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Abstract 
Predicting future behavior reliably and efficiently 
is vital for systems that manage virtual services; 
such systems must be able to balance loads within 
a cloud environment to ensure that service level 
agreements (SLAs) are met at a reasonable 
expense. These virtual services while often 
comparatively idle are occasionally heavily 
utilized. Standard approaches to modeling system 
behavior (by analyzing the totality of the observed 
data, such as regression based approaches) tend to 
predict average rather than exceptional system 
behavior and may ignore important patterns of 
change over time.  Consequently, such approaches 
are of limited use in providing warnings of future 
peak utilization within a cloud environment.  
Skewing predictions to better fit peak utilizations, 
results in poor fitting to low utilizations, which 
compromises the ability to accurately predict peak 
utilizations, due to false positives.   

In this paper, we present an adaptive 
approach that estimates, at run time, the best 
prediction value based on the performance of the 
previously seen predictions.  This algorithm has 
wide applicability. We applied this adaptive 
technique to two large-scale real world case 
studies.  In both studies, the results show that the 
adaptive approach is able to predict low, medium, 
and high utilizations accurately, at low cost, by 
adapting to changing patterns within the input 
time series.  This facilitates better proactive 
management and placement of systems running 
within a cloud.   

                                                 
Copyright  2013 Ian Davis et al. Permission to copy 
is hereby granted provided the original copyright notice 
is reproduced in copies made. 

 

1 Introduction 
Large collections of computers cooperatively 
providing distributed services so as to support 
demand for these services are becoming the norm.  
Single computers hosting multiple virtual ma-
chines are now also common.  Parallel computing 
techniques [20] offer the potential for time con-
suming computation to be distributed across mul-
tiple machines, thus delivering results from a 
single computation to the consumer much more 
rapidly.  In each case decoupling of computer 
software from the underlying hardware, permits 
greater utilization of the hardware, under more 
balanced workloads, with improvements in re-
sponse times, and dramatic reduction in costs.  In 
addition the ability to replicate services over mul-
tiple machines permits greater scalability, com-
bined with more robustness than would otherwise 
be possible.   

 
However, if the demands placed on the hard-

ware by the software exceed the capabilities of the 
hardware, thrashing will occur, response times 
will rise, and customer satisfaction will plummet.  
Therefore it is essential [23, 32] to ensure that 
software is appropriately provisioned across the 
available hardware in the short to medium term, 
and that appropriate levels of hardware and soft-
ware are purchased and installed to support the 
collective future end user requirements in the 
longer term  [15, 24, 29, 30]. 

 
Without good forecasts [16], data center man-

agers are often forced to over-configure their 
pools of resources to achieve required availability, 
in order to honor service level agreements (SLAs).  
This is expensive, and can still fail to consistently 
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satisfy SLAs.  Absent good forecasts, system 
management software tends to operate in a reac-
tive mode and can become ineffective and even 
disruptive [25]. In this paper we present modifica-
tions to standard prediction techniques, which are 
better able to predict when utilization of a service 
will be high.  Knowing this it becomes possible to 
better predict when storms will occur, and so 
avoid such storms. 

2 Motivation 

This research [8] is motivated by CA Technolo-
gies [6] need to develop industrial autonomous 
solutions for effectively predicting workload of 
their  clients’  cloud  services,  both  in  the  short  term  
(measured in hours), and in the longer term 
(measured in months).  Good short-term predic-
tions permit better adaptive job placement and 
scheduling, while longer term predictions permit 
appropriate and financially effective proactive 
provisioning of resources within the cloud envi-
ronment. 

 
We were initially provided with a substantive 

body of performance data relating to a single large 
cloud computing environment. This was running a 
large number of virtual services over a six month 
period. In total there were 2,133 independent enti-
ties whose performance was being captured every 
six minutes.  These included 1,572 virtual ma-
chines and 495 physical machines.  The physical 
machines provided support for 56 VMware hosts. 
On average 53% of the monitored services were 
active at any time, with a maximum of 85%. The 
data captured described CPU workloads, memory 
usage, disk I/O, and network traffic.  This data 
was each consolidated into average and maximum 
hourly performance figures, and it was the hourly 
CPU workload data that our research was predi-
cated on.   

