
Reevaluating the Defect Proneness of Atoms of Confusion
in Java Systems

Guoshuai Shi
University of Waterloo

Waterloo, Ontario, Canada
g7shi@uwaterloo.ca

Farshad Kazemi
University of Waterloo

Waterloo, Ontario, Canada
f2kazemi@uwaterloo.ca

Michael W. Godfrey
University of Waterloo

Waterloo, Ontario, Canada
migod@uwaterloo.ca

Shane McIntosh
University of Waterloo

Waterloo, Ontario, Canada
shane.mcintosh@uwaterloo.ca

ABSTRACT
Background: Code confusion concerns source code characteristics
that make code harder for authors and reviewers to comprehend.
Atoms of Confusion (AoCs) are a set of low-level programming id-
ioms for C-like languages that have been proposed as a potential
source of code confusion; previous studies have empirically evalu-
ated the extent to which they (i) are confusing to developers and
(ii) introduce risk to software products.
Aims: In this study, we further explore Atoms of Confusion and
question the assumptions associating them with defects, and asso-
ciating their removal with defect-fixing activities.
Method:We mine 76,610 pull requests from six Java open-source
projects, extracting and analyzing changes relating to AoCs.
Results: First, we find no relation between the existence of AoCs
and defect-fixing activity. Second, we observe that for some types
of AoC—such as infix operator precedence and conditional operator—
although quantitative analysis suggests a relation between their
removal and fixes for defects, removing them does not contribute to
the defect-fixing process. Finally, we find that project- and language-
specific factors can affect the prevalence of AoC types, such as
pre-increment/decrement and type conversion AoCs.
Conclusion:While prior work reported that AoCs impact defect
proneness in C and C++ systems, we find that the presence of AoCs
did not affect defect proneness in open-source Java projects. Our
results suggest that future work is needed to investigate project- and
language-specific factors such as project style guides and implicit
type conversion that may impact the defect proneness of AoCs.

CCS CONCEPTS
• Software and its engineering → Consistency; Maintaining
software; Object oriented development.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ESEM ’24, October 24–25, 2024, Barcelona, Spain
© 2024 Association for Computing Machinery.
ACM ISBN 979-8-4007-1047-6/24/10. . . $15.00
https://doi.org/10.1145/3674805.3686677

KEYWORDS
program comprehension, Atoms of Confusion, defect proneness

ACM Reference Format:
Guoshuai Shi, Farshad Kazemi, Michael W. Godfrey, and Shane McIntosh.
2024. Reevaluating the Defect Proneness of Atoms of Confusion in Java
Systems. In Proceedings of the 18th ACM / IEEE International Symposium
on Empirical Software Engineering and Measurement (ESEM ’24), October
24–25, 2024, Barcelona, Spain. ACM, New York, NY, USA, 12 pages. https:
//doi.org/10.1145/3674805.3686677

1 INTRODUCTION
As a multifaceted and dynamic process encompassing a variety of
coordinated tasks—such as requirements gathering, design, coding,
testing, and deployment [20]—software development is susceptible
to confusion at any phase [9, 14]. Confusion can contribute to
defects (a.k.a. bugs) [15, 28], project delays [16, 19], diminished code
review quality [10, 11], and other negative consequences [12, 33].

Prior work has explored different forms of confusion that can
occur during software development as well as their impact. Sev-
eral knowledge-oriented and technical factors that contribute to
confusion have been identified, such as a lack of familiarity with
the codebase, a lack of programming skills [10, 18], unclear code
patterns [14, 22], and poor code readability [7, 28]. Furthermore,
studies have shown that human factors, such as cultural and com-
munication differences among team members, can cause problems
during development [17]; natural-language barriers and differing
interpretations of project requirements have also been shown to
contribute to developer confusion [16].

While research has shown that confusion does impede software
development [7, 10, 15], precisely identifying when a developer
is experiencing confusion can be challenging. To this end, sev-
eral methods to identify and study developer confusion have been
proposed. For example, Ebert et al. [9] inspected 800 code review
comments and built a tool to detect when instances of confusion oc-
cur. Gopstein et al. [14] proposed Atoms of Confusion (AoCs)—a set
of 15 low-level programming idioms endemic to C-like languages
that are believed to confuse readers of the code. In their study, they
surveyed 73 students and found that these idioms were indeed con-
fusing, although to different extents. In follow-up work, Gopstein et
al. [15] studied the prevalence and defect-inducing nature of AoCs
in long-lived projects written in C and C++. Recently, Pinheiro et
al. [27] discovered that AoCs that were removed in defect-fixing

https://doi.org/10.1145/3674805.3686677
https://doi.org/10.1145/3674805.3686677
https://doi.org/10.1145/3674805.3686677

ESEM ’24, October 24–25, 2024, Barcelona, Spain Shi, et al.

and improvement commits were rarely the cause of the underlying
issue that prompted the fix. Their inspection of 77 AoCs that were
removed in defect-fixing and improvement commits revealed that
only nine were implicated as inducing the changes.

While prior work has focused on the impact of the removal of
AoCs, few studies have explored their addition. Bogachenkova et
al. [4] was the first to consider the addition of AoC in Pull Re-
quests (PRs). They hypothesized that AoC might not be the source
of confusion among senior developers. To this end, they extracted
AoCs from 12,100 closed PRs from the openHAB add-ons1 and
ksqlDB2 repositories, and then manually identified comments ex-
pressing confusion. They found that no correlation existed between
AoC and confusion in comments and that AoCs often persisted in
the code after a PR. However, studying the confusion in comments,
while valuable on a smaller scale [9], cannot be expanded easily,
limiting the generalizability of such studies.

In this study, we address the limitations of previous studies [4,
15] and extend them by reevaluating whether AoCs contribute to
defects in Java projects as a result of their confusing nature. To this
end, we identify changes related to AoCs in PRs originating from six
large, open-source Java projects. We then analyze the correlation
of AoCs with the type of PR—distinguishing between Bug-Fixing
PRs (BFPRs) and Non-Bug-Fixing PRs (NBFPRs). We structure our
study by addressing the following Research Questions (RQs).
RQ1 Are there any associations between the trend of AoC

changes and PR type?
Motivation: We strive to determine whether Java projects
exhibit the same patterns identified in C++ projects by Gop-
stein et al. [15], which are associated with inducing defects,
or align more closely with the findings of Bogachenkova et
al. [4], which suggest that there is no significant correlation.
To do so, we study whether the type of PR is correlated with
a change in the incidences of AoCs.
Results: We find that in one project, bug-fixing PRs are as-
sociated with a significant increase in the number of AoCs
when compared to non-bug-fixing PRs. However, in the other
five projects, the results are inconclusive, which is consistent
with the findings of Bogachenkova et al. [4].

RQ2 Do PR types correlate with relative AoC removal and
addition rates?
Motivation: While Gopstein et al.’s study [15] controlled for
the impact of commit size on AoC changes, they focused on
AoC removal and ignored addition. We replicate their study
using our dataset, investigating the association between the
removal and addition of AoCs and the PR “type” (i.e., Bug-
Fixing PR or Non-Bug-Fixing PR). We strive to determine if
the Java projects are also impacted by AoCs similar to the
C/C++ projects in the original study.
Results: AoCs are removed more often in BFPRs than in
NBFPRs in the six studied projects; however, AoCs are also
added more often. Follow-up statistical tests show that while
such rates are meaningful in the C/C++ case, there is no
conclusive difference between the PR types, and we cannot
attribute defects to AoCs in our studied Java projects.

1https://github.com/openhab/openhab-addons
2https://github.com/confluentinc/ksql

RQ3 Why are different types of AoC removed and added in
bug-fixing and non-bug-fixing PRs?
Motivation: In prior work, the different types of AoC were
not all found to be equally confusing [8, 14, 33]. Thus, we set
out to investigate whether different types of AoC are treated
distinctly in different types of PR, and whether some of them
are more likely to be defect-inducing and thus more likely
confusing to Java developers.
Results: From a statistical perspective, four of the ten AoC
types seem to be defect-inducing; however, we find that
removing them is not an explicit part of the implicated main-
tenance activity. Instead, we conjecture that AoCs are added
by developers due to their perceived convenience or utility.
We posit that project- and language-specific factors could
impact the removal and addition of different types of AoC.

Our study challenges the previous hypothesis that AoCs are
defect-inducing [15]. We conclude that since the removal and addi-
tion of AoCs varies across the studied Java projects, it is unclear
whether AoCs are responsible for defects. While AoCs are removed
more often in BFPRs, they are also added more often in BFPRs.
Moreover, the removal of different types of AoC could be uninten-
tional or dependent on project- or language-specific factors such as
project style guides and implicit type conversion. Finally, we recom-
mend that future studies control for these confounding factors that
may contribute to whether AoCs are confusing, and investigate the
perceptions of developers on AoCs in different contexts.
Data Availability.We prepare a replication package3 to assist fu-
ture research. We also provide an online appendix4 which explains
and explores related contexts, such as technical debt.

