
Partial Redundancy Elimination

Motivation

if() {

a = x + y;

}

b = x + y;

Motivation

while(c) {

a = x + y;

}



PRE: Goals and Assumptions

Assumption

Assume that at any statement of the form a = x + y, the
current value of x + y must be placed in a. That is, the
computation of x + y cannot be deferred until a later point
where a is actually used.



PRE: Goals and Assumptions

Desired Transformation

Introduce a temporary tx+y. Change every statement of the
form a = x + y into a = tx+y. Insert computations of the
form tx+y = x + y at some subset S of program points
(nodes and edges) such that the same values are assigned to a

as in the original program. [Safe]

Goals for S
1 Suppose S ′ is also safe. No execution path should contain

more occurences of tx+y = x + y in S than in S ′.
[Computationally Optimal]

2 Suppose S ′ is also safe and computationally optimal. At
every program point where tx+y is live under S , it should
also be live under S ′. [Lifetime Optimal]
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Summary of Properties

Local properties

transparent
computed
locally anticipable

Global node properties

available
anticipable

Global edge properties

earliest
later

Final results

insert (on edge)
delete (from node)



Local Properties

Definition

A basic block b is transparent for expression e if none of e’s
operands are defined in b.

Definition

An expression e is computed (aka downward exposed aka
locally available) in basic block b if it contains a computation
of e, and does not define e’s operands after the last
computation of e.

Definition

An expression e is locally anticipable (aka upward exposed) in
basic block b if it contains a computation of e, and does not
define e’s operands before the first computation of e.



Availability and Anticipability

Definition

An expression e is available at program point p if on every
path from the start node to p, e is computed, and e’s
operands are not defined after the last computation of e.

Compute using dataflow analysis:

1 forward

2 (Exprs, ⊇)

3 ∩
4 out(s) = computed(s) ∪ (in(s) ∩ transparent(s))

5 empty set

6 ⊥ = all expressions



Availability and Anticipability

Definition

An expression e is anticipable at program point p if on every
path from p to the end node, e is computed, and e’s operands
are not defined before the first computation of e.

Compute using dataflow analysis:

1 backward

2 (Exprs, ⊇)

3 ∩
4 in(s) = locally anticipable(s) ∪ (out(s) ∩ transparent(s))

5 empty set

6 ⊥ = all expressions



Earliest Placement

The edge (i , j) is the earliest point where we should compute
the expression e if

e is needed on all paths from j to the end node,

e is not available at the end of i , and

a computation before i would get invalidated in i , or
e is not needed on some other edge out of i .

earliest(i , j) = anticipablein(j)

∩availableout(i)

∩(transparent(i) ∪ anticipableout(i))



Latest Placement

A computation of e can be moved from before a block b to
after b, as long as it needs to be computed on all incoming
edges of b, and e is not needed in b.

later(i , j) = earliest(i , j)

∪

locally anticipable(i) ∩
⋂

k∈pred(i)

later(k , i)





The Transformation

Insert computation as late as possible:

insert(i , j) = later(i , j) ∩
⋂

k∈pred(j)

later(k , j)

e ∈ insert(i , j) means compute e in edge (i , j).

Remove locally anticipable computations where value is
already known:

delete(j) = locally anticipable(j) ∩
⋂

i∈pred(j)

later(i , j)

e ∈ delete(j) means remove first computation of e from j .