 
At least 423 services were dedicated to provid-

ing virtual desktop environments, while the cloud 
was also proving support for web based services, 
transaction processing, database support, place-
ment of virtual services on hosts, and other ser-
vices such as performance monitoring and 
backup.  

 
As is typically the case in desktop environ-

ments, individual computer utilization varies dra-
matically.  Much of the time little if any intensive 

work is being done on a virtual desktop and the 
virtual service appears almost idle.  However, for 
any virtual desktop there are periods of intense 
activity, when CPU, memory, disk I/O, and/or 
network traffic peaks.  Similarly within transac-
tion processing environments, there will be a wide 
variety of behaviors, depending on the overall 
demand placed on such systems. 

 
In our study, the average utilization across all 

these services was at most 20% (except for the 
weekly activity on Sunday afternoon when aver-
age utilization rose to almost 50%), but the max-
imum utilization across all services, was almost 
invariably very close to 100% (Fig. 1).  

 

 
Figure 1: Cloud utilization over time 

 
The frequency distribution of the utilizations 

actually observed, was highly skewed, with 
83.5% of the utilizations not exceeding 25%. The 
exponential utilization curve was approximated 
by 100*(2-u)13.5 (Fig. 2). 

 

 
Figure 2: Distribution of utilizations 

 
Given this described data, our challenge was 

to resolve how one might reasonably predict in 
the short term (e.g. within the next hour) the in-
frequent occasions when a given service was like-
ly to be heavily utilized. Knowing this one can 
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then reserve necessary resources for this heavily 
utilized service, while also avoiding conflicts with 
other heavily utilized activities, and the resources 
they depend on. 

 
In this context, accurate predictions that an 

idle service will remain idle most of the time, 
while very occasionally as consequence being 
wrong, are useless. What are required are predic-
tions that (with a reasonable degree of confidence) 
indicate when future loads will be high, even if 
such predictions do not mathematically fit the 
totality of observed and future data as closely as 
conventional statistical approaches. 

 
Over a longer time frame (measured in weeks 

or months) we wished to be able to accurately 
predict expected workloads, so that a cloud data 
center could be appropriately managed. Without 
such long-term predictions it becomes difficult to 
ensure in a timely fashion that a computing center 
is provided with adequate power and hardware, 
and to predict what the future cost of operating 
the facilities will be.  

3 Related Work 

Andreolini et al. proposed using moving averages 
to smooth the input time series, and then using 
linear extrapolation on two of the smoothed val-
ues to predict the next [3]. Dinda et al. compared 
the ability of a variety of ARIMA like models to 
predict futures [9].  Nathuji et al. proposed evalu-
ating virtual machines in isolation, and then pre-
dicted their behavior when run together using 
multiple input signals to produce multiple predic-
tive outputs using difference equations (exponen-
tial smoothing) [24].  

 
Istin et al.  divided the time series into multi-

ple series using different sampling steps, obtained 
predictions from each subseries, and then used 
neural networks to derive a final prediction [19]. 
Khan et al. also used multiple time series (but 
derived from distinct workloads) and hidden Mar-
kov models, to discover correlations between 
workloads that can then be used to predict varia-
tions in workload patterns [21]. 

 
Huhtal et al. proposed that similarity between 

related time series might be discovered by using 
wavelets [17]. Ganapathi discovered linear map-
pings from related information (such as workload 

and performance data), which produced maximum 
correlations between this distinct data, and then 
exploited the discovered similarities between the 
input data, before recovering actual predictions 
through inverting these transformations [14]. 

