boolean b = mystery();

if(b) {
 x = 1;
 y = 3;
} else {
 x = 3;
 y = 4;
}

z = x + y;
boolean b = mystery();
< b is true or false; >
if(b) {
 x = 1;
 y = 3;
} else {
 x = 3;
 y = 4;
}

z = x + y;
boolean b = mystery();
< b is true or false; >
if(b) {
 x = 1;
 y = 3;
} else {
 x = 3;
 y = 4;
}
< x is 1 or 3; y is 3 or 4; >
z = x + y;
boolean b = mystery();
< b is true or false; >
if(b) {
 x = 1;
 y = 3;
} else {
 x = 3;
 y = 4;
}
< x is 1 or 3; y is 3 or 4; >
z = x + y;
< z is 4 or 5 or 6 or 7; >
Basic Block Graph

```plaintext
read(n)
if n < 0 goto L1

T
a = 2
b = 3
goto L2

F
L1:
a = 1
b = 4

L2:
c = a + b
write(c)
```
A Path

\[
f_{\text{write}(c)}(\text{\texttt{f}_c = a+b} (\text{\texttt{f}_b = 3} (\text{\texttt{f}_a = 2} (\text{\texttt{f}_n < 0} (\text{\texttt{f}_\text{read}(n)}(\text{\texttt{init}})))))))
\]
Another Path

\[f_{\text{write}(c)}(f_c = a + b \(f_b = 4 \(f_a = 1 \(f_n < 0 \(f_{\text{read}(n)}(\text{init}))))) \) \]
\[\begin{align*}
 f_{\text{write}}(c) &= a + b \left(f_b = 3 \left(f_a = 2 \left(f_n < 0 \left(f_{\text{read}}(n)(\text{init}) \right) \right) \right) \right) \\
 &\quad \square \cr
 f_{\text{write}}(c) &= a + b \left(f_b = 4 \left(f_a = 1 \left(f_n < 0 \left(f_{\text{read}}(n)(\text{init}) \right) \right) \right) \right)
\end{align*} \]
A partially ordered set (poset) is a set with a binary relation \sqsubseteq that is

- reflexive ($x \sqsubseteq x$),
- transitive ($x \sqsubseteq y \land y \sqsubseteq z \implies x \sqsubseteq z$), and
- antisymmetric ($x \sqsubseteq y \land y \sqsubseteq x \implies y = x$).
Definitions

Definition

\(z \) is an **upper bound** of \(x \) and \(y \) if \(x \sqsubseteq z \) and \(y \sqsubseteq z \).

Definition

\(z \) is a **least upper bound** of \(x \) and \(y \) if

\(z \) is an upper bound of \(x \) and \(y \), and for all upper bounds \(v \) of \(x \) and \(y \), \(z \sqsubseteq v \).

Definition

A **lattice** is a poset such that for every pair of elements \(x, y \), there exists

- a least upper bound \(= \) join \(= x \sqcup y \), and
- a greatest lower bound \(= \) meet \(= x \sqcap y \).
Definitions

Definition

In a **complete** lattice, \sqcup and \sqcap exist for all (possibly infinite) subsets of elements.

Definition

A **bounded** lattice contains two elements:
- $\top = \text{top such that } \forall x. x \subseteq \top$
- $\bot = \text{bottom such that } \forall x. \bot \subseteq x$

Note: all complete lattices are bounded. (Why?)
Note: all finite lattices are complete. (Why?)
A chain is a set C of elements such that for all $x, y \in C$, $x \sqsubseteq y$ or $x \sqsupseteq y$.

The height of a lattice is the cardinality of the longest chain.

In program analysis, we are particularly interested in whether the height of a lattice is finite.
Definitions

Powerset Lattice

IF F is a set,
THEN the powerset $\mathcal{P}(F)$ with \subseteq defined as \subseteq (or as \supseteq) is a lattice.
Definitions

Powerset Lattice

IF F is a set,
THEN the powerset $\mathcal{P}(F)$ with \sqsubseteq defined as \subseteq (or as \supseteq) is a lattice.