2 BACKGROUND AND RELATEDWORK
While contributors may experience confusion during various stages
of software development, confusion most commonly adversely af-
fects development in two situations: (1) during code review discus-
sions [10, 11], and (2) while reading code during development tasks,
such as software maintenance and code review [7, 15]. Thus, prior
work has focused on these two aspects, exploring existing patterns
of confusion and possible coping strategies.
Confusion experienced during code review. Extensive studies
have shown that high-quality code reviews are essential for main-
taining code quality [23, 24] and fostering collaboration among
team members [2, 29]. However, reviewers can experience confu-
sion during the code review process, which hinders their ability
to notice defects [10, 11]. Ebert et al. studied confusion in code
reviews [9] by training a classifier using 396 general and 396 in-
line code review comments mined from the Android project and
manually labeling the comments based on whether the reviewer
expressed confusion. The classifier achieved substantial to high
precision (up to 0.875 for general and 0.615 for inline comments).
Their follow-up study [10] surveyed Android developers, identify-
ing 30 reasons, 14 impacts, and 13 coping strategies for confusion.
Moreover, they conducted an exploratory study [11] to investi-
gate common causes of confusion, mapping 38 articles to reveal 13
solutions and 5 impacts for confusion during code review.

3https://doi.org/10.5281/zenodo.11051281
4https://github.com/AlbertSGS/appendix-reevaluating

https://github.com/openhab/openhab-addons
https://github.com/confluentinc/ksql
https://doi.org/10.5281/zenodo.11051281
https://github.com/AlbertSGS/appendix-reevaluating

Reevaluating the Defect Proneness of Atoms of Confusion in Java Systems ESEM ’24, October 24–25, 2024, Barcelona, Spain

Record Extraction

Issues PRs

openHAB
add-ons

Elastic-
search

Jenkins

BFPRs NBFPRs

Detect AoC
for each PR

Analyze BFPRs' vs
NBFPRs' AoC

decrease/increase
ratio

Replicate Gopstein et
al.'s study and extend

with addition

Target Project Selection AoC Change Extraction

Locate
⟨PR,issue⟩

 pairs

Classify PRs

Select
projects

Extract
issues

Extract
PRs

BFPRs'
AoC

changes

NBFPRs'
AoC

changes

Correlation Analysis

Replication Analysis

Previously studied Additionally selected

Evaluate validity of the
replicated

observations in Java
projects

Analyze appearance
variations of AoC types
in BFPRs vs. NBFPRs

Evaluate correlations
between AoC changes

and BFPR/NBFPRs
Addition ratio

Removal ratio

Overall rate

Individual AoC rates

<AOC>

Data Analysis

Validate results

Filtered
BFPR
results

Filtered
NBFPR
results

ksqlDB KafkaSharding-
sphere

Figure 1: An overview of the study design.

Confusion experienced during development tasks. Compared
to code review, identifying confusing code during development
tasks is more challenging because (1) developers lack a clear pro-
cess to denote confusing code, and (2) its long-term consequences,
such as higher defect rates, are harder to detect. Prior work has
explored possible sources for confusion and identified several fac-
tors, including code readability [12, 21], code smells [18, 30], and
anti-patterns [1, 28]. While these studies did not investigate the con-
cept of confusion directly, their common goal was to improve code
comprehensibility and proactively prevent confusion. Only in the
past decade have there been studies on confusion exclusively [7, 14].
De Mello et al. [7] studied confusing code’s social representations
among two developer groups, one closer to research, and the other
closer to industry, revealing 11 common representations.
Atoms of Confusion. Gopstein et al. [14] identified 15 small code
patterns in C-like languages named Atoms of Confusion, which
could be a possible source of confusion for programmers. They
found these patterns prevalent and defect-inducing in open-source
C/C++ projects [15]. However, their follow-up study [13] showed
that AoCs were not usually the cause of incorrect evaluations, and
correct evaluations did not necessarily mean correct understanding.

de Oliveira et al. [8] reported the first association between physi-
cal signals and AoCs, employing an eye-tracking camera to monitor
30 students’ eye movement. Their experiments showed that AoCs
increased comprehension time by 43.02%, and that the subjects’
gaze was more focused around AoCs. da Costa et al. [6] conducted
similar experiments with 32 novices on six types of AoC in Python,
seeing an increase in time spent and the number of answer at-
tempts on code containing AoCs. Yeh et al. [33] further explored
the impact of AoC on physical signals by analyzing the Electroen-
cephalogram (EEG) measurements of individuals when reading code
with and without AoCs. However, their results indicated that AoCs
did not significantly increase the subjects’ cognitive load in general.
Atoms of Confusion in Java. The concept of AoCs as small pat-
terns introducing complexity to the code has since been studied
extensively across different programming languages and contexts.

Based on the set of 15 AoC types in C/C++ proposed by Gopstein et
al. [14], Langhout and Aniche [22] presented 14 AoC types in Java.
They surveyed 132 students, discovering that AoCs hindered the
students’ ability to comprehend the code, and that certain types of
AoC confuse participants more than others. Mendes et al. [25] and
Tahsin et al. [31] conducted empirical studies on the prevalence of
AoCs in different sets of open-source Java projects. They found that
specific types of AoC occurred frequently in their analyzed projects,
while others were relatively rare. Furthermore, they found strong
correlations between certain code- and project-related metrics, such
as depth of inheritance tree, project age and types of maintenance
task, and the prevalence of AoCs.

While there is mounting evidence of negative associations be-
tween AoCs and software maintainability measures in Java systems,
recent work calls the impact of AoCs into question. For example,
Pinheiro et al. [27] found out that there was no strong evidence to
suggest that AoCs led directly to defect fixes. They showed that
only 4.52% of their studied commits had removed AoCs. Their man-
ual inspections of AoCs in defect-fixing and improvement commits
showed that only 11.68% of the AoCs in those commits directly re-
lated to the fix or improvement. Moreover, Bogachenkova et al. [4]
investigated the connection between the presence of AoCs and con-
fusion in code review comments in open-source Java projects. The
results showed a weak correlation between the presence of AoCs in
code changes and the expression of confusion in inline comments.
By comparing AoCs counts before and after PRs are closed, they
observed that the majority of PRs did not remove AoCs.

While some of these findings align with prior work [15], they
challenge the commonly perceived notion that AoCs are defect-
inducing. These contradictions have motivated us to study this
topic and test this assumption more thoroughly.

3 STUDY DESIGN
We set out to conduct an empirical study to investigate the rela-
tionship between AoCs and software quality. Figure 1 provides
an overview of the design of our study, which comprises four

ESEM ’24, October 24–25, 2024, Barcelona, Spain Shi, et al.

Table 1: Overview of the studied projects

openHAB add-ons kslqDB Elasticsearch Jenkins Shardingsphere Kafka

Application domain Home automation Database Search engine Automation server Data sharding Stream-processing
No. of studied PRs 7,960 5,566 42,891 7,033 9,742 6,451
No. of labels 41 80 588 44 75 22
No. of stars 1.7k 5.6k 64.8k 21.3k 19.2k 26.7k
No. of contributors 478 180 1,853 758 566 1,097
Java percentage 97.8% 99.7% 99.8% 85.6% 95.0% 78.5%

stages. We first perform (1) target project selection, where can-
didate projects are considered and appropriate projects are selected
for further analysis. Next, for each selected project, we perform (2)
record extraction, (3) AoC change extraction, and (4) data analysis.
Below, we describe each stage of our study design.

3.1 Target Project Selection
We focus our evaluation on a selection of open-source projects that
satisfy four inclusion criteria:
C1:Written primarily in Java— Java is one of themost frequently
adopted programming languages on GitHub5. Prior studies on AoC
have focused on systems that are written in Java [4, 22]. We choose
to continue to focus on projects that are primarily implemented
in Java to allow for a more direct comparison to the prior work.
To this end, we require candidate projects to have the majority of
their code written in Java. To operationalize C1, we select candidate
projects that have at least 75% of their code written in Java.
C2: Maturity — GitHub is known to contain many projects that
would be poor candidates for our study, such as personal projects
not meant for wide use, student assignments, personal forks of ex-
isting projects, and abandoned projects. To mitigate the likelihood
of such projects influencing our findings, we require candidate
projects to be sufficiently popular from both observer and contribu-
tor perspectives. To operationalize C2, we select only projects that
have at least 100 contributors and have more than 1,000 stars.
C3: Diversity of application domain — To improve the represen-
tativeness of our study, we decide to select a diverse set of software
systems from different application domains. To ensure the qual-
ity of the dataset under study, we purposefully select candidate
projects that are sampled from different domains. To operational-
ize C3, we browse through candidate projects selected with the
previous criteria and select those that belong to different domains.
C4: High-quality labeling of PRs/issues — Since we need to
identify which PRs are bug-fixing with high accuracy, we require
that the subject systems accurately label their PRs/issues, i.e., the
label of each PR/issue should reliably reflect whether it relates to a
defect, an enhancement, or a new feature. To operationalize C4, we
manually inspect the labels of a random sampling of 383 PRs/issues
of each candidate subject system to verify that they are accurate.

