
A Comparison of Bugs across the iOS and Android
Platforms of Two Open Source Cross Platform

Browser Apps
Wajdi Aljedaani∗, Meiyappan Nagappan†, Bram Adams‡and Michael Godfrey†

∗Dept. of Computer Technology, Al-Kharj College of Technology, Al-Kharj, Saudi Arabia
Email: waljedaani@tvtc.gov.sa

†Dept. of Computer Science, University of Waterloo, Waterloo, Ontario, Canada
Email: {mei.nagappan, migod}@uwaterloo.ca

‡Dept. of Computer and Software Engineering, Polytechnique Montréal, Montréal, Quebec, Canada
Email: bram.adams@polymtl.ca

Abstract—Mobile app developers want to maximize their
revenue and hence want to reach as large an audience as possible.
In order to do this, they need to build apps for multiple platforms
- like Google’s Android and Apple’s iOS, and maintain them
in parallel. Past research has examined properties of the issues
addressed in either Android or iOS, but not to compare the work
between both. Our main motivation has been to determine if there
were differences in how issues manifest themselves in iOS and
Android, when we control for the projects, by considering the
same apps across multiple platforms. In this paper, we compare
issues across two mobile platforms — iOS and Android — for two
open source browsers — Mozilla Firefox and Google Chromium.
We consider three dimensions of study: frequency of issue report
submission, fixing time of issues, and type of issues (using topic
modeling on the issue description to generate the categories). We
found that there were indeed differences; in particular, we found
that there were more issues in the Android version of the apps
and the gap with the iOS version is increasing. We observe that
in both apps the fix time and type of issues are different for each
platform. We also noted certain kinds of issues that may be more
prevalent for different browser/platform combinations. This can
advise project leads in identifying and allocating development
resources to address key problem areas. Hence, issue reports
seem more dependent on the platform than on the mobile app,
making development and maintenance effort hard to estimate.

Index Terms—Issue repository, issue reports; Mozilla Firefox;
issue fixing; Google Chromium; empirical studies; topic model.

I. INTRODUCTION

In the ten years since their introduction, mobile devices
such as smart phones and tablets have become highly popular
and powerful social technologies. Currently, two deployment
platforms dominate the mobile market: Apple’s iOS, a (mostly)
closed-source operating system, and Google’s Android OS, a
(mostly) open-source operating system. Unsurprisingly, many
mobile developers build applications (apps) that target both
platforms. Researchers have compared the development of
such applications [21], but to date there has been no study of
how issues for such systems manifest themselves across the
two deployment platforms. Indeed, most prior studies on issue
repositories have targeted desktop and server applications [18],
as well as apps written for the Android platform [5]. To the

best of our knowledge, this is the first empirical study that
analyzes issue reports, issue-fixing time, and issue types for
applications that target both the Android and iOS platforms.

In this work, we perform a cross-platform investigation
into the frequency, fix time, and types of issues associated
to two browsers, Chromium and Firefox. Our motivation is
pragmatically aimed: such knowledge could aid a mobile
app developer to identify and allocate resources between the
platforms, and support better informed management of the
software products. Also, such research could help to identify
the types and rates of issues across the different platforms,
for example whether Firefox on iOS was found to have more
usability issues than Firefox on Android.

Chromium and Firefox were natural choices for this study
because they are popular and both offer rich, detailed, and
freely available issue repositories as datasets, and are from
the same domain. These repositories provide a wide array of
supporting data on the types and eventual solutions for the
issues identified by the end users and application developers;
comprehensive cross-platform issue datasets such as these are
hard to come by.

Specifically, we investigated three research questions in our
study:

RQ1: How are the numbers of reported issues distributed
across the deployment platforms?

We found that both browser apps written for the Android
platform had more issues reported than their iOS counterparts
by a significant margin, with more issues for Firefox
compared to Chromium. However, Chromium-Android in
2015 and 2016 had considerable increase in the quarterly
rates of issues reported, while Firefox-Android has held a
more consistent pattern. In contrast, while the iOS apps have
fewer reported issues than the Android apps, the trends for the
browsers are similar: in Firefox, iOS has more issues, but the
numbers have decreased over the years, while Chromium-iOS
has fewer issues but are increasing.



RQ2: How are issue-fix times distributed across the deploy-
ment platforms?

We found that in Firefox, Android issues took longer to fix
than iOS issues. However, in Chromium, Android issues took
less time to fix than iOS issues. The longest wait periods
before being fixed are in Firefox, while Chromium issues tend
to be finished more quickly. Firefox-iOS issues took less time
to fix compared to Chromium-iOS.

RQ3: How are issue types distributed across the deployment
platforms?

We performed topic modelling on the textual issue descriptions
to infer the underlying types of the issues; we examined the
generated topics and chose labels that seemed to fit best. Using
these labels, we found that Firefox-Android has more issues
related to Multimedia and Bookmarks, while Firefox-iOS has
more issues related to Bookmarks and Post-Release Failure.
In Chromium-Android, more issues are related to Device-
Specific Failure and Crashes, while Pre-Release Failures and
Third Party Library issues occur more on the Chromium-iOS
platform. Hence, there is not a consistent type of issue that
is prevalent to a platform across both case study systems.
However, developers can still use such a topic analysis to find
what types of issues occur frequently in their app, and recruit
the required expertise.

The remainder of the paper is organized as follows. Sec-
tion II presents background information on issue-tracking
systems and an overview of Firefox’ and Chromium’s devel-
opment and release processes on Android and iOS. Section III
illustrates our case study approach, data collection, and pro-
cessing. Section IV presents and discusses the results of our
three research questions. Section V discusses related work,
and we describe threats to validity in Section VI. Finally, we
summarize our findings in Section VII.

II. BACKGROUND

Here we discuss background information about issue-
tracking systems as well as about the two subject systems
of this study.

A. Issue-Tracking Systems

Issue-tracking systems — also called bug-tracking systems
— enable the management, tracking, and resolution of pro-
gramming issues in large-scale software projects. End-users
submit their issue description in a report, often auto-generated
by the software in use, for developers to examine and possi-
bly patch. These reports are collected, examined, triaged; if
the triager decides that the report describes a problem that
needs attention, the report is assigned to a member of the
development team for fixing. Once addressed, the reports are
archived such that they can be consulted if-and-when they
become relevant again in the context of a future issue report.

