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Abstract—Computer algorithms are written with the intent 

that when run they perform a useful function.  Typically any 

information obtained is unknown until the algorithm is run.  

However, if the behavior of an algorithm can be fully described 

by precomputing just once how an algorithm will respond when 

executed on any input, this precomputed result provides a 

complete specification for all solutions in the problem domain.  

We apply this idea to a previous anomaly detection algorithm, 

and in doing so transform the usefulness of this algorithm from 

one that merely detects individual anomalies when asked to 

characterize potentially anomalous values, into a meta-solution 

which provides a complete specification for what constitutes such 

an anomaly.  This specification is derived by examining no more 

than a small training data, can be obtained in very small constant 

time, and is inherently far more powerful than results obtained 

by repeated execution of this tool.  For example, armed with such 

a specification one can ask how close an anomaly is to being 

deemed normal, and can validate this answer not by exhaustively 

testing the algorithm but by examining if the specification so 

generated is indeed correct. This powerful idea can be applied to 

any algorithm whose entire behavior can be computed by such a 

meta-algorithm and so has wide applicability. 

Keywords— Anomaly detection; prediction; auditing; filtering; 

unsupervised learning; ordered trees; random forest 

I. INTRODUCTION 

The ability to identify anomalous values in arbitrary data 
without ground truth or external supervision

1
 is of considerable 

importance in noise reduction; in filtering out anomalies as a 
precursor to data analysis and prediction [23]; in responding in 
real time to anomalous signals that should be addressed or 
ignored [27]; in auditing individuals and corporations; and in 
discovering concerns that might otherwise go unnoticed.  For 
example, it can be used to discover potentially dangerous 
medical conditions, fraud, or threats that may cause failure in 
engineered systems.  It can also be used to classify the 
significance of metrics produced from other sources that 
themselves classify data. 

There are many potential definitions for what constitutes 
anomalous data [8].  When examining an arbitrary sequence of 
values, the characteristics of the neighborhood in which these 
values occur may have a bearing on whether they are 
collectively deemed anomalous [21].  Conversely, for widely 
separated time periods, the underlying interpretation of data 
may change, resulting in corresponding changes as to what is 
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to be deemed anomalous [15][31].  And depending on the 
application, the degree to which values must depart from 
normal, before being deemed anomalous, will vary. 

However, if the data of interest (or windowed subsets of this 
data [13][26]) can be considered homogeneous, irrespective of 
the ordering of that data, a simple autonomous presumption 
about potentially anomalous values, providing that they are not 
being introduced maliciously, is that they can be expected to be 
observed infrequently and to be significantly different from 
values that are not anomalous. It is this we wish to quantify. 

Section 2 presents related work; section 3 outlines the benefits 
of our proposed algorithms; section 4 explains the basic 
algorithm; section 5 presents synthetic 1-dimensional results; 
section 6 generalizes to n-dimensions; section 7 presents 
synthetic 2-dimensional results; section 8 presents real world 
results; section 9 suggests real world applications; section 10 
gives threats to validity; and section 11 provides conclusions. 

II. PRIOR RELATED WORK 

 It has been proposed [16][17][18][28][29] that the 
unbalanced way in which ordered binary search trees are built 
can be statistically exploited by using a Random Forest [4] to 
identify and isolate precisely this type of anomaly in data. 

To explain this prior research, if the clustering [6][7] of values 
in a dataspace is unbalanced, any repeated partitioning of data 
in that space on some random position (uniformly chosen) 
strictly within the partitions values will produce unbalanced 
partitions. Some partitions will contain many values in them, 
while others will contain few. If partitioning continues until 
each final partition contains only duplicated values, partitions 
containing many data points will be partitioned many more 
times, than those that contain few data points.  

This partitioning of a data space can be modelled by an ordered 
full binary tree.  Each internal node represents one such 
partitioning, and each node’s string or numeric key the 
discriminator on which data under it is partitioned.  The depth 
to any leaf value within this model indicates the number of 
times a value is partitioned, and thus how “crowded” the 
partitions are that this value is placed in. 

This observation provides a mechanism for isolating the type 
of anomaly described above from normal data. Simply sample 
an appropriate number of values without replacement from the 
provided data, and construct a statistically significant number 
of trees, using random valued search keys having the property 



2 

 

that they split distinct sampled values into two non-empty sub-
trees.  Such a set of trees is called an isolation forest (iforest). 

The trained iforest can be used in an unsupervised manner to 
detect whether a value v is likely to be anomalous.  Compute 
the number of nodes visited (i.e. the average or cumulative 
search path length) when v is searched for in every tree in the 
forest.  Statistically long search path lengths associate v with 
partitions that contain normal (i.e. densely clustered) data, 
while short ones associate v with partitions more likely to 
contain rare (infrequently observed and distant values) and thus 
anomalous data. Thus v can be identified as normal or 
anomalous according to the values it associates with.  This 
effect will be pronounced if anomalous values are rare but 
present within the sampled data and thus the forest of trees. 

The iforest algorithm has previously been compared to ORCA, 
LOF, and Random Forest [16][18], to SCiForest [17] and to 
SVM [18].  We have found no anomaly specification 
algorithms in the literature, against which we might compare 
our anomaly specification algorithm presented in this paper.  

Absent such anomalous data the distribution of observed 
depths is expected to approach the normal distribution as the 
number of sampled data values becomes large. Consider an 
ordered binary search tree constructed from a insertion of a 
random permutation of the values 1,…,n.  The depth Ln of the 
last value inserted has mean(Ln) = Σi=2,n 2/i and  variance 
var(Ln) = Σi=2,n (2-4/i)/i.  As n→∞ this distribution of depths 
approaches the normal distribution [12].  Using Monte Carlo 
simulation this is demonstrated for 10,000 values drawn from 
the uniform and exponential distribution (Fig. 1). 

 

Figure 1. Probability distribution of search depths 

III. THIS PAPERS CONTRIBUTION 

In order to know which values should be deemed 
anomalous within an arbitrary data set we must present every 
value in this data set to the iforest.  But this iforest behaves 
very much like a black box, and as an external user we are left 
no wiser as to the logic that is internally employed to discover 
those data values which are to be deemed anomalous. 