Table 1 summarizes the details of the six selected projects. In
addition to satisfying our inclusion criteria, we select the openHAB
add-ons1 and the ksqlDB2 projects since they were also analyzed by
Bogachenkova et al. [4], and thus provide a point of reference for

5https://github.blog/2023-11-08-the-state-of-open-source-and-ai/

comparison. We add the Elasticsearch,6 Jenkins,7 Shardingsphere,8
and Kafka9 projects to our set of studied projects to extend our
observations to additional contexts.

3.2 Record Extraction
Pull Requests (PRs) are the primary means by which the studied
projects evolve. Therefore, to address our research questions, we
must extract and analyze a series of PRs and relevant issues. This
stage is composed of three tasks:
Extract PRs — For each studied project, we select a list of PRs
created before June 22, 2023. For each PR, we extract metadata, such
as the PR number, associated labels, and links to related issue(s).
The PR number serves as the input for our next stage, while labels
and links are essential for PR classification.
Extract issues — Issue reports and their metadata, such as issue
labels and links to PR(s), are extracted to identify bug-fixing PR(s).
Locate ⟨PR, issue⟩ pairs — For the openHAB add-ons and ksqlDB
projects, we organize the extracted PR-issue links into ⟨PR, issue⟩
pairs. For the Jenkins and Kafka projects, we establish ⟨PR, issue⟩
pairs based on the JIRA issue keys that are explicitly referenced in
the titles or descriptions of PRs.

3.3 AoC Change Extraction
To study the relationship between PR type and AoC changes, we
need to classify PRs and extract their AoC changes. Figure 1 pro-
vides an overview of this stage, which comprises PR classification,
AoCs detection, and validation steps.
Classify PRs —We classify the studied PRs into sets of Bug-Fixing
PRs (BFPRs) and Non-Bug-Fixing PRs (NBFPRs).

In the openHAB add-ons, ksqlDB, Jenkins, and Kafka reposito-
ries, the PRs are explicitly labeled to indicate their type; however,
contributors do not always label PRs accurately, potentially intro-
ducing noise if solely relied upon for classification. To mitigate
this noise, we use the verified ⟨PR, issue⟩ pairs, and consider PRs
that (1) are labeled “bug” and (2) are linked to issues labeled “bug”
as BFPRs. PRs that do not meet both requirements are labeled as
NBFPRs. Exceptions exist for the Jenkins and Kafka repositories,
where PRs may not linked to Jira issues, but do contain issue keys
(e.g. JENKINS-10000) in their metadata. In this case, we search for
issue keys in the titles and descriptions of PRs and classify matched
PRs as a BFPR if the referenced Jira issue has the “bug” label.

6https://github.com/elastic/elasticsearch
7https://github.com/jenkinsci/jenkins
8https://github.com/apache/shardingsphere
9https://github.com/apache/kafka

https://github.blog/2023-11-08-the-state-of-open-source-and-ai/
https://github.com/elastic/elasticsearch
https://github.com/jenkinsci/jenkins
https://github.com/apache/shardingsphere
https://github.com/apache/kafka

Reevaluating the Defect Proneness of Atoms of Confusion in Java Systems ESEM ’24, October 24–25, 2024, Barcelona, Spain

The Elasticsearch and Shardingsphere projects require a differ-
ent approach. Here, we classify PRs solely using PR labels because
the projects encourage the use of accurate type-indicating labels.
In the Elasticsearch repository, PRs labeled with >bug are clas-
sified as BFPRs, and the others are classified as NBFPRs. In the
Shardingsphere repository, only PRs labeled type:bug are classi-
fied as BFPRs. PRs with other type-indicating labels are classified
as NBFPRs, and the ones without any labels are ignored.
Detect AoCs for each PR — To study the changes in AoCs across
PRs, we use a Java AoCs detection tool10 that was developed based
on Langhout and Aniche’s study [22]. The tool extracts the types
of AoC, the files in which the AoCs are located, and the locations
within those files where AoCs appear. Additionally, we extend the
detector to support our replication analysis with PR author meta-
data, the paths of modified files, and the number of added and
removed lexer tokens per changed file. We also modify the tool’s
definition of change of literal encoding, logic as control flow, omitted
curly braces, repurposed variable, and type conversion atoms to in-
corporate Pinheiro et al.’s definition [27] of Java AoCs. Finally, we
omit the detection of constant variable, arithmetic as logic and dead,
unreachable, repeat atoms, as they were found to be not confusing
by both Langhout and Aniche [22] and Gopstein et al. [15]. The
list of studied AoC types is available in our online appendix.4 Our
modified version of the tool is compiled and available online.3 Of
the 76,610 extracted PRs, 43,802 (57.2%) contain AoCs.
Validate results — To mitigate potential inaccuracies of the Java
AoCs detector, we apply a filter to remove invalid tool output. We
detail the identification of these records below.

Let PR𝑖 be PR number 𝑖 , and AoC𝑖before, AoC
𝑖
after, AoC

𝑖
added,

AoC𝑖removed and AoC𝑖untouched be total numbers of AoCs before
PR𝑖 , after PR𝑖 , added, removed, and untouched by accepting PR𝑖 ,
respectively. We validate the tool’s output using Equation 1 below:

validate (PR𝑖)
B (AoC𝑖after − AoC𝑖before = AoC𝑖added − AoC𝑖removed)
∧ (AoC𝑖after − AoC𝑖removed = AoC𝑖untouched)

(1)

We apply Equation 1 for each AoC type in each PR. If the expres-
sion evaluates to false for any AoC type, we exclude the PR from
further analysis. This step results in discarding 2,328 out of 43,802
PRs (5.31%) to avoid inaccurate AoC values that could introduce
noise in the analysis stage and hinder the reliability of this study.

3.4 Data Analysis
To study the correlation between AoC changes and PR type, and to
revisit the findings of previous studies, we conduct two analyses:
Correlation analysis — The objective of the correlation analysis is
to evaluate whether AoC changes and PR types share a quantitative
association.We also revisit Pinheiro et al.’s study [27] in this section.

Table 2 shows the confusion matrix of the AoC changes per
PR type. Variables 𝑎 and 𝑏 represent the numbers of BFPRs with
a decreased and increased AoC cardinality after merging the PR,
respectively, whereas 𝑐 and 𝑑 denote similar numbers for NBFPRs.
Replication analysis — To revisit the findings of Gopstein et
al. [15] in the Java context, we begin with their replication package.

10https://github.com/SERG-Delft/atoms-of-confusion-detector

Table 2: The confusion matrix of AoC changes vs. PR types.

AoC No. change

PR type decreased increased

BFPR 𝑎 𝑏

NBFPR 𝑐 𝑑

The replication package produces the relative rates of AoC removal
and addition for BFPRs and NBFPRs, as well as these relative rates
for each individual AoC type, which include:

𝑟𝑟𝑎𝑡𝑒𝑟𝑒𝑚 =
𝑟𝑒𝑚bfpr

𝑟𝑒𝑚nbfpr
(2)

𝑟𝑟𝑎𝑡𝑒𝑎𝑑𝑑 =
𝑎𝑑𝑑bfpr

𝑎𝑑𝑑nbfpr
(3)

where, e.g., 𝑟𝑒𝑚bfpr B
AoCbfpr

removed

𝑁
bfpr
removed

, and the other terms of the frac-

tions in Equations 2 and 3 are defined similarly. In the example,
AoCbfpr

removed is the number of AoCs removed by BFPRs, and𝑁 bfpr
removed

is the number of tokens removed by BFPRs.
We divide the number of AoCs by the number of tokens to

mitigate the impact of commit size. Gopstein et al. used “human-
visible Abstract Syntax Tree (AST)” nodes as their choice of tokens
while we use the lexer tokens as a replacement for the Java context,
which provides a similar normalization of the size of the PR. We
explain “human-visible AST” in our appendix in detail.4

4 STUDY RESULTS
Below, we describe the results of our empirical study with respect
to our research questions. For each research question, we first
describe the approach that we followed, then report the results that
we observed, and finally we discuss the implications of our results.

RQ1: Are there any associations between the
trend of AoC changes and PR type?
In this RQ, we study the relationship between the trend of AoC
changes and PR type in the six selected Java systems. More specifi-
cally, we hypothesize that if merging BFPRs (NBFPRs) has a non-
random association with decreasing the number of AoCs, it may
imply that removing AoCs aids the process of fixing defects (enhanc-
ing code). Prior work has also explored similar hypotheses [15].
Approach. First, we set out to revisit the study of Pinheiro et al. [27]
using our data set and an alternative statistical test. Specifically,
they used the Mann-Whitney U test to study the relation between
AoC removal rates and PR type, but we choose to use the 𝜒2 test to
study the relation between the trend of AoC changes and PR type.
We choose the 𝜒2 test since our dataset is limited to six projects
with high-quality labeling. This constraint, stemming from our rig-
orous project selection process, renders Mann-Whitney U tests less
powerful due to the small sample size [26]. A low-power statistical
test would also increase the risk of Type I and Type II error [5].

