
1

Specifying Anomalous Data Spaces

Ian J. Davis, Michael W. Godfrey

David R. Cheriton School of Computer Science

University of Waterloo, Ontario, Canada N2L 3G1

{ijdavis, migod}@uwaterloo.ca

Douglas Neuse, Serge Mankovskii

CA Labs, CA Technologies

{Douglas.Neuse, Serge.Mankovskii}@ca.com

Abstract—Computer algorithms are written with the intent

that when run they perform a useful function. Typically any

information obtained is unknown until the algorithm is run.

However, if the behavior of an algorithm can be fully described

by precomputing just once how an algorithm will respond when

executed on any input, this precomputed result provides a

complete specification for all solutions in the problem domain.

We apply this idea to a previous anomaly detection algorithm,

and in doing so transform the usefulness of this algorithm from

one that merely detects individual anomalies when asked to

characterize potentially anomalous values, into a meta-solution

which provides a complete specification for what constitutes such

an anomaly. This specification is derived by examining no more

than a small training data, can be obtained in very small constant

time, and is inherently far more powerful than results obtained

by repeated execution of this tool. For example, armed with such

a specification one can ask how close an anomaly is to being

deemed normal, and can validate this answer not by exhaustively

testing the algorithm but by examining if the specification so

generated is indeed correct. This powerful idea can be applied to

any algorithm whose entire behavior can be computed by such a

meta-algorithm and so has wide applicability.

Keywords— Anomaly detection; prediction; auditing; filtering;

unsupervised learning; ordered trees; random forest

I. INTRODUCTION

The ability to identify anomalous values in arbitrary data
without ground truth or external supervision

1
 is of considerable

importance in noise reduction; in filtering out anomalies as a
precursor to data analysis and prediction [23]; in responding in
real time to anomalous signals that should be addressed or
ignored [27]; in auditing individuals and corporations; and in
discovering concerns that might otherwise go unnoticed. For
example, it can be used to discover potentially dangerous
medical conditions, fraud, or threats that may cause failure in
engineered systems. It can also be used to classify the
significance of metrics produced from other sources that
themselves classify data.

There are many potential definitions for what constitutes
anomalous data [8]. When examining an arbitrary sequence of
values, the characteristics of the neighborhood in which these
values occur may have a bearing on whether they are
collectively deemed anomalous [21]. Conversely, for widely
separated time periods, the underlying interpretation of data
may change, resulting in corresponding changes as to what is

1
 Without semantic data knowledge or definition of anomaly

to be deemed anomalous [15][31]. And depending on the
application, the degree to which values must depart from
normal, before being deemed anomalous, will vary.

However, if the data of interest (or windowed subsets of this
data [13][26]) can be considered homogeneous, irrespective of
the ordering of that data, a simple autonomous presumption
about potentially anomalous values, providing that they are not
being introduced maliciously, is that they can be expected to be
observed infrequently and to be significantly different from
values that are not anomalous. It is this we wish to quantify.

Section 2 presents related work; section 3 outlines the benefits
of our proposed algorithms; section 4 explains the basic
algorithm; section 5 presents synthetic 1-dimensional results;
section 6 generalizes to n-dimensions; section 7 presents
synthetic 2-dimensional results; section 8 presents real world
results; section 9 suggests real world applications; section 10
gives threats to validity; and section 11 provides conclusions.

II. PRIOR RELATED WORK

 It has been proposed [16][17][18][28][29] that the
unbalanced way in which ordered binary search trees are built
can be statistically exploited by using a Random Forest [4] to
identify and isolate precisely this type of anomaly in data.

To explain this prior research, if the clustering [6][7] of values
in a dataspace is unbalanced, any repeated partitioning of data
in that space on some random position (uniformly chosen)
strictly within the partitions values will produce unbalanced
partitions. Some partitions will contain many values in them,
while others will contain few. If partitioning continues until
each final partition contains only duplicated values, partitions
containing many data points will be partitioned many more
times, than those that contain few data points.

This partitioning of a data space can be modelled by an ordered
full binary tree. Each internal node represents one such
partitioning, and each node’s string or numeric key the
discriminator on which data under it is partitioned. The depth
to any leaf value within this model indicates the number of
times a value is partitioned, and thus how “crowded” the
partitions are that this value is placed in.

This observation provides a mechanism for isolating the type
of anomaly described above from normal data. Simply sample
an appropriate number of values without replacement from the
provided data, and construct a statistically significant number
of trees, using random valued search keys having the property

2

that they split distinct sampled values into two non-empty sub-
trees. Such a set of trees is called an isolation forest (iforest).

The trained iforest can be used in an unsupervised manner to
detect whether a value v is likely to be anomalous. Compute
the number of nodes visited (i.e. the average or cumulative
search path length) when v is searched for in every tree in the
forest. Statistically long search path lengths associate v with
partitions that contain normal (i.e. densely clustered) data,
while short ones associate v with partitions more likely to
contain rare (infrequently observed and distant values) and thus
anomalous data. Thus v can be identified as normal or
anomalous according to the values it associates with. This
effect will be pronounced if anomalous values are rare but
present within the sampled data and thus the forest of trees.

The iforest algorithm has previously been compared to ORCA,
LOF, and Random Forest [16][18], to SCiForest [17] and to
SVM [18]. We have found no anomaly specification
algorithms in the literature, against which we might compare
our anomaly specification algorithm presented in this paper.

Absent such anomalous data the distribution of observed
depths is expected to approach the normal distribution as the
number of sampled data values becomes large. Consider an
ordered binary search tree constructed from a insertion of a
random permutation of the values 1,…,n. The depth Ln of the
last value inserted has mean(Ln) = Σi=2,n 2/i and variance
var(Ln) = Σi=2,n (2-4/i)/i. As n→∞ this distribution of depths
approaches the normal distribution [12]. Using Monte Carlo
simulation this is demonstrated for 10,000 values drawn from
the uniform and exponential distribution (Fig. 1).

Figure 1. Probability distribution of search depths

III. THIS PAPERS CONTRIBUTION

In order to know which values should be deemed
anomalous within an arbitrary data set we must present every
value in this data set to the iforest. But this iforest behaves
very much like a black box, and as an external user we are left
no wiser as to the logic that is internally employed to discover
those data values which are to be deemed anomalous.

Instead of exploiting hidden models to identify anomalies, as
previously proposed, we present new algorithms that identify
the precise rules earlier algorithms employed in isolating
anomalous data from more normal data. These rules can be
expressed as a sequence of ranges of values that earlier

algorithms deem to be anomalous, or more generally in n-
dimensions as all hyper-rectangles of this n-dimensional space
within which data points are deemed to be anomalous.

This paper offers many original, significant & novel benefits:

1. Specification of all anomalous data spaces in addition to

detection of individual anomalous data values.

2. Very fast computation of the areas of a 1-dimensional data

space within which points will be reported as anomalous.

3. Specification of anomalies uses only a small training set.

4. Generation of exact rules that for both present and absent

data distinguish normal values from anomalous ones.

5. The ability to determine how close a value deemed to be

anomalous is to being deemed normal.

6. More efficient/immediate validation strategies. Instead of

having to first find all anomalies in potentially massive

numbers of data points, one can instead simply explore if

all easily discovered anomalous ranges are indeed to be

deemed anomalous, while all other ranges are not.

