Why share your research artifacts?

Sharing is fun! * So the community can validate your results

Thoughts on open access research
* So the community can build on your results

Mike Godfrey
University of Waterloo * It improves your visibility in the research

community

Two experiences Project 1: GXL

* Background: late 1990s, lots of research
— Ric Holt, Andy Schiirr, Susan Sim, Andreas Winter, source code reverse engineering
many others environments emerging:

—c. 1999 e.g., Rigi/Shrimp, SwagKit/PBS, Bauhaus, MOOSE,
GuPro, Datrix, Dali, CIA/Acacia ...

* GXL

* What'sin a name?
— Abram Hindle, Neil Ernst
—c. 2011

Architectural Reconstruction TAXForm Utopia

Rigi S HriMeP
Viewer

TAXForm to
Rigi Converter

System Artifacts Extractors Repository View Generation

Bunch

S Clustering Too
Scanning N -
Source - ? -
Code Visualization PES Viewer — Bunch
i . . d Abst t
N Parsing Manipulation RN TAXForm TAXForm
Repository Converter

cfx to
TAXForm
Converter

Dali to Rigi to
TAXForm TAXForm
Converter Converter

t i

DaliExtractor RigiExtractor
(S NIFF+) (rigiparse)

Executing Profiling Extracted
System Facts

Architecture

(>

PBS Extractor
(efr)

Source Change

Control Reporting
Transforming Between Schemas Let's share our tools!

* "I want to use your source code fact extractor with my

analysis engine ... how hard can that be?"
niversal

— "Just make your tools available for download!"
High-Level
— "Just make your APIs and output data format public!”
Procedural Object-Oriented

— "Just make your source code available!"

| PL/ | | ¢ Gt Java — "Just show me your main internal meta-model!"
n n

| Dali C | | PBS C | | Rigi C | OK, maybe we need to talk ...

November 7, 1999 CSER / CASCON 1999 7

PBS C Language E/R View

C prog lang entity
name

loc : Integer
locend : Integer

union struct ‘ enum I ‘ macro ‘ var
T / linkref
uses tises
4ses sourceref
libref

uses

linkcalt
| func

name

includes Sosassasi libcall

TA++ Combined E/R Model

potentialy
IncludedBy

usedinsource

Reference.
Existence

foundinSource

foukineCal elnclusion yatallse ommentTerm. isMemberOt
Existence Disere. | | oastence Existence a R
SourcewithinFile Saurcerile
definedBy ‘
‘sfariC har sfariChar Const
ondChar endonar
TYeO
Existence Existence /
oifype
iy ShanioneDeTo [rma
Callecty
returTypo Siarionar
endChar
‘ isEnumeraic
Wombarot
sClassetod
ity
it i) oot | i
FormaArgain scomt MomberOf

PBS Arch

var ref

corntains

itectural Schema

implement by

/

Architectural entity ol

name

Subsystem con!ain%

BAUHAUS Combined E/R

iy-exclicmine fiv-e: e
pursef 7N

- e »
(/\ “
[medule portecf quarke IL J component ﬂ
* e muchrliexclesive Lo
el
nigmelira-Type*|
part-af
subprogram
loceri-obj-cfrype
raferanca®
user-defined
type .
serma-expression
record
pertivpe component

cadinaly
1 =0
— —w

tec. comp.
instance

rec. cop.
specifier [

GUPRO Multi-Language Model
Some problems

To pre-process or not?

Templates/generics are a bear

Are interfaces classes? It's important ...

Naming, UIDs, mangling

* Lies my extractor told me

Let's share our tools! GXL

* Key events _ N * After arguing and arguing, we realized that all
— CASCON 1999 / 2000 workshops on tool interoperability

— ICSE 2000 Workshop of Std Exchange Formats (WoSEF) we could rea”y agree on as a community is

— Dagstuhl Seminar 01041, Interoperability of Reverse that models of programs are graphs
Engineering Tools, Jan 2001

* Months of discussion + arguing led to three levels: GXL: Graph eXchange Language
1. Software architecture ,
2. "Middle model" (f calls g, h uses v) — It's XML!
3. "Code level" — It's not XMlI!

PLUS a XML-based notation that can be used to represent all _ I
three: GXL ... but, ummm, BYO schema!

Success! ... Success! ...

» Some tool owners created GXL converters for * So this "sharing" turned out to be a lot harder

their tools, but its use fizzles out than it looked, even with a lot of good will and
energy

* It's a headache to maintain inter-tool « Instead of building large, robust bridges, we built
compatibility when you're doing active a raft factory
research and keep changing your mind (and — And that was good enough for its purpose
others do the same)
— That's the nature of research! * Most importantly, we learned a lot about what to

— Probably this works best with "stable" tools do "next time

Project 2: What's in a name?

* Can we label/name topics automatically extracted from
version control meta-data?

* For a given LDA topic, can we label it with non-functional
requirements (NFRs) automatically + without training?

* .. semi-automatically?

Ref: "Automated Topic Naming: Supporting Cross-project
Analysis of Software Maintenance", by A. Hindle, N. Ernst, M.
Godfrey, J. Mylopoulos. Empirical Software Engineering, 18(6),
December 2013.

What's in a name Lessons learned and open sores

* Abram Hindle is a big advocate of open access,

* Itis our moral duty as scientists to be open
wants to set a good example:

http://softwareprocess.es/static/What's_in_a_Name.html * Assume no one will care, but someone might

— Source code for original tools

— Original data (MaxDB repo: 1GB) * Sharing is hard!
~ Extracted data . — You can "design for sharing", but it takes effort
— Tool output (LDA topics)

— VirtualBox VM (LDA, other tools + data preloaded: 3GB) — You will get better at it
— Wordnet-like list for NFRs (Please reference if you use it!)

Sharing is fun!
Thoughts on open access research

Mike Godfrey
University of Waterloo