To perform the 𝜒2 test, we organize the output of the AoC de-
tection tool10 into confusion matrices for the cases of the addition
of AoCs and the PR type, as well as the removal of AoCs and the

https://github.com/SERG-Delft/atoms-of-confusion-detector

ESEM ’24, October 24–25, 2024, Barcelona, Spain Shi, et al.

Table 3: The confusion matrices of AoC changes vs. the PR type for the studied projects

openHAB Elastic- Sharding-
add-ons ksqlDB search Jenkins sphere Kafka

PR type dec inc dec inc dec inc dec inc dec inc dec inc

BFPR 105 1171 21 246 331 4768 41 828 34 374 73 1074
NBFPR 227 2363 172 1708 1688 17264 91 1309 645 4760 188 1993

Table 4: The ratios and 𝜒2 statistical test results for the studied projects. Bold indicates significance (𝛼 ≈ 0.008)

openHAB Elastic- Sharding-
Metrics add-ons ksqlDB search Jenkins sphere Kafka

𝑑𝑒𝑐bfpr 31.63% 10.88% 16.39% 31.06% 5.01% 27.97%
𝑖𝑛𝑐bfpr 33.14% 12.59% 21.64% 38.75% 7.29% 35.02%
𝑝-value 0.62 0.57 3.97 × 10−8 0.09 0.04 0.03

Table 5: One-tailed Mann-Whitney U test statistics.
Bold indicates significance (𝛼 = 0.008)

Project Statistic 𝑝-value

openHAB add-ons 821,251.0 6.11 × 10−5

ksqlDB 37,688.0 3.25 × 10−3

Elasticsearch 13,599,801.5 3.29 × 10−35

Jenkins 361,506.0 1.58 × 10−7

Shardingsphere 81,443.5 1.58 × 10−2

Kafka 667,316.5 5.41 × 10−7

PR type. Holm-Bonferroni Correction is applied to the significance
level, leading to 𝛼 ≈ 0.008. If the test concludes that there is a rela-
tion between AoC changes and PR types, we compare the following
ratios using the data in confusion matrices similar to Table 2 to
determine the nature of this relation:

𝑑𝑒𝑐bfpr B
𝑎

𝑎 + 𝑐 ,

𝑖𝑛𝑐bfpr B
𝑏

𝑏 + 𝑑 .
(4)

𝑑𝑒𝑐bfpr represents the ratio of BFPRs with AoC removal over all the
PRs with AoC removal. Similarly, 𝑖𝑛𝑐bfpr is the ratio of BFPRs with
AoC addition. If 𝑑𝑒𝑐bfpr > 𝑖𝑛𝑐bfpr, it implies that AoC removals are
happening significantly more frequently in bug-fixing PRs. Simi-
lar to previous studies [15], we can then conclude that the AoCs
contribute to the defect-proneness of the code.
Results. Table 3 and 4 provide the confusion matrices for the stud-
ied projects and the results of our statistical analyses, respectively.
We observe that there is a larger percentage of BFPRs that increase
the number of AoCs than those that decrease the number of AoCs
for each project. Furthermore, for the Elasticsearch project, the
𝜒2 test indicates that there is a statistically significant correlation
between the trend of AoC changes and PR type. However, the calcu-
lated ratios indicate that PRs with an increased number of AoCs are
more frequent among bug-fixing PRs in these two projects, since
the 𝑝-values of the 𝜒2 test are lower than the corrected 𝛼 value.
The results indicate that in the case of Elasticsearch, PR authors
add AoCs more often than they remove them in BFPRs.

Discussion. Our findings suggest that the examined types of AoC
are not associated with defect fixing. This conclusion is based on
the expectation that if they were defect-inducing, they would be
removed more frequently in BFPRs compared to NBFPRs—an ob-
servation that is not supported by our results, since the percentage
of BFPRs that decrease the number of AoCs is lower than the per-
centage of BFPRs that increase them. The results of our 𝜒2 tests
indicate that either there is no correlation between the trend of AoC
changes, or in the case of the Elasticsearch project, they counterin-
tuitively tend to help when fixing defects. This result contradicts
the findings of prior work on C/C++ projects, which suggested
that AoCs could be a primary reason for defects [15]; however,
it complements the work of Pinheiro et al. [27] in Java projects,
where they discovered that the rate of AoC removal in defect-fix
commits was not greater than in other types of commits in 18 of
the 21 projects that they studied. Thus, we conclude that AoCs in
Java are not quantitatively associated with incidences of defects, as
more BFPRs tend to increase the number of AoCs than NBFPRs.

To evaluate this further, we study the difference between the
removal and addition of AoCs in each type of PR. To this end, we
compare {addbfpr1 , . . . , addbfpr𝑛 } with {rembfpr1 , . . . , rembfpr𝑛 } for
the list of BFPRs defined as {bfpr1, . . . , bfpr𝑛}, where addbfpr𝑖 and
rembfpr𝑖 are defined accordingly as shown in the example after
Equations 2 and 3, respectively. We exclude the rates related to PRs
that do not add or remove lines of code, as these actions result in a
token count of zero for either addition or removal (i.e., 𝑁 bfpr𝑖

added = 0

or 𝑁 bfpr𝑖
removed = 0). Such cases, with zero denominators during the

calculation of addbfpr𝑖 and rembfpr𝑖 , are deemed irrelevant for our
analysis. Since our goal is to test whether AoCs are added more
often than they are removed in BFPRs, we use the one-tailed Mann-
Whitney U test, where the null hypothesis (𝐻0) states that there is no
significant difference between these two sets, and the alternative
hypothesis (𝐻𝑎) states that the first group (𝑎𝑑𝑑bfpr𝑖) tends to be
larger than the second group (𝑟𝑒𝑚bfpr𝑖).

Table 5 presents the one-tailed Mann-Whitney U test outcomes,
where the Holm-Bonferroni correction sets 𝛼 ≈ 0.008. We reject 𝐻0
for all but the Shardingsphere project and conclude that the values
of 𝑎𝑑𝑑bfpr𝑖 tend to be higher than the values of 𝑟𝑒𝑚bfpr𝑖 for those

Reevaluating the Defect Proneness of Atoms of Confusion in Java Systems ESEM ’24, October 24–25, 2024, Barcelona, Spain

Table 6: Relative AoC removal and addition rates in BFPRs over NBFPRs

Gopstein et al. [15] openHAB add-ons ksqlDB Elasticsearch Jenkins Shardingsphere Kafka

𝑟𝑟𝑎𝑡𝑒𝑟𝑒𝑚 1.21 1.18 1.32 1.47 1.46 1.82 1.19
𝑟𝑟𝑎𝑡𝑒𝑎𝑑𝑑 1.28 1.21 1.24 1.11 1.14 1.36 1.11

Table 7: Two-tailed Mann-Whitney U test statistics for AoC
addition rates. Bold indicates significance (𝛼 = 0.004)

Project Statistic 𝑝-value

Gopstein et al. 635,162,714.5 0.000
openHAB add-ons 1,600,418.5 0.393
ksqlDB 240,950.5 0.415
Elasticsearch 47,487,787.5 0.171
Jenkins 596,487.0 0.155
Shardingsphere 962,619.0 0.186
Kafka 1,202,295.0 0.989

projects. This provides further support to our conclusion that AoCs
are not quantitatively associated with the incidences of defects.

While in all studied Java projects, the number of AoC in BFPR tends
to increase more often than it decreases, our statistical analysis
indicates a significant difference in only one of the studied projects.
Thus, we conclude that AoC in Java are not inherently defect-
inducing. This observation contradicts the findings of prior work on
C/C++ projects, but complements prior work on Java projects, and
suggests that further investigation is necessary to better understand
the factors that are at play.

RQ2: Do PR types correlate with relative AoC
removal and addition rates?
In this RQ, we study the association between the relative rate of
AoC changes and PR type in Java.
Approach.We replicate Gopstein et al.’s [15] studywith our dataset
to determine whether one type of PR removes or adds AoCs more
often. To this end, we organize the results from the Java AoC de-
tection tool10 into a replication-compatible format. Contrary to
Gopstein et al. [15] and Pinheiro et al. [27], who solely focus on the
removal of AoCs, our study expands the scope to include the addi-
tion of AoCs as well. By examining the relative rates of both AoC
removal and addition, we strive to gain a more holistic perspective
on their association, facilitating more informed conclusions.