7. Tailoring of discovered rules so that engineers can more

accurately give instruction as to what really constitutes

anomalous data of concern to them and what does not.

8. Substantial improved detection speed. Instead of

performing computations of path lengths on many trees for

each value presented to the algorithm, a typically small

decision tree is pre-computed, which once constructed can

immediately distinguish anomalous values from normal.

9. High dimension precomputation may prove intractable,

but when not, remains a one-time cost. Once obtained,

costs associated with simply looking up values in a data

structure can often to be substantially reduced.

10. The ability to scale to process significantly larger volumes

of data in real time applications.

11. Potentially smaller space requirements for discovered rules

than required during precomputation of these rules.

IV. UNIVARIATE DATA

A set of straight forward enhancements to the iforest
algorithm permit it to discover precisely those ranges of space
within which univariate data will be identified as anomalous.
C++ source code that implements these extensions is available
as open-source code, as are the results presented here [11].
Earlier iforest source code written in R is also available [19].

The role of any constructed tree within the iforest is simply to
return the search path length associated with a given data value.
This binary tree can be transformed into an ordered linked list
that achieves the same end. Each node in the linked list merely
needs to record the range of data values that (when searched)
arrive at each leaf node within the tree and the depth of that leaf
node. By traversing the tree backwards, and adding nodes to
the head of the linked list, the linked list will have the same
final ordering as the binary tree.

Once all n binary search trees have been converted into

distinct order linked lists Li each describing a linear search

space of ranges Ri,j ∈ Li satisfying R.starti,0 = -∞, R.endi,j-1 =

R.starti,j and R.endi,last = ∞ the cumulative search path depth of

every data range is computed. This linear algorithm computes

3

a new search space Lnew whose ranges are formed by

intersecting all ranges in the original tree search spaces.

Beginning at x0 = -∞ we compute the sequence of distinct

values xi = min(R.endi,j : ∀ Li & Ri,j ∈ Li , Rstarti,j ≤ xi-1 <

R.endi,j) ending at xlast = ∞. Lnew = {Rnew,k : R.startnew,k = xk ,

R.endnew,k = xk+1}. Summing the path depths of all Ri,j that

intersect Rnew,k gives the cumulative path depth for Rnew,k.

Unfortunately, except in simulations, the number of anomalies

present in data is unknown. However, it is known that

anomalous data will have average path lengths considerably

shorter than that associated with typical data [22][25].

While these path lengths will, in practice, vary we can still

attempt to identify where this divide occurs by ordering all

computed path lengths in Lnew and searching for the largest

separation between these values. If the examined distribution

appears normal, with no such large gaps between consecutive

depths we can conclude that there are no observed anomalies.

The path lengths of data points may alternatively be examined,

when not wishing to perform anomaly detection on real time

streamed data. This is likely to be less efficient, and may

deliver different results, since some ranges of values in Lnew

may not be present in the examined data.

A greedy algorithm beginning at both ends of the sorted [9]

data advances these two positions toward each other according

to which ever has the smallest difference between its depth

and the one to be advanced to. Both positions advance on ties.

Where they meet is a reasonable guess as to the depth of the

anomaly with the longest search path, and by examination (or

sorting) thus the number of anomalies in the observed data.

We now have a cumulative boundary depth that is presumed

to divides anomalies from normal values. Each computed

range Rnew,j having a cumulative path depth less than or equal

to this, is added to the list of anomalous ranges.

Lemma 1: If C is the intersection of ranges in A and B, which

cover the same space, without overlap, then |C|<|A|+|B|.

Consider a sequence of contiguous ranges R0...Rj-1 in A. R0 will

intersect with n ranges in B, producing n new ranges. All but

the last range will be subsumed and thus discarded, as will R0.

So n ranges are created and n are discarded. Assume this is

also true for Rj. Then Rj+1 intersects m regions, all but one

being discarded as is Rj+1. The proof is by induction.

The proposed algorithm is thus efficient and terminates.

Having produced an ordered linked list all of the anomalous

ranges within the data, this can now be converted back into a

balanced search tree to permit rapid searching [11].

V. ONE DIMENSIONAL RESULTS

For most applications the iforest algorithm detects
anomalies efficiently by being trained on a small sample of the
data values within the overall data space. It has earlier been
suggested that 100 binary search trees each constructed from
256 random data values (selected without replacement but

potentially duplicated) is a reasonable training set (25k values)
from which to obtain statistically significant results [18].

We implemented precisely this proposed algorithm and applied
it to 5,000 generated data points, which have anomalies
occurring ~0.5%, ~1.0% and ~2% of the time. These anomalies
are assigned ranges of values that are adjacent to but do not
overlap normal values. Such anomalies are indeed identified
with near perfect precision and recall simply by selecting the
same number of data values as anomalies introduced, in order
of increasing observed cumulative search path length.

Experiment 1: 200 simulations are performed of the iforest
algorithm on 5,000 data values randomly constructed so that
~99% of the values are in the normal ranges (-1.0, -0.5) or (0.5,
1.0) with equal likelihood. The remaining ~1% of the values
are in the range ±1.5 but outside the normal range (Table 1). It
is hoped that the iforest algorithm will deem this ~1% of the
data anomalous, and so produce rules that closely approximate
the rules used when introducing these anomalies.

Table 1. Anomalous ranges

-1.5,-1.0 -0.5,0.5 1.0, 1.5

Results are presented in Table 2. The rows show consecutive
results obtained from repeating this experiment. The first
column in Table 2 indicates the number of anomalies that the
modified iforest algorithm identifies as present, and in
parenthesis the number actually introduced by the simulation.

As can be seen, the decision rules for identifying anomalies in
each experiment is concise, and for the most part closely
approximates the rule used to introduce anomalies.

Table 2. Sample consecutive rules produced by Experiment 1

Guess Anomalous data ranges

54 (54) -∞,-1.00 -0.41,0.38 1.04,∞

55 (40) -∞,-0.99 -0.45,-0.45 -0.45,0.41 1.01,∞

43 (43) -∞,-1.07 -0.35,0.33 1.11,∞

59 (59) -∞,-1.03 -0.37,0.39 1.03,∞

40 (40) -∞,-1.09 -0.39,0.36 1.05,∞

55 (55) -∞,-1.09 -0.36,-0.36 -0.36,0.37 1.11,∞

43 (43) -∞,-1.09 -0.40,-0.40 -0.40,-0.40 -0.4,0.37 1.05, ∞

54 (54) -∞,-1.07 -0.37,0.40 1.09,∞

53 (53) -∞,-1.09 -0.35,0.39 1.09,∞

52 (52) -∞,-1.10 -0.30,0.39 1.08,∞

53 (53) -∞,-1.06 -0.40,0.37 1.08,∞

47 (49) -∞,-1.04 -0.34,0.38 1.06,∞

59 (60) -∞,-1.04 -0.37,-0.37 -0.36, 0.37 1.03,∞

45 (47) -∞,-1.09 -0.33,-0.33 -0.33,-0.32 -0.32,0.25 1.05,∞

13,(39) -∞,-1.24

The union of the ranges identified as anomalous in the 15
experiments shown in Table 2 identifies anomalies with a

4

precision of 92.5%. This demonstrates how quickly and
accurately the iforest algorithm can discover hidden rules
employed in seeding anomalous data, with only minimal
computation (Table 3).