Instead of exploiting hidden models to identify anomalies, as 
previously proposed, we present new algorithms that identify 
the precise rules earlier algorithms employed in isolating 
anomalous data from more normal data.  These rules can be 
expressed as a sequence of ranges of values that earlier 

algorithms deem to be anomalous, or more generally in n-
dimensions as all hyper-rectangles of this n-dimensional space 
within which data points are deemed to be anomalous. 

This paper offers many original, significant & novel benefits: 

1. Specification of all anomalous data spaces in addition to 

detection of individual anomalous data values. 

2. Very fast computation of the areas of a 1-dimensional data 

space within which points will be reported as anomalous. 

3. Specification of anomalies uses only a small training set. 

4. Generation of exact rules that for both present and absent 

data distinguish normal values from anomalous ones. 

5. The ability to determine how close a value deemed to be 

anomalous is to being deemed normal. 

6. More efficient/immediate validation strategies.  Instead of 

having to first find all anomalies in potentially massive 

numbers of data points, one can instead simply explore if 

all easily discovered anomalous ranges are indeed to be 

deemed anomalous, while all other ranges are not.  

7. Tailoring of discovered rules so that engineers can more 

accurately give instruction as to what really constitutes 

anomalous data of concern to them and what does not. 

8. Substantial improved detection speed. Instead of 

performing computations of path lengths on many trees for 

each value presented to the algorithm, a typically small 

decision tree is pre-computed, which once constructed can 

immediately distinguish anomalous values from normal. 

9. High dimension precomputation may prove intractable, 

but when not, remains a one-time cost. Once obtained, 

costs associated with simply looking up values in a data 

structure can often to be substantially reduced. 

10. The ability to scale to process significantly larger volumes 

of data in real time applications. 

11. Potentially smaller space requirements for discovered rules 

than required during precomputation of these rules. 

IV. UNIVARIATE DATA 

A set of straight forward enhancements to the iforest 
algorithm permit it to discover precisely those ranges of space 
within which univariate data will be identified as anomalous.  
C++ source code that implements these extensions is available 
as open-source code, as are the results presented here [11].  
Earlier iforest source code written in R is also available [19]. 

The role of any constructed tree within the iforest is simply to 
return the search path length associated with a given data value.  
This binary tree can be transformed into an ordered linked list 
that achieves the same end.  Each node in the linked list merely 
needs to record the range of data values that (when searched) 
arrive at each leaf node within the tree and the depth of that leaf 
node.  By traversing the tree backwards, and adding nodes to 
the head of the linked list, the linked list will have the same 
final ordering as the binary tree.  

Once all n binary search trees have been converted into 

distinct order linked lists Li each describing a linear search 

space of ranges Ri,j ∈ Li satisfying R.starti,0 = -∞, R.endi,j-1 = 

R.starti,j and R.endi,last = ∞ the cumulative search path depth of 

every data range is computed.  This linear algorithm computes 
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a new search space Lnew whose ranges are formed by 

intersecting all ranges in the original tree search spaces. 

 

Beginning at x0 = -∞ we compute the sequence of distinct 

values xi = min(R.endi,j  : ∀ Li & Ri,j ∈ Li , Rstarti,j ≤  xi-1 < 

R.endi,j ) ending at xlast = ∞. Lnew = {Rnew,k : R.startnew,k = xk ,  

R.endnew,k = xk+1}. Summing the path depths of all Ri,j that 

intersect Rnew,k gives the cumulative path depth for Rnew,k. 

 

Unfortunately, except in simulations, the number of anomalies 

present in data is unknown.  However, it is known that 

anomalous data will have average path lengths considerably 

shorter than that associated with typical data [22][25].   

While these path lengths will, in practice, vary we can still 

attempt to identify where this divide occurs by ordering all 

computed path lengths in Lnew and searching for the largest 

separation between these values. If the examined distribution 

appears normal, with no such large gaps between consecutive 

depths we can conclude that there are no observed anomalies. 

The path lengths of data points may alternatively be examined, 

when not wishing to perform anomaly detection on real time 

streamed data.  This is likely to be less efficient, and may 

deliver different results, since some ranges of values in Lnew 

may not be present in the examined data.  

A greedy algorithm beginning at both ends of the sorted [9] 

data advances these two positions toward each other according 

to which ever has the smallest difference between its depth 

and the one to be advanced to.  Both positions advance on ties.  

Where they meet is a reasonable guess as to the depth of the 

anomaly with the longest search path, and by examination (or 

sorting) thus the number of anomalies in the observed data. 

We now have a cumulative boundary depth that is presumed 

to divides anomalies from normal values. Each computed 

range Rnew,j having a cumulative path depth less than or equal 

to this, is added to the list of anomalous ranges. 

Lemma 1: If C is the intersection of ranges in A and B, which 

cover the same space, without overlap, then |C|<|A|+|B|.   

Consider a sequence of contiguous ranges R0...Rj-1 in A. R0 will 

intersect with n ranges in B, producing n new ranges.  All but 

the last range will be subsumed and thus discarded, as will R0. 

So n ranges are created and n are discarded. Assume this is 

also true for Rj.  Then Rj+1 intersects m regions, all but one 

being discarded as is Rj+1. The proof is by induction. 

 

The proposed algorithm is thus efficient and terminates. 

Having produced an ordered linked list all of the anomalous 

ranges within the data, this can now be converted back into a 

balanced search tree to permit rapid searching [11]. 

V. ONE DIMENSIONAL RESULTS 

For most applications the iforest algorithm detects 
anomalies efficiently by being trained on a small sample of the 
data values within the overall data space.  It has earlier been 
suggested that 100 binary search trees each constructed from 
256 random data values (selected without replacement but 

potentially duplicated) is a reasonable training set (25k values)  
from which to obtain statistically significant results [18]. 

We implemented precisely this proposed algorithm and applied 
it to 5,000 generated data points, which have anomalies 
occurring ~0.5%, ~1.0% and ~2% of the time. These anomalies 
are assigned ranges of values that are adjacent to but do not 
overlap normal values. Such anomalies are indeed identified 
with near perfect precision and recall simply by selecting the 
same number of data values as anomalies introduced, in order 
of increasing observed cumulative search path length.  

