Partial Redundancy Elimination

while(c) {
a=x+y;

by




PRE: Goals and Assumptions

Assume that at any statement of the form a = x + y, the
current value of x + y must be placed in a. That is, the
computation of x + y cannot be deferred until a later point
where a is actually used.




PRE: Goals and Assumptions

Desired Transformation

Introduce a temporary ty;y. Change every statement of the
forma = x + yinto a = ty4y. Insert computations of the
form ty1y, = x + y at some subset S of program points
(nodes and edges) such that the same values are assigned to a
as in the original program. [Safe|

Goals for S
© Suppose S’ is also safe. No execution path should contain
more occurences of t,,, = x + yin S thanin §'.
[Computationally Optimal]

@ Suppose S’ is also safe and computationally optimal. At
every program point where t, is live under S, it should
also be live under S’. [Lifetime Optimal]




Variations of PRE

Note: this is not an exhaustive list.

@ E. Morel and C. Renvoise. Global optimization by
suppression of partial redundancies. CACM, 1979.

e J. Knoop, O. Riithing, and B. Steffen. Lazy code motion.
PLDI 1992.

@ K.-H. Drechsler and M.P. Stadel. A variation of Knoop,
Riithing, and Steffen’s Lazy Code Motion. SIGPLAN
Notices, 1993.

@ R. Kennedy, S. Chan, S.-M. Liu, R. Lo, P. Tu, F. C.
Chow. Partial redundancy elimination in SSA form. ACM
TOPLAS 21(3): 627-676, 1999.



Summary of Properties

@ Local properties
e transparent
e computed
e locally anticipable
@ Global node properties
e available
e anticipable
@ Global edge properties
o earliest
o later
e Final results

e insert (on edge)
o delete (from node)



Local Properties

Definition

A basic block b is transparent for expression e if none of e's
operands are defined in b.

Definition

An expression e is computed (aka downward exposed aka
locally available) in basic block b if it contains a computation
of e, and does not define e's operands after the last
computation of e.

Definition

| \

An expression e is locally anticipable (aka upward exposed) in
basic block b if it contains a computation of e, and does not
define e's operands before the first computation of e.

A




Availability and Anticipability

Definition

An expression e is available at program point p if on every
path from the start node to p, e is computed, and e's
operands are not defined after the last computation of e.

Compute using dataflow analysis:
Q forward
@ (Exprs, D)
onN
Q out(s) = computed(s) U (in(s) N transparent(s))
© empty set

© _L = all expressions



Availability and Anticipability

Definition

An expression e is anticipable at program point p if on every
path from p to the end node, e is computed, and e's operands
are not defined before the first computation of e.

Compute using dataflow analysis:
Q@ backward
@ (Exprs, D)
onN
Q in(s) = locally anticipable(s) U (out(s) N transparent(s))
© empty set

© _L = all expressions



Earliest Placement

The edge (i, /) is the earliest point where we should compute
the expression e if

@ e is needed on all paths from j to the end node,
@ e is not available at the end of /, and

e a computation before / would get invalidated in i, or
e e is not needed on some other edge out of J.

earliest(i,j) = anticipable;,(j)
Navailableg, (/)
N(transparent(/) U anticipable, . (/))




Latest Placement

A computation of e can be moved from before a block b to
after b, as long as it needs to be computed on all incoming
edges of b, and e is not needed in b.

later(i,j) = -earliest(i, )

U | locally anticipable(i) (1) later(k, /)
kepred(i)



The Transformation

Insert computation as late as possible:

insert(i,j) = later(i,j)N ﬂ later(k, j)
kepred(j)

e € insert(/,j) means compute e in edge (i, ).

Remove locally anticipable computations where value is
already known:

delete(j) = locally anticipable(j) N ﬂ later (i, j)
iepred(j)

e € delete(j) means remove first computation of e from j.