 
Povinelli proposed mapping data points at 

fixed temporal lags into n-dimensional phase 
space, clustering the resulting points on their Eu-
clidian distance, and then employing a user speci-
fied goal function for each point within a cluster 
to discover (using genetic programming tech-
niques) unknown patterns/clusters strongly pre-
dictive of future events deemed interesting [11, 
27]. Srinivasan et al. also used genetic algorithms, 
but translated the time series into substrings, with 
symbols within the string representing the various 
types of behavior within the time series [28]. 

 
More generally, Nikolov proposed that per-

formance might be understood as consequence of 
given underlying patterns that determined behav-
ior, and clustered observed behavior according to 
the pattern it was most similar to, using a simple 
distance metric.  Behavior might then be predicted, 
because of the discovered similarity with an un-
derstood behavioral pattern [26].  Magnusson 
proposed that simple underlying short-term pat-
terns be detected and that larger longer term com-
posite patterns then be discovered through a 
hierarchical composition of these simpler patterns 
recursively [22]. 

4 Linear Regression 

Given the data provided us, we elected to focus on 
predicting physical and virtual CPU utilizations.  
For each data series, the observed utilizations ut 
were partitioned into small intervals in increments 
of 0.05, and for each such partition the average 
absolute difference between observed values ut 
and predicted values pt were obtained.  This pro-
vides a clear picture of how closely prediction 
matches observed utilization across the utilization 
spectrum. Then these averages are themselves 
averaged across the set of data series.   

 
Unchanged: Since there was at least a 30% 

probability that utilizations would remain essen-
tially unchanged from one hour to the next (Fig. 
3), as a trivial baseline measurement we predicted 
that there would never be change in the utilization 
observed during the previous hour.  As expected 
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this approach did not perform as well as the other 
approaches (Fig. 6).  

 

 
Figure 3: Next  hour’s  utilization  given this 
 
We then obtained correlograms from the pro-

vided data, by computing the auto-correlation of 
each time series with each lagged version of the 
same time series (Fig. 4). This indicated the 
strongest auto-correlation was at the hourly (1,676 
sources), weekly (247), daily (106) and bi-weekly 
(41) levels, with these correlations degraded only 
slowly over longer intervals.  

 

 
Figure 4: Example correlogram for one timeseries 

 
MVLR: Using the most strongly correlated 

lags, multivariate linear regression [1, 2, 11] was 
then applied using 10 lags of 1 and 2 hours, 1 and 
2 days, 1, 2, 3 and 4 weeks, and 1 and 2 months, 
to identify coefficients which when applied to this 
lagged data, linearly fit observed data, with mini-
mal least squared residue error.  This provided 
good general predictability across the data sources. 
The resulting linear equation was then used to 
predict  the  next  hour’s  utilization. 

 
Two minor problems required special consid-

eration. The first was that the provided time series 
data contained missing data. Short gaps were ap-
proximated by prior value, while 769 time series 

having more missing data than actual data were 
discarded as they might otherwise have unreason-
ably skewed our results.  The second was that due 
to the difficulties associated with monitoring the 
utilization of virtual processes 1% of the data 
points exceeded their expected upper bound of 1.  
This was attributed to Intel Turbo Boost/up clock-
ing being enabled and was resolved by reducing 
excessive values to 1. 

 
While visually predictions appeared to fit ob-

served data reasonably well (Fig. 5), close exami-
nation revealed that sudden rises in observed 
utilizations were often not anticipated by the re-
gression. 

 

 
Figure 5: Example Multivariate Linear Regression 

 
Instead of predicting such events, the regres-

sion exploited observed peaks in the data to pro-
duce higher predicted utilizations one hour later 
[18]. The regression was thus not predicting as yet 
unobserved trends.  In addition, because the re-
gression was linearly fitting to least squared resi-
dues of all the data points, and the vast majority 
of data points were associated with idle time, it 
could not hope to fit well to maximal values oc-
curring within the time series. 

