionSet* transet);

void RemoveTransitionFromTransitionSet(Transition* transition);

void RemoveStateSymFromTransition(StateSym* statesym);

void DFAMinimize(int NUM_FINAL_STATES, int delta[NUM_STATES℄[NUM_SYMBOLS℄) {

// assume that states 0..NUM_FINAL_STATES are final states

// Initialize the data stru
ture

Initialize(delta);

// Create a new part for final states

Part* newpart = CreatePart();

for(int state = 0; state < NUM_FINAL_STATES; state++) {

MoveState(states[state℄, newpart);

}

// Minimize the DFA

while(splittablesets->splittablesets_transitionset.size() > 0) {

TransitionSet* transet =

splittablesets->splittablesets_transitionset.first()->getElem();

Transition* tran1 =

transet->transitionset_transition.first()->getElem();

Transition* tran2 =

transet->transitionset_transition.first()->next()->getElem();

if(tran1->transition_statesym.size() >

tran2->transition_statesym.size()) {

Transition* temp = tran1; tran1 = tran2; tran2 = temp;

}

Part* newpart = CreatePart();

FORALL(Transition, StateSym, statesym, tran1->transition_statesym)

State* state = statesym->state_statesym.getOwner();

MoveState(state, newpart);

}

}

}

void MoveState(State* state, Part* newpart) {

// move the a
tual state obje
t

Part* oldpart = state->part_state.getOwner();

state->part_state.unlink();

newpart->ADD(part_state, state);

// now update transitions out of the moved state

FORALL(State, StateSym, statesym, state->state_statesym)

Transition* oldtransition = statesym->transition_statesym.getOwner();

Part* oldtopart = oldtransition->topart_transition.getOwner();

13

RemoveStateSymFromTransition(statesym);

Transition* newtransition =

TransitionsOut[oldtopart->part ℄[statesym->symbol ℄;

if(!newtransition || newtransition->frompart_transition.getOwner() != newpart) {

newtransition = new Transition;

newpart->ADD(frompart_transition, newtransition);

oldtopart->ADD(topart_transition, newtransition);

TransitionSet* transet =

TranSets[newpart->part ℄[statesym->symbol ℄;

AddTransitionToTransitionSet(newtransition, transet);

TransitionsOut[oldtopart->part ℄[statesym->symbol ℄ =

newtransition;

}

newtransition->ADD(transition_statesym, statesym);

}

// now update transitions into the moved state

for(int symbol = 0; symbol < NUM_SYMBOLS; symbol++) {

FORALL(void, StateSym, statesym,

*(StateSymsIn[state->state ℄[symbol ℄))

Transition* oldtransition = statesym->transition_statesym.getOwner();

Part* oldfrompart = oldtransition->frompart_transition.getOwner();

RemoveStateSymFromTransition(statesym);

Transition* newtransition =

TransitionsIn[oldfrompart->part ℄[statesym->symbol ℄;

if(!newtransition || newtransition->topart_transition.getOwner() != newpart) {

newtransition = new Transition;

newpart->ADD(topart_transition, newtransition);

oldfrompart->ADD(frompart_transition, newtransition);

TransitionSet* transet =

TranSets[oldfrompart->part ℄[statesym->symbol ℄;

AddTransitionToTransitionSet(newtransition, transet);

TransitionsIn[oldfrompart->part ℄[statesym->symbol ℄ =

newtransition;

}

newtransition->ADD(transition_statesym, statesym);

}

}

}

void Initialize(int delta[NUM_STATES℄[NUM_SYMBOLS℄) {

partition = new Partition;

splittablesets = new SplittableSets;

Part* part = CreatePart();

for(int q = 0; q < NUM_STATES; q++) {

for(int symbol = 0; symbol < NUM_SYMBOLS; symbol++) {

StateSymsIn[q℄[symbol℄ = new Reln<void, StateSym>((void*) NULL);

}

}

for(int q = 0; q < NUM_STATES; q++) {

State* state = new State(q);

states[q℄ = state;

part->ADD(part_state, state);

for(int symbol = 0; symbol < NUM_SYMBOLS; symbol++) {

StateSym* statesym = new StateSym(q, symbol);

state->ADD(state_statesym, statesym);

StateSyms[q℄[symbol℄ = statesym;

}

}

for(int q = 0; q < NUM_STATES; q++) {

for(int symbol = 0; symbol < NUM_SYMBOLS; symbol++) {

StateSymsIn[delta[q℄[symbol℄ ℄[symbol℄->

add(&(StateSyms[q℄[symbol℄->statesymsin_statesym));

}

}

for(int symbol = 0; symbol < NUM_SYMBOLS; symbol++) {

Transition* transition = new Transition;

part->ADD(frompart_transition, transition);

14

part->ADD(topart_transition, transition);

TransitionsIn[last_part℄[symbol℄ = transition;

TransitionsOut[last_part℄[symbol℄ = transition;

AddTransitionToTransitionSet(transition,

TranSets[last_part℄[symbol℄);

for(int q = 0; q < NUM_STATES; q++) {

transition->ADD(transition_statesym, StateSyms[q℄[symbol℄);

}

}

}

Part* CreatePart() {

Part* part = new Part(++last_part);

partition->ADD(partition_part, part);

for(int symbol = 0; symbol < NUM_SYMBOLS; symbol++) {

TransitionSet* transet = new TransitionSet;

part->ADD(part_transitionset, transet);

TranSets[last_part℄[symbol ℄ = transet;

}

return part;

}

void AddTransitionToTransitionSet(Transition* transition,

TransitionSet* transet) {

transet->ADD(transitionset_transition, transition);

if(transet->transitionset_transition.size() == 2) {

splittablesets->ADD(splittablesets_transitionset, transet);

}

}

void RemoveTransitionFromTransitionSet(Transition* transition) {

TransitionSet* transet =

transition->transitionset_transition.getOwner();

transition->transitionset_transition.unlink();

if(transet->transitionset_transition.size() == 1) {

transet->splittablesets_transitionset.unlink();

}

}

void RemoveStateSymFromTransition(StateSym* statesym) {

Transition* transition = statesym->transition_statesym.getOwner();

statesym->transition_statesym.unlink();

if(transition->transition_statesym.size() == 0) {

RemoveTransitionFromTransitionSet(transition);

}

}

15