The stages in the lifecycle of an issue report are fairly
simple: first, the user submits a report of the symptoms
and replication steps of an issue via an online form, which
assigns the report for triage (review). Apart from the textual
description of an issue, an issue report typically also records

relevant metadata, such as dates, the reporter’s name, and
the OS version used when the issue occurred. Triagers will
then examine and evaluate the issue report to determine if
it represents an issue worthy of attention; to do so, triagers
exploit their contextual knowledge of the system, the devel-
opers, and the project’s history. The outcome could be that
the issue is deemed relevant and worth attending to, irrelevant
(“WONTFIX”), non-reproducible (“WORSKFORME”), or a
duplicate of a known issue that has been fixed or is actively
being worked on. If it falls under relevant but unattended to,
the triager will assign a developer to start addressing the issue
report. The developer can interact with the issue reporter and
any interested stakeholder through issue report comments, IM,
email, or other means provided by the issue tracking system
that managers the reports. Once finished, the report can be
closed if the issue is considered to have been fixed, abandoned
if a fix is impossible or impractical, or reopened when an
accepted fix is found to be inadequate.

B. Overview of Firefox and Chromium

In this case study, we focus on two of the larger open-
source issue report repositories that span multiple mobile
platforms. We chose the domain of web browsers, since these
applications are supported on multiple platforms and system
environments. In particular, we selected Mozilla Firefox and
Google Chromium, as they are open source projects in wide
use whose development practices can be tracked and analyzed
by anyone. In the remainder of this section, we now discuss
how the Firefox and Chromium projects are being developed,
and how these processes differ between their Android and iOS
versions

Software Goals. Mozilla Firefox and Google Chromium
are widely used web browsers. The first official version of
Mozilla Firefox was released in 2004, although much of that
codebase originated in another open source project, called
Mozilla1, started by Netscape in 1998. One notable goal of
Firefox is to be compliant with various web standards, as well
as having extensive features and a modular design [28]. Firefox
is developed and released under the Mozilla Public License
(MPL).

The first release of the Chrome browser was a desktop
version in 2008, followed by the first mobile version in
2011. Chromium is built upon the Webkit framework, like
many other modern browsers including Safari but (notably)
not Firefox. It should be noted that there are two variants of
the Google browser: Chrome and Chromium. Chrome is the
Google-branded variant that is used by the vast majority of
end-users; it is a closed source project, but is based on its open
source cousin Chromium, which is developed and released
under the BSD license. Google’s Chrome extends Chromium
with a number of proprietary features, including support for
multiple media formats.

1The original Mozilla project combined several applications in one unified
system, including a web browser and an email client. The project architects
decided to separate these out into individual, independent applications called
Mozilla Firefox, Mozilla Thunderbird, etc.



Fig. 1: Overview of our approach to extract the metrics of issue reports and analyze the data.

Chromium has other advantages, such as not collecting and
forwarding usage data and the ability to turn off the security
sandbox on Linux platforms. We have studied Chromium in
this project as a proxy for Chrome, since we cannot access
data from the closed source parts of Chrome. However, as the
vast majority of the key functionality of Chrome is inherited
from Chromium, we feel this is a reasonable choice.

While the main feature sets of Firefox and Chromium are
comparable, users may perceive differences between them in
terms of battery usage, start-up time, privacy/security (open
source project vs. Google-backed project [29]), and avail-
ability of plugins. Firefox and Chromium both provide a
mobile version of their app for both the Android and iOS
platforms. Since Android version 4.4 (“KitKat”) released in
2013, Chrome has been the default browser for the Android
platform; Firefox must typically be downloaded and installed
separately if desired by the user. For iOS, the Safari browser is
the default. While many iOS users are content to use that app,
some users also download and install Chrome and/or Firefox
instead. We have not studied Safari as it is (mostly) a closed
source project and it has not been ported to Android.

Release Frequency. Table I shows the summary of the
release cycle times of all 4 apps [22]–[25], i.e., the number of
days between successive official releases. These numbers do
not distinguish between major and minor versions, but include
only the official releases customers could download from the
official app stores, excluding any non-official release such as
beta releases. We can see how the median release cycle times
of Firefox for Android and Chromium for iOS are similar
(about 3 weeks median), yet much larger than the median
cycle time for their Android counterparts (about 2 weeks
median). Again, these differences could indicate differences
in the way issues are being addressed across platforms, since
projects with shorter cycle time might have less time for
quality assurance [32].

III. STUDY DESIGN
This section describes the approach of our study, as well as

how we collected and processed the data to address our three
research questions.

A. Study approach
This section presents the design of our study on the issue

repositories of the iOS and Android versions of Firefox and

Chromium. Figure 1 shows an overview of our approach. For
each case study system, we first extract the necessary data
from the entire issue repository. Then, we identify the issue
reports related to a specific platform, and calculate relevant
metrics for those issue reports. We next analyzed the issue
report metrics to identify, for each app, possible differences
between the reports of its Android and iOS versions. The
specific metrics studied in this paper are described in detail
in the approach subsections of each research questions (see
Section IV).

B. Data Collection

We collected the data of all issue reports of Firefox sub-
mitted for its Android and iOS apps in the Mozilla project’s
Bugzilla issue repository2 for the period from January 1, 2014
to July 23, 2016; this yielded a total of 14,082 issues. The
details of our datasets are listed in Table II. In addition, we
gathered the data of all the issue reports of Chromium that
were submitted to its Monorail issue tracker 3 for the period
from March 3, 2015 to July 24, 2016; this yielded a total of
8,484 issues.

C. Data Processing

First, for each issue repository, we extracted a set of data:
issue ID, status, summary, OS, reported date, and closed date.
We used the R programming language to perform the corre-
sponding analyses in the three research questions. Although
Firefox has recorded its issues since 2002, the Chromium
project started more recently, in 2015. To make more reliable
and accurate comparisons between both software systems, we
filtered the Firefox issue report data to include only issues
reported between January 1, 2014, and July 24, 2016.

IV. STUDY RESULTS

This section presents and discusses the results of our
analysis. For each research question, we present the question,
the analysis approach, the results of the analysis, and we
discuss the findings.

2https://Bugzilla.mozilla.org/
3https://issues.chromium.org/hosting/



Project Platform Min. Q1 Median Mean Q3 Max.
Firefox Android 1.00 6.25 13.50 17.41 26.00 49.00

iOS 4.00 10.25 24.00 31.05 43.00 131.00
Chrom. Android 1.0 5.0 11.5 17.7 25.0 79.0

iOS 1.00 14.00 21.00 25.56 34.50 74.00

TABLE I: Summary of the time between successive releases (in #days) for the four apps.