Experiment 1: 200 simulations are performed of the iforest 
algorithm on 5,000 data values randomly constructed so that 
~99% of the values are in the normal ranges (-1.0, -0.5) or (0.5, 
1.0) with equal likelihood. The remaining ~1% of the values 
are in the range ±1.5 but outside the normal range (Table 1). It 
is hoped that the iforest algorithm will deem this ~1% of the 
data anomalous, and so produce rules that closely approximate 
the rules used when introducing these anomalies.   

Table 1. Anomalous ranges 

-1.5,-1.0 -0.5,0.5 1.0, 1.5 

 

Results are presented in Table 2.  The rows show consecutive 
results obtained from repeating this experiment. The first 
column in Table 2 indicates the number of anomalies that the 
modified iforest algorithm identifies as present, and in 
parenthesis the number actually introduced by the simulation. 

As can be seen, the decision rules for identifying anomalies in 
each experiment is concise, and for the most part closely 
approximates the rule used to introduce anomalies. 

Table 2. Sample consecutive rules produced by Experiment 1 

Guess Anomalous data ranges 

54 (54) -∞,-1.00 -0.41,0.38 1.04,∞ 
  

55 (40) -∞,-0.99 -0.45,-0.45 -0.45,0.41 1.01,∞ 
 

43 (43) -∞,-1.07 -0.35,0.33 1.11,∞ 
  

59 (59) -∞,-1.03 -0.37,0.39 1.03,∞ 
  

40 (40) -∞,-1.09 -0.39,0.36 1.05,∞ 
  

55 (55) -∞,-1.09 -0.36,-0.36 -0.36,0.37 1.11,∞ 
 

43 (43) -∞,-1.09 -0.40,-0.40 -0.40,-0.40 -0.4,0.37 1.05, ∞ 

54 (54) -∞,-1.07 -0.37,0.40 1.09,∞ 
  

53 (53) -∞,-1.09 -0.35,0.39 1.09,∞ 
  

52 (52) -∞,-1.10 -0.30,0.39 1.08,∞ 
  

53 (53) -∞,-1.06 -0.40,0.37 1.08,∞ 
  

47 (49) -∞,-1.04 -0.34,0.38 1.06,∞ 
  

59 (60) -∞,-1.04 -0.37,-0.37 -0.36, 0.37 1.03,∞ 
 

45 (47) -∞,-1.09 -0.33,-0.33 -0.33,-0.32 -0.32,0.25 1.05,∞ 

13,(39) -∞,-1.24     
 

The union of the ranges identified as anomalous in the 15 
experiments shown in Table 2 identifies anomalies with a 
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precision of 92.5%. This demonstrates how quickly and 
accurately the iforest algorithm can discover hidden rules 
employed in seeding anomalous data, with only minimal 
computation (Table 3). 

Table 3. Union of anomalous rules shown in Table 2 

-∞,-1.00 -0.45,0.41 1.01, ∞ 

 

Experiment 2: 200,000 values are generated with normal 

values uniformly distributed in the range ± (0.5, 1.0) and 

anomalous values in the range ± (2.0, 100).  Independent 

experiments are conducted twice on each of the following 

anomaly distributions {0.005%, 0.01%, 0.02%, 0.05%, 0.1%, 

0.2%, 0.5%, 1%, 2%, 5% and 10%}. The number of 

anomalies introduced into each experiment is then predicted 

and compared to the number of anomalies introduced (Fig. 2). 

 

 
Figure 2. Predicting the number of anomalies in data 

VI. MULTIVARIATE DATA 

Normal behaviour is often the consequence of complex 
relationships between multiple variables.  For example, we 
may wish to study how anomalies in data values vary over 
time.  To detect anomalies in multivariate data the strategy for 
discovering anomalous ranges in one dimension is generalised 
to an algorithm that can also be applied to multivariate data in 
n dimensions.  To explore the feasibility of such a 
generalisation, the basic algorithm is described that discovers 
anomalous regions in two dimensions. 

Each binary tree is replaced by a KD-tree [2], in which at each 
node the variable that directs the search path alternates (while 
possible) between the two dimensions. Using the KD-tree the 
search space that documents the leaf at which every coordinate 
arrives for each tree in the forest is computed, as is the depth of 
this leaf.  For any given tree the rectangular spaces associated 
with each leaf collectively cover without overlap the two-
dimensional data space. 

Lemma 2: The intersection C of two search spaces A and B 
each containing only disjoint regions, also contains only 
disjoint regions. For if a single region in A intersects regions in 
B, the result remains disjoint.  Suppose this is also true for k 
regions in A. Then the result remains disjoint. Intersecting one 
further region with a disjoint set produces a disjoint set. So this 
is also true for k+1 regions. The proof is by induction. 

Lemma 3: The intersection of two search spaces A and B that 
cover the same space S, results in a search space C that also 
covers (without overlap) exactly S. For if any point in S was 
absent in C, it would not be subsumed by a region in both A 
and B.  But both A and B cover S. Proof by contradiction. 

Each KD-tree in the forest generates search space rules, which 
define how that KD-tree is searched. We wish to compute all 
possible intersections of this large set of search spaces, while 
summing the depths of all regions that intersect, producing a 
final search space.  This final search space can then be used to 
describe the cumulative search path depth across all KD-tree’s 
in the forest for any Cartesian coordinate.  

In one dimension, if there are k search keys in the iforest the 
data space will be partitioned into k+1 regions. These regions 
can be examined in some small constant time or small linear 
time w.r.t. iforest size. In two dimensions the data space is 
instead partitioned into rectangles on the two orthogonal search 
dimensions. In n-dimensions the data space is partitioned on 
every orthogonal search dimension into hyper-rectangles.  The 
number of such hyper-rectangles is thus the product of the 
number of partitions in each dimension. So in general while n-
dimensional detection remains linear w.r.t. the size of the data 
being examined, specification requires examining Ο(c

n
) hyper-

rectangles where c ≈ k / n. For high dimensionality the 
examination of all these hyper-rectangles rapidly becomes 
intractable. 

In 2-dimensions specification remains feasible, since in our 
experiments c ≈ 12,800 and in 3-dimensions perhaps still 
justifiable as a one time cost.  

