
Partial Redundancy Elimination

Motivation

if() {

a = x + y;

}

b = x + y;

Motivation

while(c) {

a = x + y;

}



PRE: Goals and Assumptions

Assumption

Assume that at any statement of the form a = x + y, the
current value of x + y must be placed in a. That is, the
computation of x + y cannot be deferred until a later point
where a is actually used.



PRE: Goals and Assumptions

Desired Transformation

Introduce a temporary tx+y. Change every statement of the
form a = x + y into a = tx+y. Insert computations of the
form tx+y = x + y at some subset S of program points
(nodes and edges) such that the same values are assigned to a

as in the original program. [Safe]

Goals for S
1 Suppose S ′ is also safe. No execution path should contain

more occurences of tx+y = x + y in S than in S ′.
[Computationally Optimal]

2 Suppose S ′ is also safe and computationally optimal. At
every program point where tx+y is live under S , it should
also be live under S ′. [Lifetime Optimal]



Variations of PRE

Note: this is not an exhaustive list.

E. Morel and C. Renvoise. Global optimization by
suppression of partial redundancies. CACM, 1979.

J. Knoop, O. Rüthing, and B. Steffen. Lazy code motion.
PLDI 1992.

K.-H. Drechsler and M.P. Stadel. A variation of Knoop,
Rüthing, and Steffen’s Lazy Code Motion. SIGPLAN
Notices, 1993.

R. Kennedy, S. Chan, S.-M. Liu, R. Lo, P. Tu, F. C.
Chow. Partial redundancy elimination in SSA form. ACM
TOPLAS 21(3): 627-676, 1999.



Summary of Properties

Local properties

transparent
computed
locally anticipable

Global node properties

available
anticipable

Global edge properties

earliest
later

Final results

insert (on edge)
delete (from node)



Local Properties

Definition

A basic block b is transparent for expression e if none of e’s
operands are defined in b.

Definition

An expression e is computed (aka downward exposed aka
locally available) in basic block b if it contains a computation
of e, and does not define e’s operands after the last
computation of e.

Definition

An expression e is locally anticipable (aka upward exposed) in
basic block b if it contains a computation of e, and does not
define e’s operands before the first computation of e.



Availability and Anticipability

Definition

An expression e is available at program point p if on every
path from the start node to p, e is computed, and e’s
operands are not defined after the last computation of e.

Compute using dataflow analysis:

1 forward

2 (Exprs, ⊇)

3 ∩
4 out(s) = computed(s) ∪ (in(s) ∩ transparent(s))

5 empty set

6 ⊥ = all expressions



Availability and Anticipability

Definition

An expression e is anticipable at program point p if on every
path from p to the end node, e is computed, and e’s operands
are not defined before the first computation of e.

Compute using dataflow analysis:

1 backward

2 (Exprs, ⊇)

3 ∩
4 in(s) = locally anticipable(s) ∪ (out(s) ∩ transparent(s))

5 empty set

6 ⊥ = all expressions



Earliest Placement

The edge (i , j) is the earliest point where we should compute
the expression e if

e is needed on all paths from j to the end node,

e is not available at the end of i , and

a computation before i would get invalidated in i , or
e is not needed on some other edge out of i .

earliest(i , j) = anticipablein(j)

∩availableout(i)

∩(transparent(i) ∪ anticipableout(i))



Latest Placement

A computation of e can be moved from before a block b to
after b, as long as it needs to be computed on all incoming
edges of b, and e is not needed in b.

later(i , j) = earliest(i , j)

∪

locally anticipable(i) ∩
⋂

k∈pred(i)

later(k , i)





The Transformation

Insert computation as late as possible:

insert(i , j) = later(i , j) ∩
⋂

k∈pred(j)

later(k , j)

e ∈ insert(i , j) means compute e in edge (i , j).

Remove locally anticipable computations where value is
already known:

delete(j) = locally anticipable(j) ∩
⋂

i∈pred(j)

later(i , j)

e ∈ delete(j) means remove first computation of e from j .