System Platform #Issue Reports #Common Overlap Start Date End Date
Issue Reports

Firefox Android 10,852 0 01-01-2014 23-07-2016
iOS 3,230 0 05-12-2014 23-07-2016

Chromium Android 7,781 42 03-03-2015 24-07-2016
iOS 703 38 03-03-2015 24-07-2016

Total 22,566

TABLE II: Statistics of the data sets.

RQ1: How are the numbers of reported issues distributed
across the deployment platforms?

Motivation. In this research question we want to know
how many issues are reported for each platform. By knowing
this we could understand if the same app being built for
different platforms need the same or different amount of
resources. If the number of issues are different consistently,
then irrespective of why the number of issues are more, we
can conclude that more resources are needed.

Approach. Collecting the dataset for the Mozilla Firefox-
related issues was simple, due to the intuitive structure of
the Mozillan issue report system; all Firefox issues tagged
with Android and iOS were searched for and downloaded,
resulting in a preliminary database of 102,063 issue reports.
Although the Mozillan issue repository archives date back to
2002, we decided to focus on a narrower, more recent period of
January 1, 2014 to July 24, 2016; these particular dates mirror
the period for which we could also extract issue reports for
Chromium, a much newer project. The Mozilla dataset for this
date range consisted of 14,082 issue reports, i.e., 10,852 for
Android and 3,230 for iOS (cf. Table II).

Collecting the equivalent dataset from the Chromium is-
sue repository was more difficult. As the Chromium issue
repository does not allow for the same degree of nuance
in the search function (i.e., it did not necessarily allow
straightforward searching for specific categories of issues), it
allowed only for the selection of a number of issue reports
in a particular time range. To work around this limitation, the
initial Chromium-related dataset was culled from the Google
Chromium database by selecting all issue reports from the
time period of interest. Once this selection was complete,
the dataset comprised 50,078 reports. The dataset was then
processed in order to allow for cross-platform comparison
between the two dataset sources, as follows.

First, Chromium issue reports that contained multiple OS
names and related terms in the OS descriptor field were
duplicated, with one for each relevant OS. For example, if an
issue report contained the names of Android, and iOS in the
OS field, then an additional copy would be made of the report,
and a copy of each would be entered into the appropriate
OS database. This step enabled analysis of issue frequency

across the different OS types; it resulted in 5,923 “new” reports
being added, making a total of 56,001 reports in the dataset
altogether.

Step two in the processing stage was to remove all issue
reports that did not contain a specific OS name or a related
term in the relevant field of the issue report. These reports were
discarded, as being irrelevant to the focus of this research.
This included issues with the “[empty]” descriptor in the OS
field. This stage eliminated 13,000 reports from the dataset,
bringing the total number of issue reports down from 56,001
to 43,001. Once this stage was complete, the issue reports for
Android and iOS were retained, while the other OS-related
issue reports were discarded. This collection was then used as
the basis of the analytical dataset for Chromium, resulting in
a total of 7,781 issue reports for Chromium-Android and 703
reports for Chromium-iOS.

Results. Figure 2 shows the number of issues in Firefox for
both Android and iOS versions. During the first three quarters
(Q1–Q3) of 2014, there were a substantial number of issues
reported on the Android platform. However, as seen in Table II,
no issue data exists for the iOS platform for that same period;
this is because the iOS version of Firefox was not officially
released until Q1 of 2015. During Q4 of 2014, the first (small
number of) issues for the iOS version were reported.

Throughout the four quarters of 2015, the number of issues
reported for Android and iOS is more or less similar, with
small fluctuations. Only in Q4 of that year the number of
iOS reports dropped substantially. While this number remained
constant in Q1 and Q2 of the next year, the number of reports
for Android saw a large increase. Note that the number of
issues for Q3 of 2016 is small due to the cutoff date of our
analysis.

For Chromium (Figure 3), we started collecting data from
Q1 of 2015. Overall, the number of issues reported for iOS
is substantially lower than for Android. In Q1, the number
of issues reported for Android is substantially lower than in
later quarters. In Q2 of 2015, there was a large increase for
the Android devices from 430 to 1,350 compared to a much
smaller proportional increase in number of issues in the iOS
platform from 41 to 66. In Q2–Q4 of 2015 and Q1–Q2 of
2016, the number of issues increases over time in Android



1057 1058

1184 1199

35

739

343

750

624

996

606

980

377

1316

555

1137

527

436

136

35

135

235

335

435

535

635

735

835

935

1035

1135

1235

1335

2014 /Q
 1

2014 /Q
 2

2014 /Q
 3

2014 /Q
 4

2015 /Q
 1

2015 /Q
 2

2015 /Q
 3

2015 /Q
 4

2016 /Q
 1

2016 /Q
 2

2016 /Q
 3

Bugs in Quater

#B
ug

s Platforms

Android

IOS

Number of Bugs for Firefox

Fig. 2: Distribution of the number of issues for Firefox.

430

41

1350

66

1389

55

1444

92

1583

187

1577

212

8
50

8
108
208
308
408
508
608
708
808
908

1008
1108
1208
1308
1408
1508
1608

2015 /Q
 1

2015 /Q
 2

2015 /Q
 3

2015 /Q
 4

2016 /Q
 1

2016 /Q
 2

2016 /Q
 3

Bugs in Quater

#B
ug

s Platforms

Android

IOS

Number of Bugs for Chromium

Fig. 3: Distribution of the number of issues for Chromium.

and iOS, except for a brief decreases in Q3 of 2015 from 66
to 55. In Q3 of 2016, the number of issues for both Android
and iOS drops due to the cut-off date of our data set.

Discussion. By mining the repositories of Chromium for
patch authors, we find that the two Chromium apps share
57 developers (Table III), on top of which there are 450
Android-only and 60 iOS-only developers. On the other hand,
the two Firefox apps only share 15 developers. These are
assisted by 251 Android-only developers and 56 iOS-only
developers. These differences in development make the Firefox
and Chromium apps interesting to compare in this study, since
they might have repercussions in the way issues are being
addressed.

The trends that we observed in Figure 3 confirm the large
overlap between the iOS and Android teams of Chromium
that we saw in Section II, as the number of issues evolved

Project Platform #Common Team #Unique Team
Members Members

Firefox Android 15 251
iOS 15 56

Chromium Android 57 450
iOS 57 60

TABLE III: Team statistics in Firefox and Chromium for both
the Android and iOS apps.

proportionally, albeit at different levels of magnitude The
reason why the number of issues is the lowest in Q3 of 2015 is
the introduction of new features in Chromium-Android related
to tabs, security, and plugins from Q4 2015 to Q2 2016.