Table 3. Union of anomalous rules shown in Table 2

-∞,-1.00 -0.45,0.41 1.01, ∞

Experiment 2: 200,000 values are generated with normal

values uniformly distributed in the range ± (0.5, 1.0) and

anomalous values in the range ± (2.0, 100). Independent

experiments are conducted twice on each of the following

anomaly distributions {0.005%, 0.01%, 0.02%, 0.05%, 0.1%,

0.2%, 0.5%, 1%, 2%, 5% and 10%}. The number of

anomalies introduced into each experiment is then predicted

and compared to the number of anomalies introduced (Fig. 2).

Figure 2. Predicting the number of anomalies in data

VI. MULTIVARIATE DATA

Normal behaviour is often the consequence of complex
relationships between multiple variables. For example, we
may wish to study how anomalies in data values vary over
time. To detect anomalies in multivariate data the strategy for
discovering anomalous ranges in one dimension is generalised
to an algorithm that can also be applied to multivariate data in
n dimensions. To explore the feasibility of such a
generalisation, the basic algorithm is described that discovers
anomalous regions in two dimensions.

Each binary tree is replaced by a KD-tree [2], in which at each
node the variable that directs the search path alternates (while
possible) between the two dimensions. Using the KD-tree the
search space that documents the leaf at which every coordinate
arrives for each tree in the forest is computed, as is the depth of
this leaf. For any given tree the rectangular spaces associated
with each leaf collectively cover without overlap the two-
dimensional data space.

Lemma 2: The intersection C of two search spaces A and B
each containing only disjoint regions, also contains only
disjoint regions. For if a single region in A intersects regions in
B, the result remains disjoint. Suppose this is also true for k
regions in A. Then the result remains disjoint. Intersecting one
further region with a disjoint set produces a disjoint set. So this
is also true for k+1 regions. The proof is by induction.

Lemma 3: The intersection of two search spaces A and B that
cover the same space S, results in a search space C that also
covers (without overlap) exactly S. For if any point in S was
absent in C, it would not be subsumed by a region in both A
and B. But both A and B cover S. Proof by contradiction.

Each KD-tree in the forest generates search space rules, which
define how that KD-tree is searched. We wish to compute all
possible intersections of this large set of search spaces, while
summing the depths of all regions that intersect, producing a
final search space. This final search space can then be used to
describe the cumulative search path depth across all KD-tree’s
in the forest for any Cartesian coordinate.

In one dimension, if there are k search keys in the iforest the
data space will be partitioned into k+1 regions. These regions
can be examined in some small constant time or small linear
time w.r.t. iforest size. In two dimensions the data space is
instead partitioned into rectangles on the two orthogonal search
dimensions. In n-dimensions the data space is partitioned on
every orthogonal search dimension into hyper-rectangles. The
number of such hyper-rectangles is thus the product of the
number of partitions in each dimension. So in general while n-
dimensional detection remains linear w.r.t. the size of the data
being examined, specification requires examining Ο(c

n
) hyper-

rectangles where c ≈ k / n. For high dimensionality the
examination of all these hyper-rectangles rapidly becomes
intractable.

In 2-dimensions specification remains feasible, since in our
experiments c ≈ 12,800 and in 3-dimensions perhaps still
justifiable as a one time cost.

Pruning the iforest can significantly speed computation of
anomaly specification when performance is of concern. Most
obviously, if an explicit path depth is associated with each
node, those nodes for which all paths through them to leaf
nodes have the same depth d, can be associated with this depth
d and all subordinate nodes then ignored.

If an upper bound on the anomaly cut off depth can be
obtained, or an anomaly cut off depth chosen without
considering the path depth associated with every hyper-
rectangle, those nodes under which all data points are normal
can be efficiently identified. One such obvious cut off is the
average summed path length, since it would be unreasonable to
expect cumulative anomalous path depths to exceed this
average cumulative depth, but tighter bounds can probably be
determined through appeal to the maximum number/percentage
of anomalies anticipated in the data, and the fact that path
lengths are expected to be distributed approximately normally.

For increasing path depth, compute the hyper-rectangle
describing the data values that can arrive at each internal node
in the iforest. If this depth plus the sum of all other minimal
depths through all other trees employing any value contained
within this same hyper-rectangle exceeds the chosen anomaly
cut off depth, this hyper-rectangle cannot contain any
anomalous data points. Consequently again all nodes beneath it
can be ignored, and this node treated instead as a leaf node.

To improve performance further, while reducing memory
usage, it can be recognised that anomaly specification at best
approximates ground truth. Consequently boundaries in any

5

one dimension can be centered between the desired precision
of the data or result, (minimizing intersections) and/or very
narrow partitions can be merged with the next partition in that
dimension. In particular, if results are being presented visually,
as they are here, hyper-rectangles having any dimension finer
than the chosen image resolution can be merged with the next.

Pixelation is used to construct the anomaly specification. For
2-dimensional data we first build a sorted x and y vector each
referencing all r rectangular search spaces in all trees within
the forest. If we have 100 forests, each containing 256 leaf
nodes, each vector has at most 25,700 entries. Entries in the x
vector are sorted by the right edge of the search space
referenced, and the y vector by the top edge. There is also a
matrix pixel. Each pixel[i][j] contains the computed average
search path depth for the search space having edges x[i-
1].right, x[i].right, y[j-1].top, and y[j].top. As special cases x[-
1].right evaluates to x[0].left, and y[-1].top to y[0].bottom, and
pixels having no area are eliminated.

A KD-tree efficiently computes cumulative search path depths.
The KD-tree indexes the r search spaces by discriminating
repeatedly on their four corner coordinates. Each leaf node
references the search spaces thus indexed. We present each
pixel to this KD tree, which locates all search spaces that
contain this pixel. This involves searching all paths within the
KD-tree that can index search spaces containing this pixel,
while ignoring those that cannot. The pixel is then assigned the
summed search path depth of these located search spaces.

Having computed the search path depth of every pixel, pixels
can be identified as normal or anomalous according to their
depth. To concisely represent anomalous regions, anomalous
pixels are converted into larger rectangular search spaces. This
can be achieved by using any suitable algorithm. We use a
greedy algorithm. We find the anomalous pixel having
smallest left-bottom coordinate. We enlarge this to the largest
square containing only anomalous pixels with this left-bottom
pixel, and repeat until all of the anomalous pixels have been
thus combined. We then combine rectangles.

Having converted overlapping anomalous spaces into disjoint
sub-spaces, anomalous spaces can then be efficiently located
using KD-trees, quad-trees [14], etc. This trained model can
then be efficiently accessed to identify anomalous values,
without having to compute path lengths for every data value.

VII. TWO DIMENSIONAL EXPERIMENTS

 The same basic parameterization is used in two dimensions
as in one. We again examine 5,000 data points. Each forest
contains 100 trees, each KD-tree ≤ 256 leaves, and ~1% of the
data randomly generated is anomalous. This probability, but
not the number of anomalies introduced is known to our
algorithm. Pixels with width or height < 0.005 are eliminated
to improve performance.

Experiment 3: (x,y) coordinates are randomly uniformly
generated in the range ±1. ~1% of coordinates are assigned an
anomalous value in the range ±2 but outside the range ±1.
Anomalous values are identified with a precision of 0.94, recall
0.85 and the f-measure 0.90. The computed anomalous search
space is highlighted in pale yellow (Fig. 3).