 
Windowed MVLR: To better focus regres-

sion on recent history, we then restricted the mul-
tivariate linear regression to employ a 5 week 
window with some resulting improvement (Fig. 6). 

 
Scaled MVLR: Because predicted behavior 

should agree with observed behavior, we next 
computed the running average and variance in the 
data seen, and scaling the predicted values to have 
the same average and variance as the till then ob-
served data.  This improved the fit to high utiliza-
tions, at very small expense of fit to small 
utilization values (Fig. 6).   
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Figure 6: Multivariate Regression Strategies 

 
Weighted MVLR: Because the overall distri-

bution of utilizations was observed to be exponen-
tial (Fig. 2) it is reasonable to weight [12] within 
the regression summations each data point.  We 
employed exponential weighting, in which a data 
point having utilization u as well as all lags asso-
ciated with this data point were multiplied by 
(1+u)c. This naturally assigned higher utilizations 
a significantly greater weight, thus skewing the 
predictions towards higher values, while simulta-
neously bounding them by the highest values (Fig. 
7). As can be seen a value of c=12 provided the 
most consistent average absolute error [5] across 
all of the data sources. 

 

 
Figure 7: Weighting Regression by (1+u)c 

 
Power MVLR: An alternative to internal 

weighting was to presented as input values to the 
multivariate linear regression uc, rather than u.    
The final prediction obtained from this modified 
regression, was then recovered by taking the cth 
root of the value obtained by the regression.   

 
As an informal justification for this approach, 

consider a set of non-negative points ai with 1≤i≤n. 
The  average  of  this  set  of  points  is  Σai/n.  Apply-
ing the above transformation for c=2, gives a re-
vised  average  value  of  √(  Σai

2/n).  The difference 

of the square of the revised value to the square of 
the actual average is simply the variance in the 
sample.   

 
Since the variance cannot be negative, and 

neither can our summations, this implies that the 
revised average can be no smaller than the origi-
nal average, and can agree only when the variance 
in the original sample is 0.  Further, the revised 
value must remain less than or equal to the maxi-
mal original point, with equality reached again, 
only if the variance in the original sample is 0. 

 
This argument can be used repeatedly for c=2k 

(Table 1), suggesting that the shift towards maxi-
mal values in the set examined, is a monotonically 
increasing function, for increasing values of k.  
The proposed transformation has minimal impact 
on collections of small values, but for large varia-
tions, the shift upwards is quite dramatic (Fig.8), 
and does provide a much better fit to high ob-
served utilizations, by shifting predictions up-
wards, while producing a very poor fit to the 
majority of observed low observed utilizations. 

 
3 Sample 
Values 

Average of Power MLVR 
c=1 c=2  c=10 c=20 c=30 

0,0.05,0.1 0.05 0.06 0.09 0.09 0.10 
0,0.1,0.2 0.10 0.13 0.18 0.19 0.19 
0,0.15,0.3 0.15 0.19 0.27 0.28 0.29 
0,0.2,0.4 0.20 0.26 0.36 0.38 0.39 
0,0.25,0.5 0.25 0.32 0.45 0.47 0.48 
0,0.3,0.6 0.30 0.39 0.54 0.57 0.58 
0,0.35,0.7 0.35 0.45 0.63 0.66 0.67 
0,0.4,0.8 0.40 0.52 0.72 0.76 0.77 
0,0.45,0.9 0.45 0.58 0.80 0.85 0.87 
0,0.5,1.0 0.50 0.65 0.90 0.95 0.96 

Table 1: Examples using power MVLR 
 
Similarities clearly exist between the results 

observed by weighting (changing the regression 
algorithm itself), and by raising inputs to powers 
(changing the inputs to the algorithm).  Both pro-
vide  the  most  consistent  average  error  when  c≈12. 

 
Across a wide range of parameterization of c 

the weighted regression produced a consistently 
lower average absolute error (Fig. 9), and appears 
to be the better strategy for predicting large utili-
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zations (Fig. 10 and 11). It also does not require 
that input values be between 0 and 1.   