One further point that should be considered in this perspec-
tive, however, is that the total number of users for Android is
significantly higher than that of iOS, due to the larger range of
devices supporting Android, as well as Android’s open source
nature and that iOS uses the Safari browser as its default. As
shown by Herraiz et al. [33], this can explain a large part of
the different orders of magnitudes in number of reported issues

In summary, there are consistently more issues for the
Android platform in both Firefox and Chromium . There are
likely many contributing factors for this: the Android platform
has more users than iOS, and many iOS users do not bother
to install Firefox or Chromium on their devices, so fewer
issues may be noticed and reported; and the Android platform
supports a significantly larger and more varied set of devices
than iOS, introducing a lot of complexity that apps must
handle in their code base, which is not true for iOS apps.
For these reasons, software managers may wish to closely
monitor the amount of development resources allocated to each
platform, to determine where they may be most effectively
deployed.

RQ2: How are issue-fix times distributed across the deploy-
ment platforms?
Motivation. In this research question we want to examine

how long it takes to fix an issue in a given platform. We want
to explore this to see if the types of bugs or the priority to fix
them are the same across platforms. We do not know why the
bugs might take longer to fix, but what we may know is that
different platform’s issues may take different amounts of time
to fix.

Approach. The data was sorted and analyzed to determine
the time taken to repair a given issue, which we defined
to be the number of days between being first opened and
being marked as “Resolved” (Firefox) or “Fixed” (Chromium).
Issues that were not marked with either of the two above
statuses were excluded from consideration, as the focus of our
study is on issues that have been repaired. Once this selection
was complete, the size of the dataset that was examined for
analyzing the fixing time (i.e., the number of issues analyzed)
for Firefox-Android is 2,670 and for Firefox-iOS 1,700, while
for Chromium-Android it is 1,775 and Chromium-iOS 218.
We then used a Wilcoxon pairwise analysis on the data subsets
to determine which browser/platform combination possesses
the longest and shortest times to repair.



Company Platform Min. Q1 Median Mean Q3 Max.
Firefox Android 0.00 3.25 12.00 42.95 37.00 800.00

iOS 0.00 2.00 8.00 31.02 33.00 390.00
Chromium Android 0.00 4.00 21.00 96.99 100.00 1070.00

iOS 0.00 13.0 81.5 206.1 372.2 1008.0

TABLE IV: Summary of fixing time of the projects (in #days).

Fig. 4: Box-plot of fixing-time (in #days) of issue reports for
the iOS and Android platforms (Firefox).

Results. Figure 4 shows a box-plot of the Firefox issue
resolution time. The median number of days taken to fix issues
was higher for Android compared to iOS. On average it takes
a median of 12 days to fix an issue on Android compared to 8
for iOS (see Table IV). Out of 2,670 issues in total almost 269
were solved in less than a day or so for the Android version.

Figure 5 shows the corresponding box-plot for Chromium
issue resolution in number of days. Here we can see that the
median number of days used to fix issues was substantially
higher in iOS compared to Android. The median time to
resolve issues for Chromium-Android is around 21 days, with
almost 389 out of 1,775 issues being resolved in less than a
day.

Discussion. We performed a Wilcoxon Rank-Sum hypoth-
esis test to determine whether the observed differences in
the distribution of issue fixing time are significant. From
the results in Table V, we can see that in Firefox, Android
issues took a significantly longer time to fix than iOS issues.
However, in Chromium, Android issues took significantly less
time to fix than iOS issues. Given that the Android apps both
have a similar much shorter release cycle time than their iOS
apps, it is surprising that Firefox’ median issue fixing time on
iOS is lower than the time for Android.

One possible explanation could be related to the findings of
Khomh et al. [32] for the desktop version of Firefox related
to the time required to fix bugs before and after the switch
to more rapid releases. They observed that bugs were fixed
faster, but that proportionally less bugs were fixed. Bugs
that could not be addressed for the upcoming release, would
be pushed towards the next one. Given the much smaller
development team working on the Android version of Firefox
than on the Android version of Chromium (including both
the common and unique team members), we conjecture that
more issues are being propagated to later releases, effectively

Fig. 5: Box-plot of fixing-time (in #days) of issue reports for
iOS and Android Platforms (Chromium).

Company X vs. Y Less Greater 2-sided
Firefox Android vs. iOS 1 1.852e-11 3.704e-11

Chromium Android vs. iOS < 2.2e-16 1 < 2.2e-16

TABLE V: P-values for Wilcoxon Rank-Sum tests.

increasing the fix time. In any case, on the basis of our study,
we cannot conclusively say whether Android issues take
more or less time to fix as compared to iOS issues, i.e., both
platforms can be associated with longer issue fixing times.

Despite this observation, one characteristic that all of the
tested OS/Browser combinations have in common is that they
all are heavily left-skewed with an extended right tail. In
other words, the vast majority of issues are simple repairs
that can be taken care of in a very short period of time;
this means that the gradually descending curve may be more
representative of developer bottleneck than of actual time taken
to repair the issue. The results suggest that there may be room
for improvement in the various issue-repair processes (e.g.,
triaging, assigning, etc.); while it seems that some issues are
truly difficult to fix, they are a minority in comparison with the
fairly basic issues that consume the majority of the developers’
attention resources.

RQ3: How are issue types distributed across the deployment
platforms?

Motivation. In this research question we want to examine
if the types of issues raised in each platform are similar
or different. By knowing this, we may be able to decide if
similar or different expertise is required from app developers
of different platforms.

Approach. The issue report descriptions were processed for
relevant keywords, using the latent Dirichlet allocation (LDA)
method. By considering the set of issue report descriptions
as a corpus of documents, LDA identifies clusters of words
that co-occur often enough across documents (issue reports)
as “topics”. Each issue report can then be interpreted in terms
of the topics it contains, similar to how newspaper articles can
discuss topics such as sports and finance.

We used Gibbs sampling with default parameters, except for
two: the “thinning” parameter and the number of topics [20].



Gibbs sampling [27] is based on random search, hence it is
normal to discard the first few results as they are unlikely
to be a true reflection of the corpus being analyzed; this is
called the burn-in period. We used a burn-in period of 4,000
iterations, and executed the sampling 5 times, with different
starting points for each. To avoid correlation between samples,
we set the thinning parameter to 500. This means that the
Gibbs sampling selects every 500th iteration (of the 2,000).
We also experimented with the number of topics by comparing
the results with different selected features. This helped us in
inferring the best topics from the corpus.