Product Lattice

IF L_A and L_B are lattices,
THEN their product $L_A \times L_B$ with \sqsubseteq defined as $(a_1, b_1) \sqsubseteq (a_2, b_2)$ if $a_1 \sqsubseteq a_2$ and $b_1 \sqsubseteq b_2$ is also a lattice.
Powerset Lattice

IF F is a set,
THEN the powerset $\mathcal{P}(F)$ with \sqsubseteq defined as \subseteq (or as \supseteq) is a lattice.

Product Lattice

IF L_A and L_B are lattices,
THEN their product $L_A \times L_B$ with \sqsubseteq defined as $(a_1, b_1) \sqsubseteq (a_2, b_2)$ if $a_1 \sqsubseteq a_2$ and $b_1 \sqsubseteq b_2$ is also a lattice.

Map Lattice

IF F is a set and L is a lattice,
THEN the set of maps $F \to L$ with \sqsubseteq defined as $m_1 \sqsubseteq m_2$ if $\forall f \in F. m_1(f) \sqsubseteq m_2(f)$ is also a lattice.
For each statement S in the control-flow graph, define a $f_S : L \rightarrow L$.

Goal: find the join-over-all-paths (MOP): $\bigoplus_{P \text{ is path from } S_0 \text{ to } S_n} f_P(x)$.

This is undecidable in general. [Kam, Ullman 1977]
For each statement S in the control-flow graph, define a $f_S : L \rightarrow L$.

For a path $P = S_0S_1S_2 \ldots S_n$ through the control-flow graph, define $f_P(x) = f_n(\ldots f_2(f_1(f_0(x))))$.

Goal: find the join-over-all-paths (MOP): $MOP(n, x) = \bigsqcup_{P \text{ is path from } S_0 \text{ to } S_n} f_P(x)$.
For each statement S in the control-flow graph, define a $f_S : L \rightarrow L$.

For a path $P = S_0 S_1 S_2 \ldots S_n$ through the control-flow graph, define $f_P(x) = f_n(\ldots f_2(f_1(f_0(x))))$.

Goal: find the join-over-all-paths (MOP):

$$\text{MOP}(n, x) = \bigsqcup_{P \text{ is path from } S_0 \text{ to } S_n} f_P(x)$$
For each statement S in the control-flow graph, define a function $f_S : L \rightarrow L$.

For a path $P = S_0 S_1 S_2 \ldots S_n$ through the control-flow graph, define $f_P(x) = f_n(\ldots f_2(f_1(f_0(x))))$.

Goal: find the join-over-all-paths (MOP):

$$\text{MOP}(n, x) = \bigcup_{P \text{ is path from } S_0 \text{ to } S_n} f_P(x)$$

This is undecidable in general. [Kam, Ullman 1977]
For each statement S in the control-flow graph, choose a $f_S : L \rightarrow L$.

Goal: For each statement S in the control-flow graph, find $V_{Sin} \in L$ and $V_{Sout} \in L$ satisfying:

$$V_{Sout} = f_S(V_{Sin})$$

$$V_{Sin} = \bigsqcup_{P \in \text{PRED}(S)} V_{Pout}$$

Property: $\text{MOP}(n, x) \subseteq \text{LFP}(n, x)$
MOP vs. fixed point

$$\text{MOP} = f_D(f_B(f_A(\text{init}))) \sqcup f_D(f_C(f_A(\text{init})))$$

$$V_{\text{Bout}} = f_B(f_A(\text{init}))$$

$$V_{\text{Cout}} = f_C(f_A(\text{init}))$$

$$V_{\text{Din}} = f_B(f_A(\text{init})) \sqcup f_C(f_A(\text{init}))$$

$$V_{\text{Dout}} = f_D(f_B(f_A(\text{init})) \sqcup f_C(f_A(\text{init}))))$$
Fixed Point

\(x \) is a **fixed point** of \(F \) if \(F(x) = x \).
Fixed Point

x is a **fixed point** of F if $F(x) = x$.