Pruning the iforest can significantly speed computation of 
anomaly specification when performance is of concern.  Most 
obviously, if an explicit path depth is associated with each 
node, those nodes for which all paths through them to leaf 
nodes have the same depth d, can be associated with this depth 
d and all subordinate nodes then ignored. 

If an upper bound on the anomaly cut off depth can be 
obtained, or an anomaly cut off depth chosen without 
considering the path depth associated with every hyper-
rectangle, those nodes under which all data points are normal 
can be efficiently identified.  One such obvious cut off is the 
average summed path length, since it would be unreasonable to 
expect cumulative anomalous path depths to exceed this 
average cumulative depth, but tighter bounds can probably be 
determined through appeal to the maximum number/percentage 
of anomalies anticipated in the data, and the fact that path 
lengths are expected to be distributed approximately normally. 

For increasing path depth, compute the hyper-rectangle 
describing the data values that can arrive at each internal node 
in the iforest. If this depth plus the sum of all other minimal 
depths through all other trees employing any value contained 
within this same hyper-rectangle exceeds the chosen anomaly 
cut off depth, this hyper-rectangle cannot contain any 
anomalous data points. Consequently again all nodes beneath it 
can be ignored, and this node treated instead as a leaf node. 

To improve performance further, while reducing memory 
usage, it can be recognised that anomaly specification at best 
approximates ground truth. Consequently boundaries in any 
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one dimension can be centered between the desired precision 
of the data or result, (minimizing intersections) and/or very 
narrow partitions can be merged with the next partition in that 
dimension. In particular, if results are being presented visually, 
as they are here, hyper-rectangles having any dimension finer 
than the chosen image resolution can be merged with the next. 

Pixelation is used to construct the anomaly specification.  For 
2-dimensional data we first build a sorted x and y vector each 
referencing all r rectangular search spaces in all trees within 
the forest.  If we have 100 forests, each containing 256 leaf 
nodes, each vector has at most 25,700 entries.  Entries in the x 
vector are sorted by the right edge of the search space 
referenced, and the y vector by the top edge. There is also a 
matrix pixel. Each pixel[i][j] contains the computed average 
search path depth for the search space having edges x[i-
1].right, x[i].right, y[j-1].top, and y[j].top. As special cases x[-
1].right evaluates to x[0].left, and y[-1].top to y[0].bottom, and 
pixels having no area are eliminated. 

A KD-tree efficiently computes cumulative search path depths.  
The KD-tree indexes the r search spaces by discriminating 
repeatedly on their four corner coordinates. Each leaf node 
references the search spaces thus indexed.  We present each 
pixel to this KD tree, which locates all search spaces that 
contain this pixel. This involves searching all paths within the 
KD-tree that can index search spaces containing this pixel, 
while ignoring those that cannot. The pixel is then assigned the 
summed search path depth of these located search spaces. 

Having computed the search path depth of every pixel, pixels 
can be identified as normal or anomalous according to their 
depth.  To concisely represent anomalous regions,   anomalous 
pixels are converted into larger rectangular search spaces.  This 
can be achieved by using any suitable algorithm.  We use a 
greedy algorithm.  We find the anomalous pixel having 
smallest left-bottom coordinate.  We enlarge this to the largest 
square containing only anomalous pixels with this left-bottom 
pixel, and repeat until all of the anomalous pixels have been 
thus combined. We then combine rectangles. 

Having converted overlapping anomalous spaces into disjoint 
sub-spaces, anomalous spaces can then be efficiently located 
using KD-trees, quad-trees [14], etc.  This trained model can 
then be efficiently accessed to identify anomalous values, 
without having to compute path lengths for every data value. 

VII. TWO DIMENSIONAL EXPERIMENTS 

 The same basic parameterization is used in two dimensions 
as in one.  We again examine 5,000 data points. Each forest 
contains 100 trees, each KD-tree ≤ 256 leaves, and ~1% of the 
data randomly generated is anomalous.  This probability, but 
not the number of anomalies introduced is known to our 
algorithm.  Pixels with width or height < 0.005 are eliminated 
to improve performance. 

Experiment 3: (x,y) coordinates are randomly uniformly 
generated in the range ±1. ~1% of coordinates are assigned an 
anomalous value in the range ±2 but outside the range ±1. 
Anomalous values are identified with a precision of 0.94, recall 
0.85 and the f-measure 0.90. The computed anomalous search 
space is highlighted in pale yellow (Fig. 3). 

 

Figure 3. Anomalies outside the box 

In the absence of any external sampled data points, partitions 
containing sampled edge and corner points will extend to ±∞. 
Consequently huge search spaces can be specified arbitrarily as 
normal or anomalous, merely because of their proximity to 
such dominant edges and corners. 

Few sampled points exist in the region of a corner, and so these 
points are likely to be erroneously specified as anomalies. This 
in turn may cause  rejection of an equivalent number of 
anomalies because they consequently have a larger depth 
ranking. Of course, knowing nothing about the nature of 
anomalous data, it may be reasonable to presume that boundary 
values we might deem normal, are instead abnormal. 

The number of sampled points near a long edge is typically 
larger, causing their search paths to be longer.  Thus they are 
less likely to be deemed anomalous. 

 

Figure 4. Anomalies outside the diamond 

Experiment 4: (x,y) coordinates are rotated 45 degrees. 
Anomalous values are now identified with a precision of 1.0, 
recall 0.95 and f-measure 0.97 (Fig. 4). This demonstrates the 
degrees to which data edges that align with partitions, tend to 
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impede iforest anomaly detection, and suggests that better 
results may be obtained by describing anomalous spaces under 
a variety of data rotations. 

Experiment 5: Results may also be improved by 
independently computing anomalous regions repeatedly, and 
then forming the union of these anomalous regions. The result 
of computing all anomalous data regions 5 times and then 
visually overlaying all such regions is shown (Fig. 5). 

 

Figure 5. Anomalous regions from 5 experiments 

Experiment 6: (x, y) coordinates are randomly generated in 
the range 0 to ±2 with all normal coordinates having the same 
sign.  ~1% of coordinates are randomly assigned an anomalous 
difference in their sign. 