In particular, the LDA analysis calculates for each issue
report a vector containing for each topic the probability that it
is “covered” by the issue report. We chose 10 as the number
of topics in our study. The LDA analysis also determines the
terms that are most relevant to a given topic. We assign each
issue report to its most important topic (highest probability).
Then, we collect the number of issues in each issue topic and
compare the number of issues across the iOS and Android
platforms for each case study system.

We randomly selected 3,000 issues from Chromium (2,297
bug reports sampled from the Android platform, and 703 bug
reports from iOS) and 3,000 from Firefox (1,500 for each
platform) to perform the LDA analysis, since this represents
a sample with a 99% confidence level and a 2% confidence
interval 4. We did not run the LDA analysis on all the bugs
despite the approach be fully automatic because, there were
more bugs in Firefox than in Chromium. Hence, we thought
that the difference in frequency would bias the results towards
Firefox topics. We then combine the 6,000 issues and run a
combined LDA analysis. We do a combined LDA analysis so
that we can compare the topics across the two platforms for
both the apps. In the first run, we found that the keywords,
Android, iOS, Firefox, and Chromium were part of the topic
keywords. Since we did not want these keywords to influence
the LDA analysis (the goal of which is to extract the types of
issues in each platform for each of the two case study systems),
we removed them and re-ran the LDA analysis.

Results. Table VI shows the 10 topics and the keywords that
LDA selected as most representative of the topics. Figures 6
and 7 show the percentage of issues that are present in
each platform for each case study system. Below, we will
discuss the topics with the largest differences between the two
platforms of Firefox and Chromium.

The largest differences between Android and iOS platform
are shown for Chromium in Figure 7 for Topics 7 and 9.
These topics show similar, but smaller, trends for Firefox in
Figure 6. Referring to Table VI, we can see that Topic 7
concerns content that fails to work on some devices, while
Topic 9 (more prevalent on iOS) appears to concern offline
use. The fact that Android has to deal with a heterogeneous set
of devices explains why Topic 7 is more prevalent on Android,
while it is unclear why offline use is more of an issue for iOS
apps.

4https://www.surveysystem.com/sscalc.htm

10.5%

8.61%

9.51%

7.5%

13.03%

11.35%

11.89%

9.05%

11.13%

12.36%

9.71%

13.88%

6.66%

5.19%

11.13%

12.39%

8.16%

11.73%

8.28%
7.94%

0%

2%

4%

6%

8%

10%

12%

14%

To
pic 

1

To
pic 

2

To
pic 

3

To
pic 

4

To
pic 

5

To
pic 

6

To
pic 

7

To
pic 

8

To
pic 

9

To
pic1

0

Topics in Bugs Description

P
er

ce
nt

ag
e 

of
 T

he
 H

ig
he

st
 v

al
ue

 in
 T

op
ic

 P
ro

ba
bi

lit
y

Platforms

Android

IOS

Distribution of Topics in Firefox

Fig. 6: Distribution of the number of issues in each topic in
Firefox.

11.17%

9.82%

11.97%

8.37%

7.35%

8.28%

8.99%

8.28%
7.9%

9.82%

8.36%
8.03%

16.34%

8.8%
8.36%

8.63%

7.78%

19.13%

11.77%

10.85%

0%

2%

4%

6%

8%

10%

12%

14%

16%

18%

20%

To
pic 

1

To
pic 

2

To
pic 

3

To
pic 

4

To
pic 

5

To
pic 

6

To
pic 

7

To
pic 

8

To
pic 

9

To
pic1

0

Topics in Bugs Description

P
er

ce
nt

ag
e 

of
 T

he
 H

ig
he

st
 v

al
ue

 in
 T

op
ic

 P
ro

ba
bi

lit
y

Platforms

Android

IOS

Distribution of Topics in Chromium

Fig. 7: Distribution of the number of issues in each topic in
Chromium.

Smaller, but still substantial differences between Android
and iOS are shared between Firefox and Chromium for Topics
2 and 5. Topic 2 appears to concern playing and controlling
video content, while Topic 5 appears to concern browser
tabs and how many can be opened. Again, it is unclear why
Android is more prone to video content issues (Topic 2) than
iOS, and iOS more prone to tab issues than Android. In the
worst case, these observations could help practitioners to plan
for issues related to these functionalities.

Finally, we also observe a large difference in percentage of
issues for Topic 6 in Firefox, while no such difference exists
for Chromium. Topic 6 concerns the menu bar, and we can
see that in Firefox, iOS has considerably more issues related



Topic1 Topic2 Topic3 Topic4 Topic5 Topic6 Topic7 Topic8 Topic9 Topic10
1 page video update add tab menu content url offline update
2 show doesnt bookmark sync open view fail search build crash
3 load work site data link list test bar load app
4 web play panel disable support mode device scroll change webview
5 content button screen allow close implement run text local file
6 dont control icon client display history failure select code error

TABLE VI: Summary of the terms in 10 topics from the LDA analysis of Firefox and Chromium bugs in the iOS and Android
platforms.

to this topic, while in Chromium, Android has marginally
more issues. Without more detailed — and largely manual
— analysis, it is hard to draw further conclusions from these
results. The remaining 5 topics of Table VI do not have
considerable differences in percentages of issues.

Discussion. In conclusion, there are some types of issues
that appear to be prevalent in both the iOS or Android
platforms; this information could be used by the respective
development teams to budget more time and/or resources
for features or maintenance related to prevalent issues. Ad-
ditionally, we have demonstrated that app developers could
potentially use topic analysis approach as we have done to
determine if a specific type of issue is more likely to be present
in one platform over the other.

V. RELATED WORK

Issue repositories are a vital source of development knowl-
edge and for large, long-lived software systems. They per-
mit users to inform developers of the issues that the users
experienced while utilizing the software. There are many
studies that relate to issue repositories; most of the papers
are targeted to relating the level of communication amongst
committers to issue-proneness [1], evaluation of issue report
quality and content [2], and developer prioritization to rank
the contribution of repository developers [3]. In this section,
we present related work concentrated on different aspects of
issue repositories. We discuss three areas of related work and
overlap, as well as present the differences between the related
work and our work.