 

 
Figure 8: Power MVLR for varying powers 
 

 
Figure 9: Comparison of power .v. weighting 

 

 
Figure 10: Power .v. weighting for c=12 

 

 
Figure 11: Power .v. weighting for c=20 

5 Seasonality 

To achieve good long-term predictions, one 
must consider not only changing trends, modelled 
reasonably well by the approaches suggested 
above, but also longer term seasonal contribu-
tions. 

 
Fourier: Fast Fourier transforms [13] were 

exploited in an effort to discover obvious cyclic 
patterns within the data.  Strong patterns were 
observed at the daily and weekly level.  

 
Graphing the summation of the ten sine waves 

with the largest amplitudes, which are the terms 
that describe the most dominant variability within 
the input data, fit the overall seasonality within 
the provided data well, but failed to fit the peaks 
in the data at all well (Fig. 12).  

 

 
Figure 12: Sample Fourier Fit 

 
We extended this computed transform into the 

future and used its value at each given hour to 
predict, which worked well for small utilizations, 
but not for large utilizations irrespective of the 
number of sine waves summed (Fig. 13). 

 

 
Figure 13: Fourier fit to future data 
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  Scaled FT: To account for the terms not in-
cluded in the contribution to our prediction, it is 
reasonable to attempt to scale the Fourier trans-
form (FT) to better fit the utilizations. 

 
We do this by applying a linear transformation 

to the computed Fourier transform. Let m = 
min(predicted) and using n=100  to limit issues 
with individual outliers, we compute ū = E(max n 
observed utilizations), and p̄ = E(max n predicted).  
Then where p̄ ≠  m we scale each prediction p us-
ing the formula  m  +  (p-m)*(  ū  -  m)/(  p̄-m). 

 
The difference between the scaled Fourier 

function, and observed data within one 
representative data source, scaling using the 
formula y = 0.145927  + (prediction – 0.145927)* 
1.51284  is shown in Figure 14. 

 

 
Figure 14: Sample residue after scaling FT 
 
The scaled FT appears to be a good long-term 

predictor of future system performance.  There is 
no systemic weakening of the prediction algo-
rithm over time, even though predictions in week 
26 are derived from data obtained between three 
and six months earlier (Fig. 15). 

 

 
Figure 15: Scaled FT average absolute residue 
  

The regular spikes in utilization once each 
Sunday afternoon (Fig. 1) are not well handled by 
the scaled FT [7].   These spikes while modeled 
by the transform are consistently under-estimated, 
while (in attempting to fit to these spikes) utiliza-
tions immediately before and after to such spikes 
are consistently over-estimated. This is an inevi-
table consequence of attempting to model spikes 
within the data as the summation of a very small 
number of sine waves. 

 
Without scaling the average error during the 

training period would (by construction of the FT) 
have been 0, but with scaling predictions exceed-
ed utilizations on average by 0.066 during the 
training period and by 0.062 during the testing 
period (Fig. 16). 

 

 
Figure 16: Scaled FT average residue 

 
Using this approach across all data sources 

was reasonably effective.  Across all of our data 
sources the average absolute error associated with 
using a Fourier transform to predict future 
behaviour was almost halved for large utilizations 
when the Fourier transform was suitably scaled 
(Fig 17). 

 

 
Figure 17: Multivariate regression strategies 
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MVLR was a better predictor than scaled FT 
alone, as was weighted MVLR for high 
utilizations, but using the scaled FT to predict 
future seasonality was competitive with linear 
regression, and remained so over much longer 
time frames measured not in hours but in months.  
This is exciting since long-term prediction is 
inherently difficult. 

 
The most significant drawback of using 

Fourier transforms is that unlike regression which 
could quickly start providing predictions from 
initially observed results, a substantial amount of 
prior data must be available, in order to discover 
seasonality within an input time series.  In 
practice it is proposed that early predictions are 
predicated on regression alone, while periodically 
as sufficient data becomes available a fast Fourier 
transform is employed to repeatedly discover 
seasonality with the input data. 