Figure 3. Anomalies outside the box

In the absence of any external sampled data points, partitions
containing sampled edge and corner points will extend to ±∞.
Consequently huge search spaces can be specified arbitrarily as
normal or anomalous, merely because of their proximity to
such dominant edges and corners.

Few sampled points exist in the region of a corner, and so these
points are likely to be erroneously specified as anomalies. This
in turn may cause rejection of an equivalent number of
anomalies because they consequently have a larger depth
ranking. Of course, knowing nothing about the nature of
anomalous data, it may be reasonable to presume that boundary
values we might deem normal, are instead abnormal.

The number of sampled points near a long edge is typically
larger, causing their search paths to be longer. Thus they are
less likely to be deemed anomalous.

Figure 4. Anomalies outside the diamond

Experiment 4: (x,y) coordinates are rotated 45 degrees.
Anomalous values are now identified with a precision of 1.0,
recall 0.95 and f-measure 0.97 (Fig. 4). This demonstrates the
degrees to which data edges that align with partitions, tend to

6

impede iforest anomaly detection, and suggests that better
results may be obtained by describing anomalous spaces under
a variety of data rotations.

Experiment 5: Results may also be improved by
independently computing anomalous regions repeatedly, and
then forming the union of these anomalous regions. The result
of computing all anomalous data regions 5 times and then
visually overlaying all such regions is shown (Fig. 5).

Figure 5. Anomalous regions from 5 experiments

Experiment 6: (x, y) coordinates are randomly generated in
the range 0 to ±2 with all normal coordinates having the same
sign. ~1% of coordinates are randomly assigned an anomalous
difference in their sign.

Figure 6. Anomalous anti-correlated sign

Over 100 random experiments, both precision and recall was
46 percent. This result seems poor compare to the earlier
results we observed. To help explain this behaviour, the
partitioning generated by one tree in the forest is shown (Fig.
6). Note that partitioning is a consequence of sampled data,
and not the collective data shown. As can be seen, there is a
strong tendency for partitions containing boundary data points

to extend into anomalous regions, and as noted earlier this
effect impedes anomaly detection.

Experiment 7: To improve separation, experiment 6 was
modified so that no data coordinate had a value in the range
±0.0-0.5. This significantly increases the separation between
normal and anomalous values. The resulting precision and
recall following this change was much better at 88% (Fig 7).

Figure 7. The anomalous search space

Experiment 8: Experiment 7 is repeated, but with all values v
being replaced by 1/v, thus distributing values according to the
inverse uniform distribution. This creates significantly skewed
data values and as consequence results in precision 0.12, recall
1.0 and f-measure 0.21 (Fig. 8).

Figure 8. Using inverse uniform distribution

Experiment 9: In this experiment, everything between a unit 1
and 2 circle is normal, and everything else anomalous (Fig. 9).
Because the entirely unsupervised algorithm naturally tended
to partition the inside of the circle, but not all regions of the
outer edges of normal data, precision was 0.33 and recall 0.38.
Most anomalies within the unit circle (~50%) failed to be
detected, demonstrating that the iforest algorithm can

7

completely fail to identify some types of anomaly, even if
transformed through rotation.

Figure 9. Anomalous values lie outside the ring

VIII. REAL WORLD EXPERIMENTS

The behaviour of the isolation forest is now examined on CPU

load averages obtained from a large cloud environment. The

data examined spanned 7 to 12 years; it was collected hourly,

and was maintained separately for each cloud client.

Parameterisation is largely unchanged. However, given the

volume of data examined, the sampled values per tree are

increased from 256 to 512. This results in better differentiated

path lengths. The trees per forest remains set at 100.

Client data from the 5,858 distinct time-series are processed

sequentially and independently. Zeroes are discarded and

3,781 time series too short to be sampled are ignored.

Collectively, 42,664,075 useful data points are examined. By

time-series this number has a minimum (min) of 512, a mean

(μ) of 20,541 a maximum (max) of 159,250 and standard

deviation (σ) of 29,591.

Experiment 10: All 42,858,960 data points are treated as
being derived from a single homogenous set, within which
anomalies are specified and detected. 1,662 secs were spent
reading this data; 0.02 secs to build the single iforest; 0.0005
secs to estimate maximum cumulative anomaly depth; 0.01
secs to compute the anomalous data spaces; and 2.1 secs to
detect all anomalies using this specification; or alternatively
132 secs to detect anomalies directly from the iforest without
using the precomputed specification.

Experiment 11: Each time-series is processed separately.
1,821 secs were spent reading data; 24 secs to build all the
iforests; 0.5 secs to estimate all the maximum cumulative
anomaly depths; 11.4 secs to compute for all time-series the
anomalous data areas; and 2.5 secs to detect anomalies using
these specifications; or alternatively 132 secs to detect
anomalies without using the precomputed specification.

Experiment 12: The number of predicted anomalies within
each time series is determined. For each time series, the
isolation forest algorithm independently estimates the number
of anomalies present five times. The outlier farthest from the
mean is removed, and the mean of the closest remaining four
predictions computed. Maximal change in predicted anomalies
is less than ±5% and the average is less than ±1% (Fig. 10).

Figure 10. Estimated percentage of anomalies in data by input source

This experiment took 2,353 secs. 1,156 secs were spent reading
data subsequently used; 547 secs data subsequently ignored;
641 secs building iforests and computing training depths 5
times; 9.08 secs sorting depths (using a linear radix sort) 5
times; and 0.12 secs to then computing the number of predicted
anomalies (now occurring at the start of the sorted list) 5 times.

It is difficult to verify that the isolation forest algorithm
correctly identifies anomalous data spaces in large data sources
without an in-depth understanding of the data examined and
the true nature of anomalies within it. Unsupervised testing is
therefore employed, in which the algorithm validates itself,
with no external specification about the nature of anomalies.

Experiment 13: For each client input time series the isolation
forest algorithm is randomly executed twice. The first
execution provides a control, and establishes quasi-anomalies
within the data. The second execution is evaluated on its ability
to identify these same anomalies, from independently sampled
data and an independently constructed forest. If a small sample
of the data initially identified as anomalous is then similarly
specified by a second independent process, something within
this data must distinguish it from the vast majority of values,
and to that extent at least this data can be labelled anomalous.

Table 4. Real world results

 a d≥ dμ d≤ p r f ρ

min 3.94 2.16 11.89 13.00 0 0.01 0.01 0.51

μ 9.66 4.79 13.48 15.91 0.85 0.86 0.79 0.93

max 18.39 13.0 18 21.83 1.00 1.00 1.00 1.00

σ 2.56 1.12 0.97 1.51 0.27 0.25 0.28 0.07

Averaged statistics across inputs are presented for maximum
estimated anomaly depth (a), minimum tree depth (d≥), average
depth (dμ), maximum depth (d≤), precision (p), recall (r) and f-

8

measure (f). Since the isolation forest algorithm operates by
ranking its input, the Spearman’s Rank Correlation coefficient
(ρ) is computed on the ranking of depth for each data point
over the two executions. The average precision and recall is
85% and there is near perfect correlation at 93%. (Table 4).