 

Figure 6. Anomalous anti-correlated sign 

Over 100 random experiments, both precision and recall was 
46 percent. This result seems poor compare to the earlier 
results we observed.  To help explain this behaviour, the 
partitioning generated by one tree in the forest is shown (Fig. 
6).  Note that partitioning is a consequence of sampled data, 
and not the collective data shown. As can be seen, there is a 
strong tendency for partitions containing boundary data points 

to extend into anomalous regions, and as noted earlier this 
effect impedes anomaly detection. 

Experiment 7: To improve separation, experiment 6 was 
modified so that no data coordinate had a value in the range 
±0.0-0.5. This significantly increases the separation between 
normal and anomalous values. The resulting  precision and 
recall following this change was much better at 88% (Fig 7). 

 

Figure 7. The anomalous search space 

Experiment 8: Experiment 7 is repeated, but with all values v 
being replaced by 1/v, thus distributing values according to the 
inverse uniform distribution. This creates significantly skewed 
data values and as consequence results in precision 0.12, recall 
1.0 and f-measure 0.21 (Fig. 8). 

 

Figure 8. Using inverse uniform distribution 

Experiment 9: In this experiment, everything between a unit 1 
and 2 circle is normal, and everything else anomalous (Fig. 9).  
Because the entirely unsupervised algorithm naturally tended 
to partition the inside of the circle, but not all regions of the 
outer edges of normal data, precision was 0.33 and recall 0.38.  
Most anomalies within the unit circle (~50%) failed to be 
detected, demonstrating that the iforest algorithm can 
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completely fail to identify some types of anomaly, even if  
transformed through rotation. 

 

Figure 9. Anomalous values lie outside the ring  

VIII. REAL WORLD EXPERIMENTS 

The behaviour of the isolation forest is now examined on CPU 

load averages obtained from a large cloud environment. The 

data examined spanned 7 to 12 years; it was collected hourly, 

and was maintained separately for each cloud client. 

Parameterisation is largely unchanged.  However, given the 

volume of data examined, the sampled values per tree are 

increased from 256 to 512.  This results in better differentiated 

path lengths.  The trees per forest remains set at 100. 

 

Client data from the 5,858 distinct time-series are processed 

sequentially and independently. Zeroes are discarded and 

3,781 time series too short to be sampled are ignored. 

Collectively, 42,664,075 useful data points are examined.  By 

time-series this number has a minimum (min) of 512, a mean 

(μ) of 20,541 a maximum (max) of 159,250 and standard 

deviation (σ) of 29,591.  

 

Experiment 10:  All 42,858,960 data points are treated as 
being derived from a single homogenous set, within which 
anomalies are specified and detected. 1,662 secs were spent 
reading this data; 0.02 secs to build the single iforest; 0.0005 
secs to estimate maximum cumulative anomaly depth; 0.01 
secs to compute the anomalous data spaces; and 2.1 secs to 
detect all anomalies using this specification; or alternatively 
132 secs to detect anomalies directly from the iforest without 
using the precomputed specification. 

Experiment 11:  Each time-series is processed separately.    
1,821 secs were spent reading data; 24 secs to build all the 
iforests; 0.5 secs to estimate all the maximum cumulative 
anomaly depths; 11.4 secs to compute for all time-series the 
anomalous data areas; and 2.5 secs to detect anomalies using 
these specifications; or alternatively 132 secs to detect 
anomalies without using the precomputed specification. 

Experiment 12: The number of predicted anomalies within 
each time series is determined. For each time series, the 
isolation forest algorithm independently estimates the number 
of anomalies present five times. The outlier farthest from the 
mean is removed, and the mean of the closest remaining four 
predictions computed. Maximal change in predicted anomalies 
is less than ±5% and the average is less than ±1% (Fig. 10). 

 

Figure 10. Estimated percentage of anomalies in data by input source 

This experiment took 2,353 secs. 1,156 secs were spent reading 
data subsequently used; 547 secs data subsequently ignored; 
641 secs building iforests and computing training depths 5 
times; 9.08 secs sorting depths (using a linear radix sort) 5 
times; and 0.12 secs to then computing the number of predicted 
anomalies (now occurring at the start of the sorted list) 5 times. 

It is difficult to verify that the isolation forest algorithm 
correctly identifies anomalous data spaces in large data sources 
without an in-depth understanding of the data examined and 
the true nature of anomalies within it.  Unsupervised testing is 
therefore employed, in which the algorithm validates itself, 
with no external specification about the nature of anomalies. 

Experiment 13: For each client input time series the isolation 
forest algorithm is randomly executed twice.  The first 
execution provides a control, and establishes quasi-anomalies 
within the data. The second execution is evaluated on its ability 
to identify these same anomalies, from independently sampled 
data and an independently constructed forest.  If a small sample 
of the data initially identified as anomalous is then similarly 
specified by a second independent process, something within 
this data must distinguish it from the vast majority of values, 
and to that extent at least this data can be labelled anomalous. 

Table 4. Real world results 

 a d≥ dμ d≤ p r f ρ 

min 3.94 2.16 11.89 13.00 0 0.01 0.01 0.51 

μ 9.66 4.79 13.48 15.91 0.85 0.86 0.79 0.93 

max 18.39 13.0 18 21.83 1.00 1.00 1.00 1.00 

σ 2.56 1.12 0.97 1.51 0.27 0.25 0.28 0.07 

 

Averaged statistics across inputs are presented for maximum 
estimated anomaly depth (a), minimum tree depth (d≥), average 
depth (dμ), maximum depth (d≤), precision (p), recall (r) and f-
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measure (f).  Since the isolation forest algorithm operates by 
ranking its input, the Spearman’s Rank Correlation coefficient 
(ρ) is computed on the ranking of depth for each data point 
over the two executions.  The average precision and recall is 
85% and there is near perfect correlation at 93%. (Table 4).    