Monotone Function

A function $f : L_A \to L_B$ is **monotone** if

$x \sqsubseteq y \implies f(x) \sqsubseteq f(y)$.

Knaster-Tarski Fixed Point Theorem

If L is a complete lattice and $f : L \to L$ is monotone,

the set of fixed points of f is a complete sub-lattice.

\[\bigwedge_{n \geq 0} f(n)(\bot) \] is the least fixed point of f (i.e. the \bot of the sub-lattice of fixed points).
Fixed Points

Fixed Point

x is a **fixed point** of F if $F(x) = x$.

Monotone Function

A function $f : L_A \rightarrow L_B$ is **monotone** if

$x \sqsubseteq y \implies f(x) \sqsubseteq f(y)$.

Knaster-Tarski Fixed Point Theorem

IF L is a complete lattice and $f : L \rightarrow L$ is monotone, THEN the set of fixed points of f is a complete sub-lattice.

$$\bigsqcup_{n \geq 0} f^{(n)}(\bot)$$

is the least fixed point of L (i.e. the \bot of the sub-lattice of fixed points).
Sketch of Dataflow Algorithm

1. Define a big product lattice

\[\mathcal{L} = \prod_{s \in \text{statements}} L_{s\text{ in}} \times L_{s\text{ out}} \]

2. Define a big function

\[\mathcal{F} : \mathcal{L} \rightarrow \mathcal{L} \]

\[\mathcal{F}(V_{s_1\text{ in}}, V_{s_1\text{ out}}, \ldots) = \bigsqcup_{p \in \text{PRED}(s_1)} V_{p\text{ out}}, f_{s_1}(V_{s_1\text{ in}}), \ldots \]

3. Iteratively compute least fixed point

\[\bigsqcup_{n \geq 0} \mathcal{F}^{(n)}(\bot) \]
To solve

\[x = 3x + 4y \]
\[y = 5x + 2y \]

Define

\[F(x, y) = (3x + 4y, 5x + 2y) \]

Find fixed point \((x', y')\) of \(F\).

Then

\[(x', y') = F(x', y') = (3x' + 4y', 5x' + 2y') \]

So the fixed point \((x', y')\) solves the system.
initialize out\[s\] = in\[s\] = \bot for all \ s
add all statements to worklist
while worklist not empty
 remove s from worklist
 in\[s\] = \bigcup p \in \text{PRED}(s) . out[p]
 out\[s\] = f_{s}(in[s])
 if out\[s\] has changed
 add successors of s to worklist
 end if
end while
Every solution $S \supseteq$ actual is safe.
- MOP \supseteq actual
- LFP \supseteq MOP
- Distributive flow function \implies LFP = MOP
Distributivity

Monotone Function
A function $f : L_A \rightarrow L_B$ is monotone if $x \sqsubseteq y \implies f(x) \sqsubseteq f(y)$.

Theorem
IF f is monotone,
THEN $f(x) \sqcup f(y) \sqsubseteq f(x \sqcup y)$.

Distributive Function
A function $f : L_A \rightarrow L_B$ is distributive if $f(x) \sqcup f(y) = f(x \sqcup y)$.
1. Forwards or backwards?
2. What are the lattice elements?
3. Must the property hold on all paths, or must there exist a path? (What is the join operator?)
4. On a given path, what are we trying to compute? What are the flow equations?
5. What values hold for program entry points? (What is the initial estimate?)
6. It’s the unique element \(\bot \) such that \(\forall x. \bot \sqcup x = x \).
Pessimistic vs. Optimistic Analysis

LFP = \bigsqcup_{n \geq 0} F^{(n)}(\bot)

GFP = \bigcap_{n \geq 0} F^{(n)}(\top)

If we start from \top instead of \bot, we can stop early before reaching the fixed point, but we may get an imprecise result.