Experiment 14: Running the iforest algorithm independently
on each time series, without domain knowledge or external
supervision, we compute anomalous CPU load ranges
presuming that 0.2% of data is anomalous. The frequency with
which values are deemed anomalous is then shown as a
percentage (Fig. 11). Values outside the range of those shown
are also anomalous, although only 17.5% of inputs resulted in
values not strictly positive being identifed as anomalous.

0

10

20

30

40

50

60

70

80

0 1 2 3 4 5 6 7 8 9 10

P

e

r

c

e

n

t

Measured CPU Load

Identified as anomalous

0

10

20

30

0 0.2 0.4 0.6 0.8 1

 Figure 11. Identifying anomalous CPU load data ranges

Once the nature of anomalies in the data has been determined,
data ranges can be identified that with high probability are
genuinely anomalous. Armed with this knowledge,
experiments can be conducted on real world data, either
presumed to contain a known percentage of anomalies, or
examined to determine the number of anomalies within it.
Statistics for path depths in forests derived from data
containing such anomalies (such as those shown in Table 4)
can then be computed. These statistics can be referenced when
seeking to discover anomalies in new data, and by being
suggestive used to provide a good estimate of the expected
number of anomalies in this new data. Thus, better predictive
isolation forests algorithms can be bootstrapped from earlier
ones.

IX. PRACTICAL APPLICATIONS

As noted in the introduction, there are many practical

applications for anomaly detection. However, it is unclear

how effective the proposed algorithm will be when

implemented within real world applications, primarily because

it presumes that data is homogeneous, and that the order in

which data appears within a time series is irrelevant. We now

explore this issue.

A. Discontinuity detection

It has earlier been proposed that anomalies and

discontinuities in large-scale systems be discovered by

seeking points in the time-series where the locality is least

smooth [21]. One efficient way of seeking the position of

such a discontinuity is to partition each time series into two

independent subsequences S1={v1…vi-1} and S2={vi+1…vn}

with vi chosen so that LSE(S1)+LSE(S2) is minimized.

RQ1: Are the values vi where a time-series is least smooth

contained within the anomalous data regions identified by the

proposed iforest algorithm? If so discontinuities in the data

may be consequence of (or signaled by) anomalous values,

and might be more efficiently located by first examining the

region of a time series where such anomalies are detected.

When it is assumed that 1.0% of the values present are

anomalous 45% of the vi are identified as anomalous. When

the algorithm autonomously estimates the number of

anomalies present, the ratio of anomalies detected rises to

5.57% (distributed as shown in Fig. 10), and the percentage of

vi deemed to be anomalous rises to 56%. Thus the iforest

algorithm can be used to discover discontinuities in about half

the cases, but time series order and local context remains

significant in identifying those discontinuities not associated

with any discovered anomaly.

Generalising, if k anomalies are detected in a time-series, what

percentage of the k most significant outliers fall within this set

of anomalies, if the significance of an outlier is determined by

its distance (LSE) from the linear regression line computed

across all the data in a given time-series (Fig. 12).

Figure 12. Overlap between discovered anomalies and outliers

Figure 13. Number of anomalies and outliers deemed anomalous

The overlap between identified anomalies and outliers by

9

frequency, when the number of anomalies is unsupervised and

outliers are chosen to agree with the number of automatically

discovered anomalies in each time-series is shown in Fig. 13.

B. Multivariate linear regression

Multivariate linear regression is not robust when presented

with outliers, since a single outlier can have an unbounded

effect on the least squared estimator [24].

RQ2: Are the predictions of multivariate linear regression

improved by removing from the input time series those values

specified by the extended iforest algorithm as being within an

anomalous data region? Prediction should be improved if

these removed values really are anomalous outliers.

A previously described cloud environment is used to

investigate this question [10]. As described in that paper

multivariate regression working with hourly data attempts to

predict the next hours transaction processing power (TPP) by

employs lags in utilization of 1 and 2 hours, 1 and 2 days, 1

through 4 weeks, and when possible 1 and 2 months.

There are many missing values within this data. Any time

series that contain more interleaved missing values than useful

data is discarded as useless, as are very short time series.

Otherwise, interleaved missing values are assigned the same

value as the last present value.

The probability density function (PDF) for observed absolute

residues (not associated with missing values) is approximated

using a histogram. This is done separately for varying choices

as to the number of most anomalous values to remove from

the data. Figure 14 shows the resulting shift in the PDF when

these anomalous values are treated as missing values, instead

of being treated as valid data points.

Figure 14. Improvement in regression when removing anomalies

As expected, removal of anomalous values shifts the PDF so

that very small residues become more likely, while larger

residues become less likely. As more anomalous values are

treated as missing, this shift becomes more pronounced. Thus

prediction using regression is improved for remaining values.

C. Anomaly detection in multiple dimensions

RQ3: It is important to be able to identify anomalies within

images. We demonstrate 3-dimensional specification and

detection by finding unusual {R,G,B} colors in an image.

Since values are integer, partitions per dimension is minimised

without other effect by setting all search keys ki =⌈ki⌉- 0.5.

A 700 x 555 image
2
 (Fig. 15) is read by libnsbmp [32] and all

except those 93,919 color pixels autonomously identified as

anomalous (24%) are replaced with white, visually

highlighting the anomalous colors (Fig. 16). The specification

of anomalous colors is shown in Table 5. As explained in

experiment 4, the RGB color cube is rotated 45
o
 in the

horizontal and vertical plane, prior to processing, to avoid

corners of the RGB cube wrongly being treated as anomalous.

Figure 15. The Astronomic Lockman hole in X-Rays

Figure 16. Anomalous color points within this image

The iforest was built in 0.79 secs; detection without prior

specification took 1.11 secs; and specification took 8.14 secs.

Table 5. The identified anomalous color spaces

From To Spectrum

{00,85,99}

{FF,93,A3}

{00,00,1A} {FF,73,8C}

2
 www.esa.int/spaceinimages/Images/2015/12/The_Lockman_Hole_in_X-rays

10

D. Data Analysis

RQ4: For a horizontally scalable cloud service what would

constitute anomalous pairings of transaction frequency and

response time, and how anomalous would these pairings be?

Transaction frequency is captured every 15 minutes for an

arbitrary service running thoughout December 2014, and

average server response time during each of these 15 minute

intervals is correlated. A contour map is presented showing for

every possible coordinate, what percentage of the observed

data coordinates (black/red) have shorter cumulative iforest

path lengths than this coordinate does (Fig. 17).

Figure 17. Expected response times for transaction frequency

An analyst when presented with such a contour map can then

easily modify it to indicate the space of anomalies which

should trigger intervention, even if they were not earlier

familiar with the operational characteristics of the system. In

the above example those data points indicating that excessive

numbers of transactions do not typically increase the average

response time suggests that load balancing is working

remarkably well. However, those data points associated with

poor response times, particularly under light loads, should

generate some sort of automated alarm.

In Fig. 17 chart resolution was 450 pixels by 250 pixels and at

that resolution contour maps can be computed in

approximately 0.1 secs per time-series. 311 anomalies (15%)

were detected in the 2081 data points.

E. Comparative Algorithm Analysis

RQ5: To what extent do the red anomalies shown in Fig. 17

correspond to nearest neighbor distance based outliers [5]?

For each data point pi the distance dk to the k
th

-nearest

neighbours is computed, and data points are then ordered by

descending max(dk
2
/ k), this being inversely proportional to

population density within the circle of radius dk centered at pi.