Experiment 14: Running the iforest algorithm independently 
on each time series, without domain knowledge or external 
supervision, we compute anomalous CPU load ranges 
presuming that 0.2% of data is anomalous. The frequency with 
which values are deemed anomalous is then shown as a 
percentage (Fig. 11). Values outside the range of those shown 
are also anomalous, although only 17.5% of inputs resulted in 
values not strictly positive being identifed as anomalous.  
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 Figure 11. Identifying anomalous CPU load data ranges 

Once the nature of anomalies in the data has been determined, 
data ranges can be identified that with high probability are 
genuinely anomalous.  Armed with this knowledge, 
experiments can be conducted on real world data, either 
presumed to contain a known percentage of anomalies, or 
examined to determine the number of anomalies within it.  
Statistics for path depths in forests derived from data 
containing such anomalies (such as those shown in Table 4) 
can then be computed.  These statistics can be referenced when 
seeking to discover anomalies in new data, and by being 
suggestive used to provide a good estimate of the expected 
number of anomalies in this new data.  Thus, better predictive 
isolation forests algorithms can be bootstrapped from earlier 
ones. 

IX. PRACTICAL APPLICATIONS 

As noted in the introduction, there are many practical 

applications for anomaly detection.  However, it is unclear 

how effective the proposed algorithm will be when 

implemented within real world applications, primarily because 

it presumes that data is homogeneous, and that the order in 

which data appears within a time series is irrelevant.  We now 

explore this issue. 

A. Discontinuity detection 

It has earlier been proposed that anomalies and 

discontinuities in large-scale systems be discovered by 

seeking points in the time-series where the locality is least 

smooth [21].  One efficient way of seeking the position of 

such a discontinuity is to partition each time series into two 

independent subsequences S1={v1…vi-1} and S2={vi+1…vn} 

with vi chosen so that LSE(S1)+LSE(S2) is minimized. 

 

RQ1: Are the values vi where a time-series is least smooth 

contained within the anomalous data regions identified by the 

proposed iforest algorithm?  If so discontinuities in the data 

may be consequence of (or signaled by) anomalous values, 

and might be more efficiently located by first examining the 

region of a time series where such anomalies are detected. 

 

When it is assumed that 1.0% of the values present are 

anomalous 45% of the vi are identified as anomalous.  When 

the algorithm autonomously estimates the number of 

anomalies present, the ratio of anomalies detected rises to 

5.57% (distributed as shown in Fig. 10), and the percentage of 

vi deemed to be anomalous rises to 56%.  Thus the iforest 

algorithm can be used to discover discontinuities in about half 

the cases, but time series order and local context remains 

significant in identifying those discontinuities not associated 

with any discovered anomaly.  

 

Generalising, if k anomalies are detected in a time-series, what 

percentage of the k most significant outliers fall within this set 

of anomalies, if the significance of an outlier is determined by 

its distance (LSE) from the linear regression line computed 

across all the data in a given time-series (Fig. 12). 

 

 
Figure 12. Overlap between discovered anomalies and outliers 

 

 
Figure 13. Number of anomalies and outliers deemed anomalous 

 

The overlap between identified anomalies and outliers by 
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frequency, when the number of anomalies is unsupervised and 

outliers are chosen to agree with the number of automatically 

discovered anomalies in each time-series is shown in Fig. 13. 

B. Multivariate linear regression 

Multivariate linear regression is not robust when presented 

with outliers, since a single outlier can have an unbounded 

effect on the least squared estimator [24].  

 

RQ2: Are the predictions of multivariate linear regression 

improved by removing from the input time series those values 

specified by the extended iforest algorithm as being within an 

anomalous data region? Prediction should be improved if 

these removed values really are anomalous outliers. 

 

A previously described cloud environment is used to 

investigate this question [10]. As described in that paper 

multivariate regression working with hourly data attempts to 

predict the next hours transaction processing power (TPP) by 

employs lags in utilization of 1 and 2 hours, 1 and 2 days, 1 

through 4 weeks, and when possible 1 and 2 months.   

 

There are many missing values within this data. Any time 

series that contain more interleaved missing values than useful 

data is discarded as useless, as are very short time series.  

Otherwise, interleaved missing values are assigned the same 

value as the last present value.   

 

The probability density function (PDF) for observed absolute 

residues (not associated with missing values) is approximated 

using a histogram.  This is done separately for varying choices 

as to the number of most anomalous values to remove from 

the data.  Figure 14 shows the resulting shift in the PDF when 

these anomalous values are treated as missing values, instead 

of being treated as valid data points. 

 

 
Figure 14.  Improvement in regression when removing anomalies 

 

As expected, removal of anomalous values shifts the PDF so 

that very small residues become more likely, while larger 

residues become less likely.  As more anomalous values are 

treated as missing, this shift becomes more pronounced.  Thus 

prediction using regression is improved for remaining values. 

C. Anomaly detection in multiple dimensions 

RQ3: It is important to be able to identify anomalies within 

images. We demonstrate 3-dimensional specification and 

detection by finding unusual {R,G,B} colors in an image.   

 

Since values are integer, partitions per dimension is minimised 

without other effect by setting all search keys ki =⌈ki⌉- 0.5. 

 

A 700 x 555 image
2
 (Fig. 15) is read by libnsbmp [32] and all 

except those 93,919  color pixels autonomously identified as 

anomalous (24%) are replaced with white, visually 

highlighting the anomalous colors (Fig. 16).  The specification 

of anomalous colors is shown in Table 5. As explained in 

experiment 4, the RGB color cube is rotated 45
o
 in the 

horizontal and vertical plane, prior to processing, to avoid 

corners of the RGB cube wrongly being treated as anomalous.  
 

 
 

Figure 15. The Astronomic Lockman hole in X-Rays 

 
Figure 16. Anomalous color points within this image 

 

The iforest was built in 0.79 secs; detection without prior 

specification took 1.11 secs; and specification took 8.14 secs. 
 

Table 5. The identified anomalous color spaces 

From To Spectrum 

{00,85,99} 
 

{FF,93,A3} 

 
{00,00,1A} {FF,73,8C} 

 

                                                           
2
 www.esa.int/spaceinimages/Images/2015/12/The_Lockman_Hole_in_X-rays 
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D. Data Analysis 

RQ4: For a horizontally scalable cloud service what would 

constitute anomalous pairings of transaction frequency and 

response time, and how anomalous would these pairings be?  