To this end, the replication package begins by conducting a 𝜒2

test for each type of AoC change to examine the randomness of the
relationship. This is followed by the calculation of the relative rates
of AoC removal (rraterem) and addition (rrateadd), as defined by
Equation 2 and 3. We infer that the type of AoC change plays a role
in the defect-fixing process if one relative rate distinctly surpasses
another, or if one value is greater than one and the other is less
than one. If neither is the case, we cannot draw any conclusion.
Results. Table 6 provides the relative AoC removal and addition
rates for each project. The 𝜒2 tests for all relative rates yield 𝑝 ≪
0.008. In all of the studied projects, rraterem > 1 and rrateadd >

Table 8: Two-tailed Mann-Whitney U test statistics for AoC
removal rates. Bold indicates significance (𝛼 = 0.004)

Project Statistic 𝑝-value

Gopstein et al. 298,829,664.5 0.000
openHAB add-ons 1,464,817.0 0.711
ksqlDB 221,686.5 0.327
Elasticsearch 40,525,879.0 0.001
Jenkins 456,188.0 0.329
Shardingsphere 962,619.0 0.747
Kafka 1,082,670.5 0.327

1, meaning that AoCs are both removed and added at a higher
rate in BFPRs. The Shardingsphere and ksqlDB projects have the
highest rraterem and rrateadd values. The openHAB add-ons, ksqlDB,
Elasticsearch and Jenkins projects share similar relative rates.
Discussion.While our findings on the relative removal rates of the
studied projects alignwith the previous study in C/C++ projects [15],
we also observe that the relative addition rates are in the same direc-
tion as the relative removal rates, i.e., AoCs are added more often in
BFPRs than in NBFPRs. Therefore, we cannot conclude that AoCs
are defect-inducing unless we ignore the relative addition rates.

To test whether the ratio of AoC removal and addition rates
are significantly associated with PR type, we conduct two sets of
two-tailed Mann-Whitney U tests, one for the ratio of AoC addition
rates and one for their removal rates, to see whether they differ
significantly. We choose the two-tailed over the one-tailed variant
in this case because our observations can be drawn irrespective of
the direction of the association. In these experiments, we compare
(1) {addbfpr1 , . . . , addbfpr𝑛 } with {addnbfpr1 , . . . , addnbfpr𝑛 }, and (2)
{rembfpr1 , . . . , rembfpr𝑛 } with {remnbfpr1 , . . . , remnbfpr𝑛 }. Similar to
RQ1, we exclude PRs that did not add or remove lines.

The results of the statistical tests are shown in Table 7 and 8.
The statistical test results indicate that we cannot reject 𝐻0 for all
projects except for removal rates in the Elasticsearch project. There-
fore, we cannot safely claim that the relative rates significantly
differ between BFPRs and NBFPRs, i.e., removal and addition of
AoCs are not to be quantitatively associated with PR type. While
prior work on C/C++ projects was able to draw such a conclu-
sion [14], our results suggest that these conclusions do not extend
to systems that are primarily written in Java.

While the results of the 𝜒2 tests show that there is an associa-
tion between AoC removal and PR type, considering AoC addition
shows that we cannot attribute AoCs for defects as they have been
both removed and addedmore often in BFPRs. Follow-up two-tailed
Mann-Whitney U tests indicate that we cannot draw conclusions
based on the relative rates in the Java projects.

ESEM ’24, October 24–25, 2024, Barcelona, Spain Shi, et al.

Table 9: 𝑝-values for the 𝜒2 test results of 𝑟𝑟𝑎𝑡𝑒𝑎𝑑𝑑 and 𝑟𝑟𝑎𝑡𝑒𝑟𝑒𝑚 for the 10 types of AoC in the studied projects

openHAB add-ons ksqlDB Elasticsearch Jenkins Shardingsphere Kafka

Types 𝑟𝑟𝑎𝑡𝑒𝑎𝑑𝑑 𝑟𝑟𝑎𝑡𝑒𝑟𝑒𝑚 𝑟𝑟𝑎𝑡𝑒𝑎𝑑𝑑 𝑟𝑟𝑎𝑡𝑒𝑟𝑒𝑚 𝑟𝑟𝑎𝑡𝑒𝑎𝑑𝑑 𝑟𝑟𝑎𝑡𝑒𝑟𝑒𝑚 𝑟𝑟𝑎𝑡𝑒𝑎𝑑𝑑 𝑟𝑟𝑎𝑡𝑒𝑟𝑒𝑚 𝑟𝑟𝑎𝑡𝑒𝑎𝑑𝑑 𝑟𝑟𝑎𝑡𝑒𝑟𝑒𝑚 𝑟𝑟𝑎𝑡𝑒𝑎𝑑𝑑 𝑟𝑟𝑎𝑡𝑒𝑟𝑒𝑚

CLE -1.75 -2.14 × × -1.63* -1.99 -∞ -∞ 5.72*** -∞ -∞ -∞
CO 1.22**** 1.19*** 1.14 1.05 1.14**** 1.60**** -1.24* 1.17 1.13 1.60**** 1.22**** 1.34****
Ind 2.05 -∞ -∞ -∞ -1.78* -1.11 2.10 -1.19 × × 1.15 ∞
IOP 1.21**** 1.23**** 1.51**** 1.67*** 1.15**** 1.49**** 1.35**** 1.84**** 1.60**** 1.51*** 1.08* 1.14*
LCF 1.37** -1.10 -1.15 1.76* -1.08 1.11 1.37* -1.11 1.24 2.05** -1.05 2.09****
OCB × 3.90 × × -2.68 -∞ ∞ 2.94 × × 1.57 2.83
PostID 1.37 -1.12 -1.67 -∞ 1.01 1.31* -1.12 -1.15 2.67** 2.74 1.03 -1.68
PreID 1.17 -1.03 -∞ -∞ -2.91*** -2.47* 1.37 1.96 4.81**** 17.70**** 1.54* -1.89*
RV 1.03 -2.05 1.87 -∞ 1.39 1.69* 2.75 3.91 -∞ -∞ -1.05 1.89
TC -2.89** -1.17 1.87 -∞ -1.39 -1.34 1.14 -∞ -∞ -∞ -2.79** -4.96***
• The number of asterisk (*) next to the cell values indicates the power of 0.1 which the 𝑝-value is less than. E.g., 𝑛 of * indicates 𝑝 < 0.1𝑛 .
• The × symbol indicates that there is no such AoC type added/removed in that project.

RQ3: Why are different types of AoC removed
and added in bug-fixing and non-bug-fixing PRs?
In this RQ, we study eachAoC typewith respect to their relationship
with PR type.
Approach. Following Gopstein et al.’s approach [15], we calculate
whether the relation between AoC change and PR type differs for
eachAoC type.We categorize the AoCs based on the types proposed
by Langout et al. [22] and then report whether any non-random
association exists and what rrateadd and rraterem is for each type.
Results. Figure 2 visualizes rrateadd, rraterem, and the significance
results of the 𝜒2 test for each of the studied projects per AoC type
in the Elasticsearch project. The set of bar charts for all studied
projects, with one for rrateadd and rraterem for each project, can be
found in our online appendix.3

The relative rates when NBFPRs add or remove more than BFPRs
are expected to be less than one. Such relative rates are inverted,
and a negative notation is used for improved visual clarity. For
example, for a relative rate of 0.80, we calculate −1/0.80 and write
-1.25 instead. We adopt this notation in the complete set of relative
rates that are presented in Table 9. Relative rate comparisons in
this section are based on this notation.

We observe that for relative rates with 𝑝 < 0.01—i.e., indicating
statistical significance—some types of AoC exhibit specific patterns
in terms of their relative removal and addition rates. Below, we
summarize our observations.

O1 The Change of Literal Encoding (CLE) atom is neither added nor
removed in the ksqlDB project and is only added and removed
in NBFPRs in the Jenkins and Kafka projects.

O2 The Conditional Operator (CO) atom is added and removed
significantly more in BFPRs in the openHAB add-ons, Elastic-
search and Kafka projects.

O3 The Indentation (Ind) atom is neither added nor removed in the
Shardingsphere project, is only added and removed in NBFPRs
in the ksqlDB project.

O4 The Infix Operator Precedence (IOP) atom is added and removed
significantly more in BFPRs in all but the Kafka project.

O5 The Omitted Curly Braces (OCB) atom is neither added nor
removed in the ksqlDB and Shardingsphere project.

 1.99x

 1.60x ****

 1.11x

 1.49x ****

 1.11x

 Infx

 1.31x *

 * 2.47x

 1.69x *

 1.34x

Non−bugs Bugs

Omitted Curly Braces

Pre Increment Decrement

Change of Literal Encoding

Type Conversion

Indentation

Logic as Control Flow

Post Increment Decrement

Infix Operator Precedence

Conditional Operator

Repurposed Variables

Removal rate

A
oC

 ty
pe

Figure 2: Relative removal rate in the Elasticsearch project.

O6 The Pre Increment Decrement (PreID) atom is added and re-
moved significantly more in BFPRs in the Shardingsphere
project.

O7 The Repurposed Variable (RV) atom is only added and removed
in NBFPRs in the Shardingsphere project.

O8 The Type Conversion (TC) atom is added and removed signifi-
cantly more in NBFPRs in the Kafka project.

For the remaining AoC types, either there is no discernible pat-
tern, or the relative rates are not significantly different. We conjec-
ture that developers add and remove these types unintentionally.
Discussion.We categorize our observations into three patterns.
P1 Multiple projects have significant relative rates. O2 and O4

belong to this group.
P2 One project has significant relative rates. O6 and O8 belong to

this group.
P3 Exceptions, where either a specific AoC type is neither added

nor removed, or both rrateadd and rraterem are ±∞, in some
groups. O1, O3, O5, O7 belong to this group.

