Partial Redundancy Elimination

Motivation

```c
if() {
    a = x + y;
}
b = x + y;
```

Motivation

```c
while(c) {
    a = x + y;
}
```
Assumption

Assume that at any statement of the form \(a = x + y \), the current value of \(x + y \) must be placed in \(a \). That is, the computation of \(x + y \) cannot be deferred until a later point where \(a \) is actually used.
Desired Transformation

Introduce a temporary t_{x+y}. Change every statement of the form $a = x + y$ into $a = t_{x+y}$. Insert computations of the form $t_{x+y} = x + y$ at some subset S of program points (nodes and edges) such that the same values are assigned to a as in the original program. [Safe]

Goals for S

1. Suppose S' is also safe. No execution path should contain more occurrences of $t_{x+y} = x + y$ in S than in S'. [Computationally Optimal]

2. Suppose S' is also safe and computationally optimal. At every program point where t_{x+y} is live under S, it should also be live under S'. [Lifetime Optimal]
Note: this is not an exhaustive list.

Summary of Properties

- Local properties
 - transparent
 - computed
 - locally anticipable
- Global node properties
 - available
 - anticipable
- Global edge properties
 - earliest
 - later
- Final results
 - insert (on edge)
 - delete (from node)
Definition

A basic block b is **transparent** for expression e if none of e’s operands are defined in b.

Definition

An expression e is **computed** (aka downward exposed aka locally available) in basic block b if it contains a computation of e, and does not define e’s operands after the last computation of e.

Definition

An expression e is **locally anticipable** (aka upward exposed) in basic block b if it contains a computation of e, and does not define e’s operands before the first computation of e.
Definition
An expression e is available at program point p if on every path from the start node to p, e is computed, and e's operands are not defined after the last computation of e.

Compute using dataflow analysis:

1. forward
2. $(\text{Exprs}, \supseteq)$
3. \cap
4. $\text{out}(s) = \text{computed}(s) \cup (\text{in}(s) \cap \text{transparent}(s))$
5. empty set
6. $\perp = \text{all expressions}$
Definition

An expression e is **anticipable** at program point p if on every path from p to the end node, e is computed, and e’s operands are not defined before the first computation of e.

Compute using dataflow analysis:

1. backward
2. $(\text{Exprs}, \supseteq)$
3. \cap
4. $\text{in}(s) = \text{locally anticipable}(s) \cup (\text{out}(s) \cap \text{transparent}(s))$
5. empty set
6. $\bot = \text{all expressions}$
Earliest Placement

The edge \((i, j)\) is the earliest point where we should compute the expression \(e\) if

- \(e\) is needed on all paths from \(j\) to the end node,
- \(e\) is not available at the end of \(i\), and
 - a computation before \(i\) would get invalidated in \(i\), or
 - \(e\) is not needed on some other edge out of \(i\).

\[
\text{earliest}(i, j) = \frac{\text{anticipable}_{\text{in}}(j)}{\cap \text{available}_{\text{out}}(i)} \cap \text{transparent}(i) \cup \text{anticipable}_{\text{out}}(i))
\]
A computation of e can be moved from before a block b to after b, as long as it needs to be computed on all incoming edges of b, and e is not needed in b.

$$
\text{later}(i, j) = \text{earliest}(i, j) \\
\quad \cup \left(\text{locally anticipable}(i) \cap \bigcap_{k \in \text{pred}(i)} \text{later}(k, i) \right)
$$
The Transformation

Insert computation as late as possible:

\[
\text{insert}(i,j) = \text{later}(i,j) \cap \bigcap_{k \in \text{pred}(j)} \text{later}(k,j)
\]

\(e \in \text{insert}(i,j)\) means compute \(e\) in edge \((i,j)\).

Remove locally anticipable computations where value is already known:

\[
\text{delete}(j) = \text{locally anticipable}(j) \cap \bigcap_{i \in \text{pred}(j)} \text{later}(i,j)
\]

\(e \in \text{delete}(j)\) means remove first computation of \(e\) from \(j\).