Definition
In a CFG, node a dominates b if every path from the start node to b passes through a. Node a is a dominator of b.

Property
The dominance relation is a partial order.

Definition
Node a strictly dominates b if $a \neq b$ and a dominates b.
Theorem

IF a and b both dominate c,
THEN either a dominates b or b dominates a.
Theorem

IF a and b both dominate c, THEN either a dominates b or b dominates a.

Corollary

Every node n has at most one immediate dominator $\text{idom}(n)$ such that

- $\text{idom}(n) \neq n$
- $\text{idom}(n)$ dominates n, and
- $\text{idom}(n)$ does not dominate any other dominator of n.
Dominator Example
Computing Dominators

As a dataflow analysis

1. Forwards
2. Lattice is \(\mathcal{P}(\text{Stmts}), \supseteq \)
3. ∩
4. \(\text{out}_\ell = \text{in}_\ell \cup \{\ell\} \)
5. start node value is \{\}
6. \(\bot = \{\text{all statements}\} \)

More efficient approaches
Lengauer-Tarjan: see Appel book section 19.2
Computing Dominators

As a dataflow analysis

1. **Forwards**
2. Lattice is \((\mathcal{P}(\text{Stmts}), \supseteq) \)
3. \(\cap \)
4. \(\text{out}_\ell = \text{in}_\ell \cup \{\ell\} \)
5. Start node value is \(\{} \)
6. \(\bot = \{\text{all statements}\} \)

More efficient approaches

- Lengauer-Tarjan: see Appel book section 19.2
- Cooper, Harvey, Kennedy:
A node w is in the **dominance frontier of x** if:

- x does not strictly dominate w, and
- x dominates a predecessor of w.

Definition
DF_{local}(x): the successors of \(x \) not strictly dominated by \(x \).

DF_{up}(y): nodes in DF(y) not strictly dominated by idom(y).

DF(x) = DF_{local}(x) \cup \bigcup \{ y \mid \text{idom}(y) = x \} \; DF_{up}(y).
Algorithm DF(x):
1: $S = \{\}$
2: for all nodes $w \in \text{succ}(x)$ do
3: if idom(w) $\neq x$ then
4: $S \cup = \{w\}$
5: /* S is now $DF_{\text{local}}(x)$ */
6: for all nodes y for which idom(y) = x do
7: /* below we compute $DF_{\text{up}}(y)$ */
8: for all nodes $w \in DF(y)$ do
9: if x does not dominate w or $x = w$ then
10: $S \cup = \{w\}$
11: return S
Restatement of definition of DF

\(w \in DF(x) \) for every \(x \) that dominates a predecessor of \(w \), but does not strictly dominate \(w \).

Algorithm \texttt{Compute DFs(\()\):

1: for all nodes \(w \) do
2: \hspace{1em} for all \(p \in \text{preds}(w) \) do
3: \hspace{2em} \(x = p \)
4: \hspace{1em} while \(x \neq \text{idom}(w) \) do
5: \hspace{2em} \(DF(x) \cup = \{w\} \)
6: \hspace{1em} \(x = \text{idom}(x) \)