A. Mobile Issues Studies

Maji et al. [4] analyzed the reported cases of failures
of two operating systems, Android and Symbian, based on
issue reports. These reports had been provided by end users,
third-party developers, and documentation of issue fixes from
Android developers. The researchers analyzed 233 issue-fixes
from 29 projects in the Android OS repository from October
2008 to October 2009. Their approach was to categorize the
issues into several types of code modifications which required
fixes in the source code. Their results showed that 23% of the
issues needed significant source code changes, while 77% of
the issues required minor modifications.

In a study similar to ours, Bhattacharya et al. [5] performed
an empirical study on issues on the Android smartphone
platform and 24 open-source Android apps from various
categories such as health-fitness, tools, and communications.

They applied their research on issue reports, issue fixes, and
security issues. Their approach for measuring the issue-fixing
time was structured as follows: they subtracted the time taken
from the instant where the issue was reported and to the
moment where the issue closed to get the actual length of
time it took to resolve the issue in months. They found that,
for the majority of the apps, the average time taken to fix
issues ranges from 0 to 1.5 months.

Our approach is similar to theirs, but instead of concentrat-
ing only on issues on the Android platform, we also examine
and contrast issues on the iOS mobile platform. Furthermore,
we performed our case study on both Firefox Mozilla’s and
Google Chromium’s issue reports. Thus, our dataset is larger
and more varied than the one contained in prior studies.

B. Empirical issue studies and Qualitative Analysis

Zhou et al. [26] analyzed the similarities and differences in
issues and the processes in fixing the issues between desktop
and smartphone platforms. The study was applied on 88 open
source projects on desktop, Android, and iOS. Their study
was performed on issue report features, while in our study we
studied all the issues in the repositories, including both issues
and features.

Banerjee et al. [6] compared two large open-source issue
repositories, i.e., Eclipse and Mozilla, and identified similar-
ities and differences between them. The aim of their study
was to analyze the type of reports, user behavior, repository
structure, duplicate groups, and the frequency of report sub-
mission. Our approach is similar to theirs in the frequency of
report submission; while they examined Eclipse and Mozilla,
we concentrated on Mozilla and Chromium. We examined
the evolution of issue repositories over time by analyzing the
number of submitted report per year.

Various Studies on the qualitative analysis of issue
repositories using a survey, questionnaires, and open-source
projects [7]–[12] have been done in the past. An et al. [13]
examined the characteristics of highly impactful issues in
Mozilla Firefox and Fennec Android. They proposed statistical
models to assist the software organizations to predict the
highly impactful issues early before affecting a large number
of users. Furthermore, they compared the issue fix rate of
highly-impactful issues vs. other issues.
Their results found that the prediction models can accomplish
a recall up to 98.3% in Android and precision up to 64.2% in
Firefox.



Zaman et al. [41] studied issues in the desktop versions
of Mozilla Firefox and Google Chromium to observe the
collaboration among project members in terms of detecting
and fixing performance issues. Their approach performed a
comparison on a random sample of 400 performance and non-
performance issue reports across four dimensions (Impact,
Context, Fix, and Fix validation) and 19 sub-dimensions.
Their result showed that there should be better support for
collaborative cause analysis process, as well as more analysis
of the impact of changes in performance.

Hu et al. [34] Studied 68 hybrid app-pairs in both Google
Play store and Apple App store. They investigated the ex-
amined apps to identify whether tools for hybrid development
achieve their main purpose. Hu et al. [35] Investigated if cross-
platform apps accomplished a consistent level of star ratings
and user review. They examined one and two star reviews
which count as 9,902 reviews. Ali et al. [36] Presented a
large-scale study of a cross platform mobile applications. They
investigated 160K android and iOS applications. Their aim
is to compare their app-store attributes, for example, stars,
versions and prices.

Our work is different from their work in both purpose and
approach. Our purpose is to compare issue reports across
two mobile platforms instead of only between two projects.
Moreover, we focused on the analysis of issue fixing-time
to identify if these issue repositories can help Firefox and
Chromium to improve the issue-fixing process.

C. Topic Modeling

Topic models have been used widely in software engi-
neering research. Prior studies have used topic model for
source code [14], issue localization [15], and duplicate issue
detection [16], [17]. Khalid et al. [37] Studied the complaints
of iOS users of 20 free iOS applications. They examined the
low rating one and two stars reviews that counts as 6,390
user reviews. Their results found that 11% of reviews are
complaints about recent update of the app. Martinez [38]
Presented two dataset of questions and answers related to the
development of mobile applications using Xamarin. Rosen et
al. [39] Studied the data from Stack Overflow to examine
what mobile developers ask about. They found that developers
asked about distribution, mobile APIs, sensor and mobile tools.
Linares-Vsquez et al. [40] Analysed the mobile development
related discussions from SO. They used LDA to extract the
main topics that represent those discussions.

Our work applies a similar process, but we used the
topic modeling technique for a different purpose and type of
information analyzed. Specifically, here, we aim to find the
difference in issue report topics across summary classes based
on the most frequent topics and their associated probabilities.

VI. THREATS TO VALIDITY

Selection Bias. Sampling bias is inherent within the limi-
tations of the dataset. The sampling periods consider different
time periods across Chromium and Firefox, for which we had
to compensate in our analyses. The different time periods are

simply due to the fact that, prior to the considered period,
Firefox-iOS did not exist. We cannot control any of these
variables (team sizes, user bases, etc.). Instead, we can only
choose projects that are similar, and the analyzed projects are
two large engineering projects with a proper development team
behind them.Another sampling threat is that we relied on the

Internal Validity. In this study, the data was collected
from Bugzilla for the various distributions of Firefox. For
the calculation of issue-fix time in RQ2, only the issues that
were marked “fixed” (and, for Firefox, in conjunction with
“resolved”) at the time of the collection were used in this
calculation. However, this may inadvertently be skewed in the
future if and when any of these issues may be later reopened.
Additionally, we relied on the developers marking the platform
that each bug was associated to, i.e., and Android or iOS
issue. While there could be mislabeling or issues where such
labels might be missed completely, it is out of the scope of
this paper to determine if an issue is indeed an Android or
iOS issue. Since, we consider bugs that are fixed, we assume
that the developers have done their due diligence in marking
them correctly. Note that there is no incentive for a developer
to mislabel bugs. Finally, in RQ3, we manually interpreted
the obtained topics (the topics themselves are automatically
derived from LDA) While there was no motivating factor for
a bias on our part, we could have incorrectly interpreted the
topics. We provide all the topic keywords so that a reader
could potentially understand any existing bias.