 

Transaction frequency is captured every 15 minutes for an 

arbitrary service running thoughout December 2014, and 

average server response time during each of  these 15 minute 

intervals is correlated. A contour map is presented showing for 

every possible coordinate, what percentage of the observed 

data coordinates (black/red) have shorter cumulative iforest 

path lengths than this coordinate does (Fig. 17). 

  

 
Figure 17. Expected response times for transaction frequency 

 

An analyst when presented with such a contour map can then 

easily modify it to indicate the space of anomalies which 

should trigger intervention, even if they were not earlier 

familiar with the operational characteristics of the system.  In 

the above example those data points indicating that excessive 

numbers of transactions do not typically increase the average 

response time suggests that load balancing is working 

remarkably well.  However, those data points associated with 

poor response times, particularly under light loads, should 

generate some sort of automated alarm. 

 

In Fig. 17 chart resolution was 450 pixels by 250 pixels and at 

that resolution contour maps can be computed in 

approximately 0.1 secs per time-series. 311 anomalies (15%) 

were detected in  the 2081 data points. 

E. Comparative Algorithm Analysis 

 

RQ5: To what extent do the red anomalies shown in Fig. 17 

correspond to nearest neighbor distance based outliers [5]? 

 

For each data point pi the distance dk to the k
th

-nearest 

neighbours is computed, and data points are then ordered by 

descending max(dk
2
/ k), this being inversely proportional to 

population density within the circle of radius dk centered at pi. 

Earlier data points are thus surrounded by some region that is 

less densely populated than any discovered region associated 

with a later data point, and are thus ranked as more significant 

outliers. For increasing number of presumed outliers, the 

precision, recall and f-measure for retrieval of anomalies 

consequence of them also being deemed outliers is computed.  

 

When considering only nearest neighbour (i.e. k=1), the f-

measure is maximal for the 308 most significant outliers, 

matching 207 known anomalies, with precision 0.672, recall 

0.666 and f-measure 0.669.  Precision and recall surprisingly 

intersect precisely with value 0.666 at the number of earlier 

identified anomalies. Pearson’s r correlation coefficient for the 

two rankings schemes is 0.572 (Fig. 18). 

 

 
Figure 18. Comparison to strict nearest neighbour outlier detection 

 

When 1≤k≤200 is permitted to vary independently for each 

data point f-measure is maximal for the 270 most significant 

outliers, matching 242 known anomalies, with precision 

0.896, recall 0.778 and f-measure 0.833. Precision and recall 

again surprisingly intersect precisely with value 0.826 at the 

number of earlier identified anomalies. Pearson’s r for the two 

rankings schemes is now 0.796.  (Fig. 19).  

 

 
Figure 19. Comparison to variable k-nearest neighbour outlier detection 

 

The average value for the number of nearest neighbours k 

considered per data point in deriving this maximal f-measure 

is surprisingly high.  Across all data points this average is 

54.8, while across only those points identified as anomalous 

this value is even higher at 63.9.  

 

But whenever area increases more rapidly than the data points 

added, population density is decreasing, which remains 

relevant and may improve results.  This is most obviously 
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true, when the nearest neighbours being considered are 

themselves candidate outliers distant from other values, which 

again generally accords with the notion of an outlier being 

potentially nearer to other outliers than to normal data. 

 

RQ6: Is it possible to compute an exact finite specification for 

the nearest neighbour algorithm presented in RQ5? 

 

Consider the simplest 1-nearest neighbour algorithm presented 

in RQ5. Presume that this algorithm is trained on a small 

representative data set {pi}, and assume that nearest neighbor 

is strictly with respect to this training set.  Further assume that 

some minimum distance > r from all {pi} establishes a point as 

an anomaly.  The entire dataspace can be partitioned into {Pi} 

using each pi so that pi is at least as close to any point in the 

partition Pi associated with it as every pj.  For all partitions Pi 

compute new partitions Qi,j contained within each Pi having 

all their boundary points precisely r distance away from the 

nearest boundary point to them in Pi.  Points strictly within 

such Qi,j are anomalous; all others are not. 

 

It still does not appear possible in general to generate a finite 

specification for a given Qi,j even in this simplest of solutions. 

Boundary points may require infinite precision to be 

represented, and an infinite number of points may be required 

to specify the area enclosed by a Qi,j.  It is remarkable in 

comparison (given the challenges generally posed) that an 

exact finite specification can be so readily obtained for any 

iforest detection algorithm, predicated only on training data. 

X. THREATS TO VALIDITY 

All experiments were conducted on Visual Studio C++ 

code compiled in release mode. They were run on a 64 bit 

Windows 7 operating system using an Intel i7-2600 dual CPU, 

with each CPU having a clock speed of 3.4GHz. The machine 

had 8GB of RAM. Other activities were being concurrently 

undertaken. Execution times were obtained to the accuracy 

achievable using the QueryPerformanceCounter interface. 

 
Our iforest algorithm currently always identifies at least one 
anomaly in any non-empty set of data. It will do this even if 
there are no anomalous values in this data set.  Post processing 
may therefore be required to remove from values specified as 
anomalies, those false positives that are subsequently deemed 
not to be anomalous. 

The accuracy of this algorithm is largely dependent on how 
closely the estimated number of anomalies agrees with the 
number of anomalies in the data. Close agreement produces 
remarkably good results, while significant disagreement results 
in very poor precision and recall. 

Reassuringly, repeatedly running this algorithm on unchanging 
data rapidly improves the guess as to percentage of data values 
that are likely to be anomalous.  For example, the results in 
Table 1 make it clear that the expected number of anomalies in 
this repeatedly but randomly constructed data set is around 50, 
which is entirely consistent with approximately 1% of 5,000 
values being by uniformly random construction anomalous. 

It has not been demonstrated that the proposed algorithm is 
superior to all other anomaly detection algorithms [5][20][30].  
Any such a comparison would be somewhat subjective.  
Consider RQ1 where three different anomaly detection 
algorithms are compared.  We observe some overlap between 
the values detected as anomalous by the three algorithms, but 
we cannot (without ground truth about what constitutes an 
anomaly) say which anomaly detection algorithm is 
consequently best.  