Earlier data points are thus surrounded by some region that is

less densely populated than any discovered region associated

with a later data point, and are thus ranked as more significant

outliers. For increasing number of presumed outliers, the

precision, recall and f-measure for retrieval of anomalies

consequence of them also being deemed outliers is computed.

When considering only nearest neighbour (i.e. k=1), the f-

measure is maximal for the 308 most significant outliers,

matching 207 known anomalies, with precision 0.672, recall

0.666 and f-measure 0.669. Precision and recall surprisingly

intersect precisely with value 0.666 at the number of earlier

identified anomalies. Pearson’s r correlation coefficient for the

two rankings schemes is 0.572 (Fig. 18).

Figure 18. Comparison to strict nearest neighbour outlier detection

When 1≤k≤200 is permitted to vary independently for each

data point f-measure is maximal for the 270 most significant

outliers, matching 242 known anomalies, with precision

0.896, recall 0.778 and f-measure 0.833. Precision and recall

again surprisingly intersect precisely with value 0.826 at the

number of earlier identified anomalies. Pearson’s r for the two

rankings schemes is now 0.796. (Fig. 19).

Figure 19. Comparison to variable k-nearest neighbour outlier detection

The average value for the number of nearest neighbours k

considered per data point in deriving this maximal f-measure

is surprisingly high. Across all data points this average is

54.8, while across only those points identified as anomalous

this value is even higher at 63.9.

But whenever area increases more rapidly than the data points

added, population density is decreasing, which remains

relevant and may improve results. This is most obviously

11

true, when the nearest neighbours being considered are

themselves candidate outliers distant from other values, which

again generally accords with the notion of an outlier being

potentially nearer to other outliers than to normal data.

RQ6: Is it possible to compute an exact finite specification for

the nearest neighbour algorithm presented in RQ5?

Consider the simplest 1-nearest neighbour algorithm presented

in RQ5. Presume that this algorithm is trained on a small

representative data set {pi}, and assume that nearest neighbor

is strictly with respect to this training set. Further assume that

some minimum distance > r from all {pi} establishes a point as

an anomaly. The entire dataspace can be partitioned into {Pi}

using each pi so that pi is at least as close to any point in the

partition Pi associated with it as every pj. For all partitions Pi

compute new partitions Qi,j contained within each Pi having

all their boundary points precisely r distance away from the

nearest boundary point to them in Pi. Points strictly within

such Qi,j are anomalous; all others are not.

It still does not appear possible in general to generate a finite

specification for a given Qi,j even in this simplest of solutions.

Boundary points may require infinite precision to be

represented, and an infinite number of points may be required

to specify the area enclosed by a Qi,j. It is remarkable in

comparison (given the challenges generally posed) that an

exact finite specification can be so readily obtained for any

iforest detection algorithm, predicated only on training data.

X. THREATS TO VALIDITY

All experiments were conducted on Visual Studio C++

code compiled in release mode. They were run on a 64 bit

Windows 7 operating system using an Intel i7-2600 dual CPU,

with each CPU having a clock speed of 3.4GHz. The machine

had 8GB of RAM. Other activities were being concurrently

undertaken. Execution times were obtained to the accuracy

achievable using the QueryPerformanceCounter interface.

Our iforest algorithm currently always identifies at least one
anomaly in any non-empty set of data. It will do this even if
there are no anomalous values in this data set. Post processing
may therefore be required to remove from values specified as
anomalies, those false positives that are subsequently deemed
not to be anomalous.

The accuracy of this algorithm is largely dependent on how
closely the estimated number of anomalies agrees with the
number of anomalies in the data. Close agreement produces
remarkably good results, while significant disagreement results
in very poor precision and recall.

Reassuringly, repeatedly running this algorithm on unchanging
data rapidly improves the guess as to percentage of data values
that are likely to be anomalous. For example, the results in
Table 1 make it clear that the expected number of anomalies in
this repeatedly but randomly constructed data set is around 50,
which is entirely consistent with approximately 1% of 5,000
values being by uniformly random construction anomalous.

It has not been demonstrated that the proposed algorithm is
superior to all other anomaly detection algorithms [5][20][30].
Any such a comparison would be somewhat subjective.
Consider RQ1 where three different anomaly detection
algorithms are compared. We observe some overlap between
the values detected as anomalous by the three algorithms, but
we cannot (without ground truth about what constitutes an
anomaly) say which anomaly detection algorithm is
consequently best.

Experiment 11 provides perhaps as good a definition for an
anomaly as any, in suggesting that an anomaly is a rare value
that multiple independent evaluators would all agree was
anomalous. And that experiment showed that the proposed
algorithm is remarkably effective at discovering this type of
anomaly. Experiment 12 where (in an unsupervised manner)
the expected properties of CPU load are recovered, reinforces
this conclusion, since the results shown in Figure 14 are quite
consistent with actual knowledge about appropriate CPU loads.

RQ5 makes it clear that the iforest algorithm has behaviour
very similar to k-nearest neighbour detection.

The iforest algorithm performs poorly when anomalous regions
abut normal regions. In this case the algorithm tends to
misspecify anomalous values as normal, and vica versa. This
is a natural consequence of being an unsupervised algorithm
that is given no instruction regarding the nature of anomalies.
The effect is more pronounced in higher dimensions.

This algorithm is inherently stochastic, and leverages the law
of large numbers. Results presented in this paper may not be
statistically significant. Search path lengths will vary, since
their length is determined by the randomly selected values used
to train the algorithm, and the random partitioning performed.
However, it is likely that such variations will only be
significant where the definition of anomalous is already
somewhat arbitrary.

The proposed extension to use anomalous space specification
to detect anomalies will identify the same anomalies as the
original iforest algorithm, since this extension models within
its decision tree precisely the decisions performed by the
original algorithm in identifying anomalies, presuming that
code is indeed implemented correctly. However it may be
necessary to approximate multivariate results involving many
dimensions to achieve satisfactory space and execution times.

The training tree and forest sizes are the only parameters this
algorithm employs to discover anomalies. This paper uses
sizes consistent with sizes recommended in an earlier paper.
However we have not validated that these sizes are optimal.

No matter how accurately this algorithm isolates anomalies, the
probability that it will not always do so increases as the number
of data values being tested increases. False negatives and false
positives will occur, and this should be anticipated in any
application expoiting the described algorithm.

XI. CONCLUSIONS AND FURTHER WORK

The isolation forest anomaly detection algorithm identifies

anomalous data values by considering how rare they are and

their distance from other more normal values [16][18]. It

12

behaves like an algorithm that identifies outliers having

minimal population density w.r.t. some k nearest neighbors.

An extension to this unsupervised algorithm has been

presented, which transforms it from one that can only identify

values as normal or anomalous, into one that instead

autonomously specifies all regions of a multi-variate data

space as either normal or anomalous. This permits tabulation

of what constitutes an anomaly with many resulting benefits.

These have been described. Similar extensions can be applied

to any algorithm that uses a metric associated with ordered

trees to identify anomalies or to otherwise classify data [1].

By loose analogy, this algorithm can be used to automate the

marking of exams (most obviously multiple choice exams) by

throwing them down the stairs. Those that don’t fly far

contain answers very different from the majority of the

answers given. If it is presumed that the many similar answers

to each question are correct, only the rare anomalous answers

need then be examined for correctness. Since this algorithm

can further autonomously discover what the likely

specification is for each correct answer, it can also be used to

intelligently construct an initial sample solution for an

arbitrary exam, even when the correct answers to the questions

posed are (at the time of the exam) unknown.