External Validity. Analyses were done specifically on
mobile platform browsers, due to the ease of accessibility and
comparatively large datasets. However, there are other cross-
platform applications, which are not included in this analysis,
which means that there will be other datasets of cross-platform
issue reports that should be considered in future work.

VII. CONCLUSIONS

In this paper, we reported on an empirical analysis of
issues for two web browsers — Chromium and Firefox —
on two mobile platforms — iOS and Android. In doing
so, we believe that we are the first to study issue reports
for two large mobile applications across both major mobile
platforms. We found several differences in how issues manifest
themselves. We found that the Android versions of both apps
had more issues than their iOS counterparts , and we noted
that trends of issues also varied. We found that Android
issues took longer to fix than iOS in Firefox, but that the
opposite was true for Chromium. Furthermore, we found that
the majority of Android issues were related to Content delivery
and fragmentation issues, while iOS issues were more likely
to be about features like tabs and offline use.

The results of our study suggest that estimating the effort
needed for maintaining mobile apps on multiple platforms is
difficult, in the sense that the issues that one should expect
depend on the platform. Hence, when mobile app developers
decide to port their apps to a different platform, they need to
be careful not to underestimate the effort needed in the new
platform. Our study also opens up several new questions for



the research community and mobile developers, who may wish
to obtain a deeper understanding of particular problem areas
that are more likely to result in issues on certain platforms.
Additionally, practitioners could use our analysis methods
as starting point to understand how to allocate resources
appropriately to different platforms.

REFERENCES

[1] Schugerl, P., J. Rilling, and P. Charland. “Mining Issue Repositories–A
Quality Assessment.” In 2008 International Conference on Computa-
tional Intelligence for Modelling Control Automation, 1105-10, 2008.
doi:10.1109/CIMCA.2008.63.

[2] Bernardi, M. L., G. Canfora, G. A. Di Lucca, M. Di Penta, and D.
Distante. “Do Developers Introduce Issues When They Do Not Com-
municate? The Case of Eclipse and Mozilla.” In 2012 16th European
Conference on Software Maintenance and Reengineering (CSMR), 139–
48, 2012. doi:10.1109/CSMR.2012.24.

[3] Xuan, J., H. Jiang, Z. Ren, and W. Zou. “Developer Prioritization in
Issue Repositories.” In 2012 34th International Conference on Software
Engineering (ICSE), 25–35, 2012. doi:10.1109/ICSE.2012.6227209.

[4] Maji, A. K., K. Hao, S. Sultana, and S. Bagchi. “Characterizing
Failures in Mobile OSes: A Case Study with Android and Symbian.”
In 2010 IEEE 21st International Symposium on Software Reliability
Engineering, 249–58, 2010. doi:10.1109/ISSRE.2010.45.

[5] Bhattacharya, P., L. Ulanova, I. Neamtiu, and S. C. Koduru. “An Empir-
ical Analysis of Issue Reports and Issue Fixing in Open Source Android
Apps.” In 2013 17th European Conference on Software Maintenance and
Reengineering (CSMR), 133–43, 2013. doi:10.1109/CSMR.2013.23.

[6] Banerjee, S., J. Helmick, Z. Syed, and B. Cukic. “Eclipse vs. Mozilla: A
Comparison of Two Large-Scale Open Source Problem Report Reposi-
tories.” In 2015 IEEE 16th International Symposium on High Assurance
Systems Engineering, 263–70, 2015. doi:10.1109/HASE.2015.45.

[7] Zibran, M. F., F. Z. Eishita, and C. K. Roy. “Useful, But Usable? Factors
Affecting the Usability of APIs.” In 2011 18th Working Conference on
Reverse Engineering, 151–55, 2011. doi:10.1109/WCRE.2011.26.

[8] Ko, Andrew J., and Parmit K. Chilana. “Design, Discussion, and
Dissent in Open Issue Reports.” In Proceedings of the 2011 iConfer-
ence, 106–13. iConference ’11. New York, NY, USA: ACM, 2011.
doi:10.1145/1940761.1940776.

[9] Bettenburg, Nicolas, Sascha Just, Adrian Schroter, Cathrin WeiB, Rahul
Premraj, and Thomas Zimmermann. “Quality of Issue Reports in
Eclipse.” In Proceedings of the 2007 OOPSLA Workshop on Eclipse
Technology EXchange, 2125. Eclipse 07. New York, NY, USA: ACM,
2007. doi.org/10.1145/1328279.1328284.

[10] Bettenburg, Nicolas, Sascha Just, Adrian Schroter, Cathrin Weiss,
Rahul Premraj, and Thomas Zimmermann. “What Makes a Good
Issue Report?” In Proceedings of the 16th ACM SIGSOFT Inter-
national Symposium on Foundations of Software Engineering, 308–
18. SIGSOFT ’08/FSE-16. New York, NY, USA: ACM, 2008.
doi:10.1145/1453101.1453146.

[11] Bertram, Dane, Amy Voida, Saul Greenberg, and Robert Walker. “Com-
munication, Collaboration, and Issues: The Social Nature of Issue
Tracking in Small, Collocated Teams.” In Proceedings of the 2010 ACM
Conference on Computer Supported Cooperative Work, 291–300. CSCW
’10. New York, NY, USA: ACM, 2010. doi:10.1145/1718918.1718972.

[12] Aljedaani, Wajdi, and Yasir Javed. Bug Reports Evolution in Open
Source Systems. In 5th International Symposium on Data Mining
Applications, 6373. Springer, 2018.

[13] An, L., and F. Khomh. “An Empirical Study of Highly Impactful
Issues in Mozilla Projects.” In 2015 IEEE International Conference
on Software Quality, Reliability and Security (QRS), 262–71, 2015.
doi:10.1109/QRS.2015.45.

[14] Nguyen, A. T., T. T. Nguyen, J. Al-Kofahi, H. V. Nguyen, and T. N.
Nguyen. “A Topic-Based Approach for Narrowing the Search Space
of Issuegy Files from an issue Report.” In 2011 26th IEEE/ACM
International Conference on Automated Software Engineering (ASE),
263–72, 2011. doi:10.1109/ASE.2011.6100062.

[15] Thomas, Stephen W., Bram Adams, Ahmed E. Hassan, and Dorothea
Blostein. “Modeling the Evolution of Topics in Source Code Histories.”
In Proceedings of the 8th Working Conference on Mining Software
Repositories, 173–82. MSR ’11. New York, NY, USA: ACM, 2011.
doi:10.1145/1985441.1985467.