We discuss the observations in each group accordingly.
P1 — Pinheiro et al. [27] inspected 77 AoCs in defect-fixing and
improvement commits to determine whether they relate to the com-
mit. Of the 77 inspected AoCs, only 9 were found to have likely led
to the commit. For each observation in P1, we follow a comparable
approach. We sample ten BFPRs in each project that either remove

Reevaluating the Defect Proneness of Atoms of Confusion in Java Systems ESEM ’24, October 24–25, 2024, Barcelona, Spain

Table 10: Number of AoC changes for CLE, Ind, OCB, and RV atoms. BF = bug-fixing PRs, NBF = non-bug-fixing PRs.

CLE Ind OCB RV

Added Removed Added Removed Added Removed Added Removed

Repository BF NBF BF NBF BF NBF BF NBF BF NBF BF NBF BF NBF BF NBF

openHAB add-ons 5 36 3 25 1 2 - 12 - - 1 1 1 4 1 8
ksqlDB - - - - - 2 - 1 - - - - 1 6 - 3
Elasticsearch 16 185 6 121 17 215 10 113 2 38 - 12 29 148 18 108
Jenkins - 7 - - 11 12 3 14 2 - 3 4 6 5 3 3
Shardingsphere 5 21 - 17 - - - - - - - - - 4 - 4
Kafka - 35 - 12 2 5 1 - 2 9 3 4 3 9 2 4

more than add, or add more AoCs than they remove, and conduct a
manual examination to determine whether the AoCs are intention-
ally removed or added for defect-fixing or improvement purposes,
as appropriate. Similar to Pinheiro et al., our decisions are based on
PR contexts, including the title, description, and comments of a PR,
as well as the related issue report and code changes.

In O2, we observe that rrateadd and rraterem for the Conditional
Operator (CO) atom are greater than 1.We then search for ten BFPRs
from the openHAB add-ons, Elasticsearch, and Kafka projects where
this AoC type is either removed or added. We inspect 30 BFPRs,
containing 62 CO AoCs, of which 37 contain null checks in their
conditions. In the two AoCs in the Elasticsearch project, test files
are the primary source of the change, and the conditions contain
randomBoolean() for random testing. In either case, the removal
and addition of these AoCs are not due to their confusing nature, but
rather their utility for defect-fixing and testing. The rest of the CO
AoCs are neither added nor removed because they are confusing.

Regarding observationO4, which indicates that the Infix Operator
Precedence (IOP) atom is added and removed significantly more in
all but the Kafka projects, we sample ten BFPRs from each project
that either removed or added this AoC type. In total, we examine
50 PRs, collectively containing 95 IOP AoCs. Unlike the example
instance presented by Langhout andAniche [22], 82 of the examined
AoCs are of the format: if (a != null || a.equals("str")).
This format is recognized as an IOP atom due to two consecutive
operators (!= and ||) without clarifying parentheses for operator
precedence. For some IOPAoCs, null checks are removed as they are
no longer necessary, or added to avoid NullPointerExceptions. In
other cases, instanceof checks are explicitly added. The instances
of IOP AoCs under scrutiny are unlikely to be the sole reason for
these changes. The remaining 12 of the IOP AoCs include mixed
mathematical operations without parentheses, e.g., a + b * c, and
they are not found to be the direct cause of their associated PRs.

Overall, the observations in P1 indicate that the Conditional
Operator and Infix Operator Precedence AoC are not considered
primary causes of defects. Rather, many AoCs are modified due
to their usefulness in defect-fixing and testing, rather than their
potential to introduce defects. This finding supports the conclusion
that AoCs may not be inherently increasing defect proneness, or
that developers do not perceive them as confusing.
P2 — The observations in this pattern concern a single project and a
single AoC type. Hence, we study PRs from that project containing
changes to AoCs of that AoC type.

O6 highlights that both rraterem and rrateadd are greater than 1
for the PreID atom in the Shardingsphere project. To investigate, we
examine BFPRs from the project that either removes more AoCs of
PreID than it adds, or adds more AoCs than it removes. Three PRs
meet this criterion, totaling five PreID AoCs added and 20 AoCs
removed. Interestingly, the PreID AoCs are either ++sequenceID
or ++currentSequenceID. The first two PRs made small, unre-
lated changes near these AoCs, while the last PR underwent a
large refactoring and removed all occurrences of sequenceID and
currentSequenceID thereby eliminating all related PreID AoCs.

O8 reveals that rraterem and rrateadd are both less than −1 for
the TC atom in the Kafka project. Hence, we search for NBFPRs
from the project that either remove more TC AoCs than they add
or add more than they remove. 43 PRs meet this criterion, with
53 TC AoCs being added and 62 being removed. Of the 115 TC
AoCs, 97 are typecasting from int to either short, byte or char. It
appears that they could be avoided, as PR #1139311 removed these
occurrences by changing the input data type from int to short,
with the PR author claiming:

“We’re removing more casts than we’re adding.”
However, in PR #12135,12 a developer justified setting the input
data type to int, stating:

“This is because Java’s default type is int – i.e. line[s]...
above would take the value 0/1 as int. So we basi-
cally need to either do the conversion in each line[s]...
above, or just do the conversion once here.”

These conversations show that the removal and addition of TC
occurrences in these cases are not due to their confusing nature.
Typecasting could be necessary, and the developers are attempt-
ing to minimize its usage. Another interesting case where TC is
removed is to avoid Java 20’s lossy conversions warning.13

In summary, project- and language-specific factors including
project style guides and implicit type conversion may influence
changes to certain AoC types. Our online appendix contains more
examples to elaborate on this point in detail.4 Further investigation
is encouraged to understand how these and other similar factors
affect the prevalence and perceived confusion of AoCs.
P3 — These AoC types are either untouched or only affected in one
type of PR in some projects, while in others, the relative rates do

11https://github.com/apache/kafka/pull/11393
12https://github.com/apache/kafka/pull/12135
13https://github.com/apache/kafka/pull/13582

https://github.com/apache/kafka/pull/11393
https://github.com/apache/kafka/pull/12135
https://github.com/apache/kafka/pull/13582

ESEM ’24, October 24–25, 2024, Barcelona, Spain Shi, et al.

not show significance. Intuitively, the Indentation (Ind) and Omitted
Curly Braces (OCB) atoms, for example, are rarely seen or changed,
as Java IDE software can identify and remove them. Similarly, the
Change of Literal Encoding (CLE) and Repurposed Variables (RV)
atoms occur slightly more frequently but are still rare compared to
more prevalent types because developers would likely avoid them
in the first place. To verify this claim, we count the number of
the observed AoC types that are removed and added in BFPRs and
NBFPRs respectively, presented in Table 10. We can see that these
AoC types are not prevalent across all the projects we examined.

Our inspection reveals that certain AoC types are modified not
because they are confusing, but rather due to their frequent use
in defect-fixing and testing. Project- and language-specific factors
can also contribute to these modifications. Additionally, several
AoC types are actively avoided and are therefore not prevalent.

5 THREATS TO VALIDITY
In this section, we discuss potential threats to the validity of our
study, categorizing them according to the framework proposed by
Wright et al. [32]. We describe threats to the construct, internal,
and external validities, and the steps we take to mitigate them.
Construct Validity.Construct validity assesses the extent to which
a test or tool measures the intended construct. In our study, the
Java AoC detection tool10 developed by the Software Engineering
Research Group at TU Delft14 is one of the potential sources of
construct validity threats. While the tool has been developed by a
renowned research group and employed in prior research [4], we
modify the tool’s definition of several AoC types to incorporate
prior studies [25, 27], and we implement an additional validity
check (Equation 1) to improve the tool’s accuracy.

Another threat to construct validity is the categorization of PRs
using their linked issues, as classifying PRs into bug-fixing and
non-bug-fixing is a non-trivial task. It is known that BFPRs are not
usually linked with defects [3]. To mitigate this threat, we randomly
sample PRs from all studied PRs in the projects and label enough
data points to have a 95% confidence interval.

Finally, Gopstein et al. [14] stated that AoCs were not defects
themselves. It is possible that even if an AoC leads to the injection
of a defect, it is not removed after the defect is fixed, and vice versa.
Our method fails to capture this scenario, but it is beyond our scope.
Internal Validity. Internal validity concerns whether confounding
factors exist in our study. Since confusion is a qualitative and sub-
jective attribute and is not entirely measurable, it is impossible to
determine all the factors contributing to whether AoCs are confus-
ing to developers. We mitigate this threat by following the footsteps
of previous works [15, 27], investigating individual AoC types, and
uncovering the reasons behind their changes. Certainly, there are
various other qualitative factors related to our observation, but they
are beyond the scope of this study.
External Validity. External validity concerns the generalizability
of our results. Two of our six studied projects were previously ex-
amined by Bogachenkova et al. [4]. Furthermore, we ensure that
the other four projects we select for our study have high-quality

14https://github.com/SERG-Delft

labeling. These projects also offer diversity in size and application,
enriching our study’s scope. Our choice for the number of studied
projects is constrained by two main factors: (1) the time-intensive
process of extracting AoC changes for each PR using the GitHub
REST API,15 and (2) the reliability of PR/issue labels used to classify
the PRs. Although we deliberately select projects to ensure diversity
in category and size, we acknowledge that these may not compre-
hensively represent all existing projects. Nevertheless, the selected
projects indicate a broad spectrum of application types and scales.
Thus, the implications of our study should be considered with an
understanding of its scope by both researchers and practitioners.

