Definition
A back edge is a CFG edge whose target dominates its source.

Definition
A natural loop for back edge $t \rightarrow h$ is a subgraph containing t and h, and all nodes from which t can be reached without passing through h.
Example
Definition

The loop for a header h is the union of all natural loops for back edges whose target is h.

Property

Two loops with different headers $h_1 \neq h_2$ are either

- disjoint ($\text{loop}(h_1) \cap \text{loop}(h_2) = \emptyset$), or
- nested within each other ($\text{loop}(h_1) \subset \text{loop}(h_2)$).
Loops

Definition
A subgraph of a graph is **strongly connected** if there is a path in the subgraph from every node to every other node.

Property
Every loop is a strongly connected subgraph. (Why?)
Example

Is \{2, 3\} a strongly connected subgraph?
Is \{2, 3\} a loop?
Example

Is \{2, 3\} a strongly connected subgraph?
Is \{2, 3\} a loop?

Definition
A CFG is **reducible** if every strongly connected subgraph contains a unique node (the header) that dominates all nodes in the subgraph.
Loop-invariant computations

Definition

A definition \(c = a \ op \ b \) is loop-invariant if \(a \) and \(b \)

1. are constant,
2. have all their reaching definitions outside the loop, OR
3. have only one reaching definition (why?) which is loop-invariant.
read i;
x = 1;
y = 2;
t = 2;
while(i<10) {
 t = y - x;
 i = i + t;
}
print t;
read i;
x = 1;
y = 2;
t = 2;
t = y - x;
while(i<10) {
 i = i + t;
}
print t;
It is safe to move a computation $\ell : c = a \; op \; b$ to just before the header of the loop if

1. it is loop-invariant,
2. it has no side-effects,
3. c is not live immediately before the loop header,
4. ℓ is the only definition of c in the loop, and
5. ℓ dominates all exits from the loop at which c is live.
while(c) {
 body;
}

if(c) {
 do {
 body;
 } while(c)
}

if(!c) goto L2;
body;
goto L1;

L2:
if(!c) goto L2;
L1:
body;
if(c) goto L1;
L2:
Loop inversion

while (c) {
 body;
}

if (c) {
 do {
 body;
 } while (c)
}

L1:
if (!c) goto L2;
body;
goto L1;
L2:

if (!c) goto L2;
L1:
body;
if (c) goto L1;
L2:
Induction Variables

```c
for(i = 0; i < 100; i++) {
    A[i] = 2*i;
}

i = 0;
L1:
    if (i >= 100) goto L2;
    t1 = i * 4;
    t2 = t1 + A;
    t3 = 2 * i;
    *t2 = t3;
    i = i + 1;
    goto L1;
L2:
```
Definition
Variable \(i \) is a **basic induction variable** if all its definitions in the loop are of the form \(i = i + c \), where \(c \) is loop-invariant.

Definition
Variable \(j \) is a **derived induction variable in the family of** \(i \) if \(i \) is a basic induction variable, and \(j = c \times i + d \) at every use of \(j \) in the loop, where \(c \) and \(d \) are loop-invariant.
Identifying Derived Induction Variables

IF

- i is a basic induction variable,
- there is only one definition of k, AND
- it has the form k=i*c or k=i+c, where c is loop-invariant

THEN k is a derived induction variable in the family of i.
Identifying Derived Induction Variables

IF

- i is a basic induction variable,
- there is only one definition of k, AND
- it has the form $k = i \cdot c$ or $k = i + c$, where c is loop-invariant

THEN k is a derived induction variable in the family of i.

IF

- j is a derived induction variable in the family of i,
- there is only one definition of k,
- it has the form $k = j \cdot c$ or $k = j + c$, where c is loop-invariant, AND
- there is no def of i on any path from the def of j to the def of k

THEN k is a derived induction variable in the family of i.
Assume \(j \) is a DIV in the family of \(i \), such that \(j = c \cdot i + d \).

1. After each definition \(i = i + e \), insert \(j' = j' + c \cdot e \).
2. Replace definition of \(j \) with \(j = j' \).
3. Insert \(j' = c \cdot i + d \) immediately before loop header.

Do copy propagation afterwards.
i = 0;
L1:
if (i >= 100) goto L2;
t1 = i * 4;
t2 = t1 + A;
t3 = 2 * i;
*t2 = t3;
i = i + 1;
goto L1;
L2:
Useless Induction Variables

Definition

An induction variable is **useless** if
- it is dead at the loop exits, AND
- it is used only in its own definition.

Definition

An induction variable is **almost useless** if
- it is dead at the loop exits,
- it is used only in its own definition and in comparisons with loop constants, AND
- some other variable in the same family is not useless.
i = 0;
t1' = i * 4;
t2' = i * 4 + A;
t3' = i * 2;
L1:
if(i >= 100) goto L2;
*t2' = t3';
i = i + 1;
t1' = t1' + 4;
t2' = t2' + 4;
t3' = t3' + 2;
goto L1;
L2:
Loop unrolling

```c
while( i < c ) {
    body;
    i = i + 1;
}
```

```c
while( i < c ) {
    body;
    i = i + 1;
    if( i >= c ) break;
    body;
    i = i + 1;
}
```
Loop unrolling

```c
while( i < c ) {
    body;
    i = i + 1;
    if( i >= c ) break;
    body;
    i = i + 1;
}
while( i < c-1 ) {
    body;
    body;
    i = i + 2;
}
while( i < c ) {
    body;
    i = i + 1;
}
```