The algorithm is simple, powerful, and effective. It can

identify all anomalous data regions for one dimensional data

in constant time, since in need only examine the training set to

isolate anomalous data spaces. It can then detect if any value

is normal or anomalous, by examining if the region it is

contained within is considered to be anomalous. This lookup

operation can also be done efficiently in some small constant

time. Since a value must be examined to be classified no

algorithm could do better.

An algorithm for specifying multivariate hyper-rectangles in

two or more dimensions as anomalous has also been

presented. This algorithm includes precisely the earlier

computed anomalous values within the anomalous data space

that it identifies, given time and space, but can execute much

faster if approximate results are acceptable. It remains to be

seen how well this generalizable algorithm scales to more than

three dimensions. It has been applied to a 3-dimensional color

imaging problem with considerable success.

These algorithms permit post-tailoring of rules regarding

where anomalies arise, and have the potential to dramatically

improve performance, both in time and space, by computing

just once how the iforest algorithm will (if executed) behave,

and thus what data regions it will identify as anomalous. The

computed tabulated results may then be exploited, as an

alternative to expensive computation. This is of particular

benefit in real time systems where strict usage constraints

exist for both time and space.

Knowing the regions of a data space in which anomalies may

occur permits an evolving profile to be constructed for

distinguishing normal values from anomalous ones. This

profile can be generated automatically, which is of benefit to

engineers unfamiliar with the data being examined. The

profile indicates the frequency with which anomalies occur

(and where they occur) in real-time or windowed data, and so

has application in the testing, monitoring and validating

computer systems. The information about what constitutes an

anomaly can be periodically recomputed, compared and/or

manually adjusted as necessary, with resulting improvement in

the overall anomaly detection process.

Since the anomaly detection process is entirely unsupervised it

has applications in unsupervised autonomous specification and

testing of both hardware and software, and may be

incorporated into other autonomous algorithms.

The proposed algorithm has been tested on simulated one-,

two- and three-dimensional multivariate data, and used to

discover potential data anomalies in twelve years of data

obtained hourly from a very large cloud environment, and nine

months of data obtained hourly from a second different cloud

provider. This algorithm has also been demonstrated to be

useful in very diverse applications.

More work is needed to provide quantative measures of the
reliability of the iforest algorithm for a given tree and forest
size, and for different types of anomaly. Better techniques for
predicting the number of anomalies in data and/or ways of
isolating anomalous data would also be valuable.

The search path depths for normal and anomalous values
behave as if they are derived from a mixture of two quite
different distributions. If these two distributions could be
separately identified, possibly by using the expectation
maximization (EM) algorithm [3], the optimal prediction for
the number of anomalies would then be where these two
probability density functions intersect, since values at this point
would be equally likely to be derived from either distribution.
This might be a fruitful avenue for further investigation.

ACKNOWLEDGMENT

This research was supported by grants from CA
Technologies and NSERC. Steve Versteeg of CA Labs and
Rao Kotagiri from the University of Melbourne, Australia,
directed our attention to the significance of previously
published research on random forest algorithms. Thanks are
also expressed to the ICAC 2015, ASE 2015 and ICDE 2016
referees who motivated numerous minor improvements to this
paper, before it was finally accepted for publication.

REFERENCES

[1] S. Aryal, K. Ting, J. Wells, T. Washio Improving iforest with relative
mass. Pacific-Asia Conference on Knowledge Discover and Data

Mining. May 2014.

[2] J. L. Bentley Multidimensional binary search trees used for associative
searching. Communications of the ACM Vol 18 No 9 September 1975

http://astrometry.net/svn/trunk/documents/papers/dstn-

review/papers/bentley1975.pdf

http://astrometry.net/svn/trunk/documents/papers/dstn-review/papers/bentley1975.pdf
http://astrometry.net/svn/trunk/documents/papers/dstn-review/papers/bentley1975.pdf

13

[3] J. A. Bilmes, A gentle tutorial of the EM algorithm and its application to

parameter estimation for Gaussian mixture and hidden Markov models.
Department of Electrical Engineering and Computer Science. U. C.

Berkeley. TR-97-021. April 1998

http://melodi.ee.washington.edu/people/bilmes/mypapers/em.pdf

[4] L. Breiman, Random forests. Machine Learning 45(1) 5-32. Kluwer
Academic Publishers. 2001

http://link.springer.com/article/10.1023%2FA%3A1010933404324#pag

e-1

[5] M. M. Breunig, H-P. Kriegel, R. T. Ng, J. Sander LOF: Identifying
density-based local outliers. Proc. ACM SIGMOD Int. Conf. on

Management of Data. Dalles, TX. 2000

[6] K. Burbeck Adaptive real-time anomaly detection for safeguarding

critical networks .Licentiate of Engineering Thesis 1231. Linkoping
Institute of Technology at Linkoping University 2006 http://liu.diva-

portal.org/smash/get/diva2:21588/FULLTEXT01.pdf

[7] K. Burbeck and S. Nadjm-Tehrani Adaptive real-time anomaly detection

with incremental clustering. Information Security Tech Report 12(1) 7

March 2007 pp 56-67

https://www.ida.liu.se/labs/rtslab/publications/2007/BurbeckNadjm07.p

df

[8] V. Chandola, A. Banerjee, V. Kumar Anomaly detection: a survey.

ACM Computing Surveys. Volume 41.3 July 2009
http://www.cs.umn.edu/tech_reports_upload/tr2007/07-017.pdf

[9] I. J. Davis A fast radix sort. The Computer Journal. Volume 35 No 6
1992 http://cs.uwaterloo.ca/~ijdavis/fastsort.pdf

[10] I. J. Davis, H. Hemmati, R. Holt, M. Godfrey, et al. Regression-based

utilization prediction algorithms: An empirical investigation 23rd
International Conference on Computer Science and Software

Engineering CASCON Nov 18-20th 2013 Markham, Canada

http://cs.uwaterloo.ca/~ijdavis/ijdavis-adaptive-20130621.pdf

[11] I. J. Davis Implemented source code and repeatable results obtained.

University of Waterloo. http://cs.uwaterloo.ca/~ijdavis/iforest

[12] L. Devroye, Application of the theory of records in the study of random
trees. Acta Informatica 26. 123-130 (1988)

http://luc.devroye.org/devroye_recordsBST_1988.pdf

[13] Z. Ding, M. Fei An anomaly detection approach based on isolation

forest algorithm for streaming data using sliding window. 3rd IFAC
International Conference on Intelligent Control and Automation

Science. September 2-4 2013. Chengdu, China

[14] R. Finkel and J.L. Bentley Quad Trees: A data structure for retrieval on

composite keys. Acta Informatica 4 (1): 1974

[15] K. L. Gray Comparison of trend detection methods Ph.D. Thesis.
University of Montana, Missoula 2007

http://etd.lib.umt.edu/theses/available/etd-09262007-

104625/unrestricted/umi-umt-1035.pdf

[16] F. T. Liu, K. Ming Ting and Z. Zhou Isolation Forest. Proceedings of

the 8th IEEE International Conference on Data Mining (ICDM 2008)
December 15-19, 2008, Pisa, Italy pp 413-422

http://cs.nju.edu.cn/zhouzh/zhouzh.files/publication/icdm08b.pdf?q=isol

ation-forest

[17] F.T. Liu Anomaly detection using isolation. PhD Thesis. Gippsland

School of Information Technology. Monash University, Victoria,
Australia June 2011

http://arrow.monash.edu.au/vital/access/services/Download/monash:801

06/THESIS01

[18] F. T. Liu, K. Ming Ting and Z. Zhou Isolation-based anomaly detection.