[16] Nguyen, A. T., T. T. Nguyen, T. N. Nguyen, D. Lo, and C. Sun. “Dupli-
cate Issue Report Detection with a Combination of Information Retrieval
and Topic Modeling.” In 2012 Proceedings of the 27th IEEE/ACM
International Conference on Automated Software Engineering (ASE),
70–79, 2012. doi:10.1145/2351676.2351687.

[17] Runeson, P., M. Alexandersson, and O. Nyholm. “Detection of Duplicate
Defect Reports Using Natural Language Processing.” In 29th Interna-
tional Conference on Software Engineering (ICSE’07), 499–510, 2007.
doi:10.1109/ICSE.2007.32.

[18] A. Zeller, Why programs fail: a guide to systematic deissueging. Morgan
Kaufmann, 2006.

[19] “Mobile Speed Impacts Publisher Revenue - Dou-
bleClick.” DoubleClick by Google, September 8, 2016.
https://www.doubleclickbygoogle.com/articles/mobile-speed-matters/.

[20] Resnik, P. and Hardisty, E. (2010). Gibbs sampling for the uniniti-
ated. Technical Report UMIACS-TR-2010-04, University of Maryland.
http://www.lib.umd.edu/drum/handle/1903/10058.

[21] Goadrich, Mark H., and Michael P. Rogers. “Smart smartphone devel-
opment: iOS versus Android.” Proceedings of the 42nd ACM technical
symposium on Computer science education. ACM, 2011.

[22] “Google Chrome - The Fast and Secure Web Browser.” Accessed June
21, 2017. https://www.appannie.com/apps/ios/app/chrome-web-browser-
by-google/details/.

[23] “Google Chrome: Fast & Secure.” Accessed June
21, 2017. https://www.appannie.com/apps/google-
play/app/20600000234348/details/.

[24] “Firefox Web Browser.” Accessed June 21, 2017.
https://www.appannie.com/apps/ios/app/989804926/details/.

[25] “Firefox Browser Fast & Private.” Accessed June
21, 2017. https://www.appannie.com/apps/google-
play/app/20600000007768/details/.

[26] Zhou, Bo, Iulian Neamtiu, and Rajiv Gupta. “A Cross-Platform Analysis
of Issues and Issue-Fixing in Open Source Projects: Desktop vs. Android
vs. IOS.” In Proceedings of the 19th International Conference on
Evaluation and Assessment in Software Engineering, 7:1-7:10. EASE
’15. New York, NY, USA: ACM, 2015. doi:10.1145/2745802.2745808.

[27] Resnik, P. and Hardisty, E. (2010). Gibbs sampling for the uniniti-
ated. Technical Report UMIACS-TR-2010-04, University of Maryland.
http://www.lib.umd.edu/drum/handle/1903/10058.

[28] Baysal, Olga, Ian Davis, and Michael W. Godfrey. “A Tale of Two
Browsers.” In Proceedings of the 8th Working Conference on Mining
Software Repositories, 238-41. MSR ’11. New York, NY, USA: ACM,
2011. doi:10.1145/1985441.1985481.

[29] Rens, Willem. “Browser forensics: adblocker extensions.”
(2017).Accessed June 16, 2017. http://www.delaat.net/rp/2016-
2017/p67/report.pdf.

[30] Uddin, Jamal, Rozaida Ghazali, Mustafa Mat Deris, Rashid Naseem,
and Habib Shah. “A Survey on Issue Prioritization.” Artif. Intell. Rev.
47, no. 2 (February 2017): 145-80. doi:10.1007/s10462-016-9478-6.

[31] Maguire, Steve. Writing Solid Code: Microsoft’s Techniques for De-
veloping Issue-Free Programs. Redmond, WA, USA: Microsoft Press,
1993.

[32] Khomh, F., Dhaliwal, T., Zou, Y. and Adams, B. Do Faster Releases
Improve Software Quality? - An Empirical Case Study of Mozilla
Firefox, in Proceedings of the 2012 IEEE Working Conference on
Mining Software Repositories, MSR (Zurich, Switzerland), pages 179-
188.

[33] Israel Herraiz, Emad Shihab, Thanh H. D. Nguyen and Ahmed E.
Hassan. Impact of Installation Counts on Perceived Quality: A Case
Study on Debian, in Proceedings of the 2011 Working Conference on
Reverse Engineering, WCRE (Limerick, Ireland), pages 219-228.

[34] Hu, Hanyang, Shaowei Wang, Cor-Paul Bezemer, and Ahmed E. Hassan.
“Studying the Consistency of Star Ratings and Reviews of Popular Free
Hybrid Android and IOS Apps.” Empirical Software Engineering, 2018,
126.

[35] Hu, Hanyang, Cor-Paul Bezemer, and Ahmed E. Hassan. “Studying the
Consistency of Star Ratings and the Complaints in 1 & 2-Star User
Reviews for Top Free Cross-Platform Android and IOS Apps.” Empirical
Software Engineering, 2018, 134.

[36] Ali, Mohamed, Mona Erfani Joorabchi, and Ali Mesbah. “Same App,
Different App Stores: A Comparative Study.” In Proceedings of the 4th
International Conference on Mobile Software Engineering and Systems,
7990. IEEE Press, 2017.



[37] Khalid, Hammad, Emad Shihab, Meiyappan Nagappan, and Ahmed E.
Hassan. “What Do Mobile App Users Complain About?” IEEE Software
32, no. 3 (2015): 7077.

[38] Martinez, Matias. “Two Datasets of Questions and Answers for Studying
the Development of Cross-Platform Mobile Applications Using Xamarin
Framework.” ArXiv Preprint ArXiv:1712.09569, 2017.

[39] Rosen, Christoffer, and Emad Shihab. “What Are Mobile Developers
Asking about? A Large Scale Study Using Stack Overflow.” Empirical
Software Engineering 21, no. 3 (2016): 11921223.

[40] Linares-Vsquez, Mario, Bogdan Dit, and Denys Poshyvanyk. “An Ex-
ploratory Analysis of Mobile Development Issues Using Stack Over-
flow.” In 2013 10th Working Conference on Mining Software Reposi-
tories (MSR), 9396. IEEE, 2013.

[41] Zaman, Shahed, Bram Adams, and Ahmed E. Hassan. “A Qual-
itative Study on Performance Issues.” In Proceedings of the
9th IEEE Working Conference on Mining Software Repositories,
199–208. MSR ’12. Piscataway, NJ, USA: IEEE Press, 2012.
http://dl.acm.org/citation.cfm?id=2664446.2664477.