6 CONCLUSION
Our study aims to determine whetherAtoms of Confusion are defect-
inducing in Java software development. We mine 76,610 PRs from
six open-source Java projects and conduct statistical analysis to
investigate whether a non-random relationship exists between the
trend of AoC changes (increase and decrease) and the PR type (bug-
fixing and non-bug-fixing). Additionally, we replicate Gopstein et
al.’s study [15] and extend it by incorporating the addition of AoCs—
which has not been previously considered—to explore whether the
removal and addition of AoCs are connected to different PR types.
There are three key findings from our study:
• Bug-fixing PRs do not decrease statistically more than in-
crease the number of AoCs. No conclusive evidence indicates
that AoCs are defect-inducing. Incorporating AoC addition to
Gopstein et al.’s study shows that we cannot blame AoCs for
defects because they are added, as they are removed, more often
in BFPRs than NBFPRs.

• Modification to certain AoC types could be due to their
usefulness in defect fixing or code improvement. In reality,
these AoCs are frequently used, making them less confusing.
Examples can be found in our online appendix.4

• Certain project- and language-related factors could con-
tribute to AoC change. Senior developers tend to follow their
or the projects’ coding conventions, even if they will introduce
AoCs.4 It is possible that these conventions are initially confusing
to junior developers, and this calls for further investigation.
Our research challenges the assumption that AoCs inherently

confuse developers in Java projects, highlighting the necessity for
more in-depth investigations into the specific conditions under
which AoCs become perplexing. Based on our findings, we propose
to assess the factors that affect the confusing nature of AoCs, by ex-
ploring other projects and programming languages. We also plan to
address the shortcomings of our work by conducting a complemen-
tary survey study. When investigating subjective concepts such as
confusion, incorporating people’s views into the data analysis will
provide valuable insights to our study. Future research should not
only look into the prevalence and effect of, but also practitioners’
opinions on and coping strategies for, the Atoms of Confusion.

ACKNOWLEDGMENTS
This work is partially funded by the Waterloo-Huawei Joint Inno-
vation Lab.

15https://docs.github.com/en/rest

https://github.com/SERG-Delft
https://docs.github.com/en/rest

Reevaluating the Defect Proneness of Atoms of Confusion in Java Systems ESEM ’24, October 24–25, 2024, Barcelona, Spain

REFERENCES
[1] Marwen Abbes, Foutse Khomh, Yann-Gaël Guéhéneuc, and Giuliano Antoniol.

2011. An Empirical Study of the Impact of Two Antipatterns, Blob and Spaghetti
Code, on Program Comprehension. In 2011 15th European Conference on Software
Maintenance and Reengineering. IEEE, New York, NY, USA, 181–190. https:
//doi.org/10.1109/CSMR.2011.24

[2] Alberto Bacchelli and Christian Bird. 2013. Expectations, outcomes, and chal-
lenges of modern code review. In 2013 35th International Conference on Software
Engineering (ICSE). IEEE, New York, NY, USA, 712–721. https://doi.org/10.1109/
ICSE.2013.6606617

[3] Christian Bird, Adrian Bachmann, Eirik Aune, John Duffy, Abraham Bernstein,
Vladimir Filkov, and Premkumar Devanbu. 2009. Fair and Balanced? Bias in
Bug-Fix Datasets. In Proceedings of the 7th Joint Meeting of the European Software
Engineering Conference and the ACM SIGSOFT Symposium on The Foundations of
Software Engineering (Amsterdam, The Netherlands) (ESEC/FSE ’09). Association
for Computing Machinery, New York, NY, USA, 121–130. https://doi.org/10.
1145/1595696.1595716

[4] Victoria Bogachenkova, Linh Nguyen, Felipe Ebert, Alexander Serebrenik, and
Fernando Castor. 2022. Evaluating Atoms of Confusion in the Context of Code
Reviews. In 2022 IEEE International Conference on Software Maintenance and
Evolution (ICSME). IEEE, New York, NY, USA, 404–408. https://doi.org/10.1109/
ICSME55016.2022.00048

[5] Robert M Christley. 2010. Power and error: increased risk of false positive results
in underpowered studies. The Open Epidemiology Journal 3, 1 (2010), 16–19.
https://doi.org/10.2174/1874297101003010016

[6] José Aldo Silva da Costa, Rohit Gheyi, Fernando Castor, Pablo Roberto Fernandes
de Oliveira, Márcio Ribeiro, and Baldoino Fonseca. 2023. Seeing confusion
through a new lens: on the impact of atoms of confusion on novices’ code
comprehension. Empirical Software Engineering 28, 4 (18 May 2023), 81. https:
//doi.org/10.1007/s10664-023-10311-0

[7] Rafael de Mello, José Aldo da Costa, Benedito de Oliveira, Márcio Ribeiro, Bal-
doino Fonseca, Rohit Gheyi, Alessandro Garcia, and Willy Tiengo. 2021. De-
coding Confusing Code: Social Representations among Developers. In 2021
IEEE/ACM 13th International Workshop on Cooperative and Human Aspects
of Software Engineering (CHASE). IEEE, New York, NY, USA, 11–20. https:
//doi.org/10.1109/CHASE52884.2021.00010

[8] Benedito de Oliveira, Márcio Ribeiro, José Aldo Silva da Costa, Rohit Gheyi, Guil-
herme Amaral, Rafael de Mello, Anderson Oliveira, Alessandro Garcia, Rodrigo
Bonifácio, and Baldoino Fonseca. 2020. Atoms of Confusion: The Eyes Do Not
Lie. In Proceedings of the XXXIV Brazilian Symposium on Software Engineering
(Natal, Brazil) (SBES ’20). Association for Computing Machinery, New York, NY,
USA, 243–252. https://doi.org/10.1145/3422392.3422437

[9] Felipe Ebert, Fernando Castor, Nicole Novielli, and Alexander Serebrenik. 2017.
Confusion Detection in Code Reviews. In 2017 IEEE International Conference on
Software Maintenance and Evolution (ICSME). IEEE, New York, NY, USA, 549–553.
https://doi.org/10.1109/ICSME.2017.40

[10] Felipe Ebert, Fernando Castor, Nicole Novielli, and Alexander Serebrenik. 2019.
Confusion in Code Reviews: Reasons, Impacts, and Coping Strategies. In 2019 IEEE
26th International Conference on Software Analysis, Evolution and Reengineering
(SANER). IEEE, New York, NY, USA, 49–60. https://doi.org/10.1109/SANER.2019.
8668024

[11] Felipe Ebert, Fernando Castor, Nicole Novielli, and Alexander Serebrenik. 2021.
An exploratory study on confusion in code reviews. Empirical Software Engineer-
ing 26 (2021), 1–48. https://doi.org/10.1007/s10664-020-09909-5

[12] Sarah Fakhoury, Yuzhan Ma, Venera Arnaoudova, and Olusola Adesope. 2018.
The Effect of Poor Source Code Lexicon and Readability on Developers’ Cog-
nitive Load. In Proceedings of the 26th Conference on Program Comprehension
(Gothenburg, Sweden) (ICPC ’18). Association for Computing Machinery, New
York, NY, USA, 286–296. https://doi.org/10.1145/3196321.3196347

[13] Dan Gopstein, Anne-Laure Fayard, Sven Apel, and Justin Cappos. 2020. Think-
ing aloud about confusing code: a qualitative investigation of program com-
prehension and atoms of confusion. In Proceedings of the 28th ACM Joint
Meeting on European Software Engineering Conference and Symposium on the
Foundations of Software Engineering (Virtual Event, USA) (ESEC/FSE 2020). As-
sociation for Computing Machinery, New York, NY, USA, 605–616. https:
//doi.org/10.1145/3368089.3409714

[14] Dan Gopstein, Jake Iannacone, Yu Yan, Lois DeLong, Yanyan Zhuang, Martin K.-C.
Yeh, and Justin Cappos. 2017. Understanding Misunderstandings in Source Code.
In Proceedings of the 2017 11th JointMeeting on Foundations of Software Engineering
(Paderborn, Germany) (ESEC/FSE 2017). Association for Computing Machinery,
New York, NY, USA, 129–139. https://doi.org/10.1145/3106237.3106264

[15] Dan Gopstein, Hongwei Henry Zhou, Phyllis Frankl, and Justin Cappos. 2018.
Prevalence of Confusing Code in Software Projects: Atoms of Confusion in the
Wild. In Proceedings of the 15th International Conference on Mining Software Repos-
itories (Gothenburg, Sweden) (MSR ’18). Association for Computing Machinery,
New York, NY, USA, 281–291. https://doi.org/10.1145/3196398.3196432