ACM Transactions on Knowledge Discovery from Data, Vol. 6, No. 1,
Article 3, March 2012, 39 pages

[19] F. T. Liu Isolation forest: Implementation in R
http://sourceforge.net/projects/iforest

https://r-forge.r-project.org/projects/iforest

[20] S. Luca, P. Karsmakers and B. Vanrumste. Anomaly detection using the
Poisson process limit for extremes. Int. Conf. on Data Mining. ICDM

2014

[21] H. Malik, I. J. Davis, M. W. Godfrey, D. Neuse and S. Mankovskii.

Detecting discontinuities in large-scale systems. 7th IEEE/ACM
International Conference on Utility and Cloud Computing UCC 2014

December 8th-11th, London, UK

https://cs.uwaterloo.ca/~ijdavis/Haroon_UCC14-Camera_Ready.pdf

[22] H. B. Mann and D. R. Whitney On a test of whether one of two random
variables is stochastically larger than the other. Annals of Mathematical

Statistics Volume 18 No 1 1947

http://projecteuclid.org/euclid.aoms/1177730491

[23] P.J Rousseeuw Least median of squares regression. Journal of the

American Statistical Association Volume 79 No 388 Theory and
Methods Section Dec 1984

http://www.geo.upm.es/postgrado/CarlosLopez/papers/RousseeuwStatfa

stlts.pdf

[24] M. Salibian-Barrera and V. J. Yohai A fast algorithm for S-Regression

estimates. Journal of Computational and Graphical Statistics, Volume
15, No 2. http://www.stat.ualberta.ca/~wiens/stat578/papers/Salibian-

Barrera%20&%20Yohai.pdf

[25] S. S. Sawilowsky Fermat, Schubert, Einstein and Behrens-Fisher: The
probable difference between two means when σ1

2≠ σ2
2. Journal of

Modern Applied Statistical Methods. Vol. 1 No. 2 Fall 2002 461-472
http://digitalcommons.wayne.edu/cgi/viewcontent.cgi?article=1022&co

ntext=coe_tbf

[26] S. C. Tan, K. M. Ting and F. T. Liu Streaming HS-Trees: Amortised

Ο(1) anomaly detection algorithm in evolving data streams. Technical

Report 2009/2. Information Technology Grippsland School of
Information Technology

[27] B. Thompson, T. Eliassi-Rad A renewal theory approach to anomaly
detection in communication networks. Extended abstract for the 2nd

workshop on information in Networks. WIN 2010

http://eliassi.org/papers/thompson-win10.pdf

[28] K. M. Ting, J. T. S. Chuan and F. T. Liu Mass: A new ranking measure
for anomaly detection. Submitted to IEEE Transactions on Knowledge

and Data Engineering. Technical Report 2009/1. Gippsland School of

Information Technology. Information Technology. Monash University.
http://www.dtic.mil/dtic/tr/fulltext/u2/a512628.pdf

[29] K. M. Ting, G-T. Zhou, F. T. Liu, J. T. S. Chuan Mass estimation and
its applications. KDD’10 July 25-28, 2010. Washington D.C. USA

www.cs.sfu.ca/~gza11/personal/research/mass_kdd10.pdf

[30] K. Wu, K. Zhang, W. Fan, A. Edwards and P. S. Yu. RS-Forest: A rapid

density estimator for streaming anomaly detection. Int. Conf. on Data

Mining. ICDM 2014.

[31] J. Zhou, Y. Fu, Y. Wu et al. Anomaly detection over concept drifting
data streams. Journal of Computational Information Systems 5(6) 2009

http://www.jofcis.com/publishedpapers/2009_5_6_1697_1703.pdf

[32] NetSurf: Libnsbmp | Bitmap BMP decoding library

http://www.netsurf-browser.org/projects/libnsbmp/

http://melodi.ee.washington.edu/people/bilmes/mypapers/em.pdf
http://link.springer.com/article/10.1023%2FA%3A1010933404324%23page-1
http://link.springer.com/article/10.1023%2FA%3A1010933404324%23page-1
http://liu.diva-portal.org/smash/get/diva2:21588/FULLTEXT01.pdf
http://liu.diva-portal.org/smash/get/diva2:21588/FULLTEXT01.pdf
https://www.ida.liu.se/labs/rtslab/publications/2007/BurbeckNadjm07.pdf
https://www.ida.liu.se/labs/rtslab/publications/2007/BurbeckNadjm07.pdf
http://www.cs.umn.edu/tech_reports_upload/tr2007/07-017.pdf
http://cs.uwaterloo.ca/~ijdavis/fastsort.pdf
http://cs.uwaterloo.ca/~ijdavis/ijdavis-adaptive-20130621.pdf
http://cs.uwaterloo.ca/~ijdavis/iforest/index.html
http://luc.devroye.org/devroye_recordsBST_1988.pdf
http://etd.lib.umt.edu/theses/available/etd-09262007-104625/unrestricted/umi-umt-1035.pdf
http://etd.lib.umt.edu/theses/available/etd-09262007-104625/unrestricted/umi-umt-1035.pdf
http://cs.nju.edu.cn/zhouzh/zhouzh.files/publication/icdm08b.pdf?q=isolation-forest
http://cs.nju.edu.cn/zhouzh/zhouzh.files/publication/icdm08b.pdf?q=isolation-forest
http://arrow.monash.edu.au/vital/access/services/Download/monash:80106/THESIS01
http://arrow.monash.edu.au/vital/access/services/Download/monash:80106/THESIS01
http://sourceforge.net/projects/iforest
https://r-forge.r-project.org/projects/iforest
https://cs.uwaterloo.ca/~ijdavis/Haroon_UCC14-Camera_Ready.pdf
http://projecteuclid.org/euclid.aoms/1177730491
http://www.geo.upm.es/postgrado/CarlosLopez/papers/RousseeuwStatfastlts.pdf
http://www.geo.upm.es/postgrado/CarlosLopez/papers/RousseeuwStatfastlts.pdf
http://www.stat.ualberta.ca/~wiens/stat578/papers/Salibian-Barrera%20&%20Yohai.pdf
http://www.stat.ualberta.ca/~wiens/stat578/papers/Salibian-Barrera%20&%20Yohai.pdf
http://digitalcommons.wayne.edu/cgi/viewcontent.cgi?article=1022&context=coe_tbf
http://digitalcommons.wayne.edu/cgi/viewcontent.cgi?article=1022&context=coe_tbf
http://eliassi.org/papers/thompson-win10.pdf
http://www.dtic.mil/dtic/tr/fulltext/u2/a512628.pdf
www.cs.sfu.ca/~gza11/personal/research/mass_kdd10.pdf
http://www.jofcis.com/publishedpapers/2009_5_6_1697_1703.pdf
http://www.netsurf-browser.org/projects/libnsbmp/