Experiment 11 provides perhaps as good a definition for an 
anomaly as any, in suggesting that an anomaly is a rare value 
that multiple independent  evaluators would all agree was 
anomalous.  And that experiment showed that the proposed 
algorithm is remarkably effective at discovering this type of 
anomaly.  Experiment 12 where (in an unsupervised manner) 
the expected properties of CPU load are recovered, reinforces 
this conclusion, since the results shown in Figure 14 are quite 
consistent with actual knowledge about appropriate CPU loads.  

RQ5 makes it clear that the iforest algorithm has behaviour 
very similar to k-nearest neighbour detection. 

The iforest algorithm performs poorly when anomalous regions 
abut normal regions. In this case the algorithm tends to 
misspecify anomalous values as normal, and vica versa.  This 
is a natural consequence of being an unsupervised algorithm 
that is given no instruction regarding the nature of anomalies.  
The effect is more pronounced in higher dimensions. 

This algorithm is inherently stochastic, and leverages the law 
of large numbers.  Results presented in this paper may not be 
statistically significant.  Search path lengths will vary, since 
their length is determined by the randomly selected values used 
to train the algorithm, and the random partitioning performed.  
However, it is likely that such variations will only be 
significant where the definition of anomalous is already 
somewhat arbitrary. 

The proposed extension to use anomalous space specification 
to detect anomalies will identify the same anomalies as the 
original iforest algorithm, since this extension models within 
its decision tree precisely the decisions performed by the 
original algorithm in identifying anomalies, presuming that 
code is indeed implemented correctly.  However it may be 
necessary to approximate multivariate results involving many 
dimensions to achieve satisfactory space and execution times. 

The training tree and forest sizes are the only parameters this 
algorithm employs to discover anomalies.  This paper uses 
sizes consistent with sizes recommended in an earlier paper. 
However we have not validated that these sizes are optimal. 

No matter how accurately this algorithm isolates anomalies, the 
probability that it will not always do so increases as the number 
of data values being tested increases.  False negatives and false 
positives will occur, and this should be anticipated in any 
application expoiting the described algorithm.   

XI. CONCLUSIONS AND FURTHER WORK 

The isolation forest anomaly detection algorithm identifies 

anomalous data values by considering how rare they are and 

their distance from other more normal values [16][18].  It 
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behaves like an algorithm that identifies outliers having 

minimal population density w.r.t. some k nearest neighbors.  

An extension to this unsupervised algorithm has been 

presented, which transforms it from one that can only identify 

values as normal or anomalous, into one that instead 

autonomously specifies all regions of a multi-variate data 

space as either normal or anomalous. This permits tabulation 

of what constitutes an anomaly with many resulting benefits. 

These have been described.  Similar extensions can be applied 

to any algorithm that uses a metric associated with ordered 

trees to identify anomalies or to otherwise classify data [1]. 

By loose analogy, this algorithm can be used to automate the 

marking of exams (most obviously multiple choice exams) by 

throwing them down the stairs.  Those that don’t fly far 

contain answers very different from the majority of the 

answers given. If it is presumed that the many similar answers 

to each question are correct, only the rare anomalous answers 

need then be examined for correctness.  Since this algorithm 

can further autonomously discover what the likely 

specification is for each correct answer, it can also be used to 

intelligently construct an initial sample solution for an 

arbitrary exam, even when the correct answers to the questions 

posed are (at the time of the exam) unknown.  

The algorithm is simple, powerful, and effective.  It can 

identify all anomalous data regions for one dimensional data 

in constant time, since in need only examine the training set to 

isolate anomalous data spaces. It can then detect if any value 

is normal or anomalous, by examining if the region it is 

contained within is considered to be anomalous.  This lookup 

operation can also be done efficiently in some small constant 

time. Since a value must be examined to be classified no 

algorithm could do better. 

An algorithm for specifying multivariate hyper-rectangles in 

two or more dimensions as anomalous has also been 

presented.  This algorithm includes precisely the earlier 

computed anomalous values within the anomalous data space 

that it identifies, given time and space, but can execute much 

faster if approximate results are acceptable.  It remains to be 

seen how well this generalizable algorithm scales to more than 

three dimensions.  It has been applied to a 3-dimensional color 

imaging problem with considerable success. 

These algorithms permit post-tailoring of rules regarding 

where anomalies arise, and have the potential to dramatically 

improve performance, both in time and space, by computing 

just once how the iforest algorithm will (if executed) behave, 

and thus what data regions it will identify as anomalous.  The 

computed tabulated results may then be exploited, as an 

alternative to expensive computation. This is of particular 

benefit in real time systems where strict usage constraints 

exist for both time and space. 

 

Knowing the regions of a data space in which anomalies may 

occur permits an evolving profile to be constructed for 

distinguishing normal values from anomalous ones.  This 

profile can be generated automatically, which is of benefit to 

engineers unfamiliar with the data being examined.  The 

profile indicates the frequency with which anomalies occur 

(and where they occur) in real-time or windowed data, and so 

has application in the testing, monitoring and validating 

computer systems.  The information about what constitutes an 

anomaly can be periodically recomputed, compared and/or 

manually adjusted as necessary, with resulting improvement in 

the overall anomaly detection process. 

 

Since the anomaly detection process is entirely unsupervised it 

has applications in unsupervised autonomous specification and 

testing of both hardware and software, and may be 

incorporated into other autonomous algorithms. 

 

The proposed algorithm has been tested on simulated one-, 

two- and three-dimensional multivariate data, and used to 

discover potential data anomalies in twelve years of data 

obtained hourly from a very large cloud environment, and nine 

months of data obtained hourly from a second different cloud 

provider. This algorithm has also been demonstrated to be 

useful in very diverse applications.  

 
More work is needed to provide quantative measures of the 
reliability of the iforest algorithm for a given tree and forest 
size, and for different types of anomaly. Better techniques for 
predicting the number of anomalies in data and/or ways of 
isolating anomalous data would also be valuable. 

The search path depths for normal and anomalous values 
behave as if they are derived from a mixture of two quite 
different distributions. If these two distributions could be 
separately identified, possibly by using the expectation 
maximization (EM) algorithm [3], the  optimal prediction for 
the number of anomalies would then be where these two 
probability density functions intersect, since values at this point 
would be equally likely to be derived from either distribution.  
This might be a fruitful avenue for further investigation.  
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