[16] J.D. Herbsleb and A. Mockus. 2003. An empirical study of speed and communica-
tion in globally distributed software development. IEEE Transactions on Software
Engineering 29, 6 (2003), 481–494. https://doi.org/10.1109/TSE.2003.1205177

[17] J.D. Herbsleb and D. Moitra. 2001. Global software development. IEEE Software
18, 2 (2001), 16–20. https://doi.org/10.1109/52.914732

[18] Felienne Hermans and Efthimia Aivaloglou. 2016. Do code smells hamper novice
programming? A controlled experiment on Scratch programs. In 2016 IEEE 24th
International Conference on Program Comprehension (ICPC). IEEE, New York, NY,
USA, 1–10. https://doi.org/10.1109/ICPC.2016.7503706

[19] Johannes Hofmeister, Janet Siegmund, and Daniel V. Holt. 2017. Shorter identifier
names take longer to comprehend. In 2017 IEEE 24th International Conference on
Software Analysis, Evolution and Reengineering (SANER). IEEE, New York, NY,
USA, 217–227. https://doi.org/10.1109/SANER.2017.7884623

[20] Ivar Jacobson, Grady Booch, and James Rumbaugh. 1999. The Unified Software
Development Process. Addison-Wesley Professional. https://isbnsearch.org/isbn/
9780201571691

[21] John Johnson, Sergio Lubo, Nishitha Yedla, Jairo Aponte, and Bonita Sharif. 2019.
An Empirical Study Assessing Source Code Readability in Comprehension. In 2019
IEEE International Conference on Software Maintenance and Evolution (ICSME).
IEEE, New York, NY, USA, 513–523. https://doi.org/10.1109/ICSME.2019.00085

[22] Chris Langhout and Maurício Aniche. 2021. Atoms of Confusion in Java. In 2021
IEEE/ACM 29th International Conference on Program Comprehension (ICPC). IEEE,
New York, NY, USA, 25–35. https://doi.org/10.1109/ICPC52881.2021.00012

[23] Shane McIntosh, Yasutaka Kamei, Bram Adams, and Ahmed E. Hassan. 2014. The
Impact of Code Review Coverage and Code Review Participation on Software
Quality: A Case Study of the Qt, VTK, and ITK Projects. In Proceedings of the
11th Working Conference on Mining Software Repositories (Hyderabad, India) (MSR
2014). Association for Computing Machinery, New York, NY, USA, 192–201.
https://doi.org/10.1145/2597073.2597076

[24] Shane McIntosh, Yasutaka Kamei, Bram Adams, and Ahmed E Hassan. 2016.
An empirical study of the impact of modern code review practices on software
quality. Empirical Software Engineering 21, 5 (2016), 2146–2189. https://doi.org/
10.1007/s10664-015-9381-9

[25] Wendell Mendes, Oton Pinheiro, Emanuele Santos, Lincoln Rocha, and Windson
Viana. 2022. Dazed and Confused: Studying the Prevalence of Atoms of Confusion
in Long-Lived Java Libraries. In 2022 IEEE International Conference on Software
Maintenance and Evolution (ICSME). IEEE, New York, NY, USA, 106–116. https:
//doi.org/10.1109/ICSME55016.2022.00018

[26] Gottfried E Noether. 1987. Sample size determination for some common non-
parametric tests. J. Amer. Statist. Assoc. 82, 398 (1987), 645–647. https:
//doi.org/10.1080/01621459.1987.10478478

[27] Oton Pinheiro, Lincoln Rocha, and Windson Viana. 2023. How They Relate
and Leave: Understanding Atoms of Confusion in Open-Source Java Projects.
In 2023 IEEE 23rd International Working Conference on Source Code Analysis and
Manipulation (SCAM). 119–130. https://doi.org/10.1109/SCAM59687.2023.00022

[28] Cristiano Politowski, Foutse Khomh, Simone Romano, Giuseppe Scanniello,
Fabio Petrillo, Yann-Gaël Guéhéneuc, and Abdou Maiga. 2020. A large scale
empirical study of the impact of Spaghetti Code and Blob anti-patterns on pro-
gram comprehension. Information and Software Technology 122 (2020), 106278.
https://doi.org/10.1016/j.infsof.2020.106278

[29] Caitlin Sadowski, Emma Söderberg, Luke Church, Michal Sipko, and Alberto
Bacchelli. 2018. Modern Code Review: A Case Study at Google. In Proceedings of
the 40th International Conference on Software Engineering: Software Engineering
in Practice (Gothenburg, Sweden) (ICSE-SEIP ’18). Association for Computing Ma-
chinery, New York, NY, USA, 181–190. https://doi.org/10.1145/3183519.3183525

[30] Vallary Singh, Lori L. Pollock, Will Snipes, and Nicholas A. Kraft. 2016. A case
study of program comprehension effort and technical debt estimations. In 2016
IEEE 24th International Conference on Program Comprehension (ICPC). IEEE, New
York, NY, USA, 1–9. https://doi.org/10.1109/ICPC.2016.7503710

[31] Noshin Tahsin, Nafis Fuad, and Abdus Satter. 2023. Prevalence of ‘Atoms of
Confusion’ in Open Source Java Systems: An Empirical Study. (Feb. 2023). https:
//doi.org/10.22541/au.167570695.54470176/v1

[32] Hyrum K. Wright, Miryung Kim, and Dewayne E. Perry. 2010. Validity Concerns
in Software Engineering Research. In Proceedings of the FSE/SDP Workshop on
Future of Software Engineering Research (Santa Fe, New Mexico, USA) (FoSER ’10).
Association for Computing Machinery, New York, NY, USA, 411–414. https:
//doi.org/10.1145/1882362.1882446

[33] Martin K-C Yeh, Yu Yan, Yanyan Zhuang, and Lois Anne DeLong. 2022. Identify-
ing program confusion using electroencephalogram measurements. Behaviour
& Information Technology 41, 12 (2022), 2528–2545. https://doi.org/10.1080/
0144929X.2021.1933182

https://doi.org/10.1109/CSMR.2011.24
https://doi.org/10.1109/CSMR.2011.24
https://doi.org/10.1109/ICSE.2013.6606617
https://doi.org/10.1109/ICSE.2013.6606617
https://doi.org/10.1145/1595696.1595716
https://doi.org/10.1145/1595696.1595716
https://doi.org/10.1109/ICSME55016.2022.00048
https://doi.org/10.1109/ICSME55016.2022.00048
https://doi.org/10.2174/1874297101003010016
https://doi.org/10.1007/s10664-023-10311-0
https://doi.org/10.1007/s10664-023-10311-0
https://doi.org/10.1109/CHASE52884.2021.00010
https://doi.org/10.1109/CHASE52884.2021.00010
https://doi.org/10.1145/3422392.3422437
https://doi.org/10.1109/ICSME.2017.40
https://doi.org/10.1109/SANER.2019.8668024
https://doi.org/10.1109/SANER.2019.8668024
https://doi.org/10.1007/s10664-020-09909-5
https://doi.org/10.1145/3196321.3196347
https://doi.org/10.1145/3368089.3409714
https://doi.org/10.1145/3368089.3409714
https://doi.org/10.1145/3106237.3106264
https://doi.org/10.1145/3196398.3196432
https://doi.org/10.1109/TSE.2003.1205177
https://doi.org/10.1109/52.914732
https://doi.org/10.1109/ICPC.2016.7503706
https://doi.org/10.1109/SANER.2017.7884623
https://isbnsearch.org/isbn/9780201571691
https://isbnsearch.org/isbn/9780201571691
https://doi.org/10.1109/ICSME.2019.00085
https://doi.org/10.1109/ICPC52881.2021.00012
https://doi.org/10.1145/2597073.2597076
https://doi.org/10.1007/s10664-015-9381-9
https://doi.org/10.1007/s10664-015-9381-9
https://doi.org/10.1109/ICSME55016.2022.00018
https://doi.org/10.1109/ICSME55016.2022.00018
https://doi.org/10.1080/01621459.1987.10478478
https://doi.org/10.1080/01621459.1987.10478478
https://doi.org/10.1109/SCAM59687.2023.00022
https://doi.org/10.1016/j.infsof.2020.106278
https://doi.org/10.1145/3183519.3183525
https://doi.org/10.1109/ICPC.2016.7503710
https://doi.org/10.22541/au.167570695.54470176/v1
https://doi.org/10.22541/au.167570695.54470176/v1
https://doi.org/10.1145/1882362.1882446
https://doi.org/10.1145/1882362.1882446
https://doi.org/10.1080/0144929X.2021.1933182
https://doi.org/10.1080/0144929X.2021.1933182

	Abstract
	1 Introduction
	2 Background and Related Work
	3 Study Design
	3.1 Target Project Selection
	3.2 Record Extraction
	3.3 AoC Change Extraction
	3.4 Data Analysis

	4 Study Results
	5 Threats to Validity
	6 Conclusion
	Acknowledgments
	References