 
In general, one cannot assume that seasonal 

behaviour of machines within a cloud will remain 
sufficiently static to provide such long-term 
predictability.  And clearly, further improvement 
in predictions may be achieved by developing a 
hybrid algorithm that exploits both Fourier 
transforms and linear regression simultaneously.  

 
Scaled FT+MVLR: We then subtract the 

scaled FT from the observed utilizations and then 
for each time series employ MVLR using the 10 
lags most strongly correlated with the resulting 
residues during the training period to predict utili-
zations during the testing period, before adding 
the seasonality back in to the resulting prediction 
(Fig.18). 

 

 
Figure 18: Accuracy of scaled FT+MVLR 
 
By subtracting the scaled FT from the original 

data we removed much of the variability in the 

original data, making it more linear, and thus 
making it fit better with linear prediction models.  
The results obtained were significantly better than 
using either Fourier transforms, or multivariate 
linear regression alone. This approach reducted 
the average absolute error across all inputs for 
large utilizations by a third. Applying MVLR to 
the residues reduced the average absolute error to 
0.029 and the average error to 0.001 (Fig. 19 and 
20).  

 

 
Figure 19:  |Error| using scaled FT+MVLR 

 

 
Figure 20. Error using scaled FT+MVLR 

 

 
Figure 21. MVLR using autocorrelation 

 
Auto correlation: Given a training period, we 

can also perform autocorrelation independently on 
each time series, and then simply employ MVLR 
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using the 10 lags most strongly correlated during 
the training period, to predict utilizations during 
the testing period.  This approach, produced 
results comparable to using scaled FT+MVLR, 
but did not perform quite as well for large 
utilizations. (Fig. 17 and 21). 

 
 Adaptive: Rather than exploit a single predic-

tion algorithm, it is possible to use two or more 
very different prediction algorithms, and decide at 
runtime which of the provided predictions is most 
likely to approximate the next utilization we wish 
to estimate. 

 
A simple approach at time t given predictor’s  

pt  and qt is to use single exponential smoothing to 
weight (using β) the effectiveness of the two pre-
dictors. Initially and whenever pt = qt let β =0.5. 
Otherwise having observed the utilization ut, 
solve β*pt+(1- β)*qt=ut, set β=max(min(B,1),0), 
and then use this formula with the next predic-
tions to estimate the next utilization.  Informally, 
this next uses whichever algorithm best predicted 
the observed utilization this time, and interpolates 
between the next two predictors when the current 
predictors lie opposite sides of the observed utili-
zation. 

 

 
Figure 22: |Error| using adaptive algorithm 

 

 
Figure 23: Error using adaptive algorithm 

 

For large utilizations weighted regression re-
mains a better predictor than any of the other pre-
diction mechanisms.  Adaptively using scaled 
FT+MVLR, together with weighted regression 
produced an algorithm which outperformed either 
of these individual algorithms while ensuring a 
much better fit (|utilization-prediction|) to the 
peak utilizations observed (Fig. 22 through 25). 

 

 
Figure 24: Accuracy of  algorithm for |u-p|≤0.025 

 

 
Figure 25: Accuracy of algorithm for |u-p|≤0.075 

. 
The probability of using each predictor and the 

sub-probability that this selected predictor was 
closest to the utilization are shown in Table 2.  

 
 FT+MVLR (1+u)^14 Both 
Good 0.561539 0.176074 0.737612 
Bad 0.121494 0.140894 0.262388 
Used 0.683033 0.316967 1.0 

Table 2: The adaptive algorithms metrics 
 
The adaptive algorithm might in practice be 

considerably more sophisticated.  For example, if 
it is discovered in the training data that there are 
regular weekly anomalies in utilizations (such as 
shown in Fig. 1), the adaptive decision might then 
be predicated not only on the better result one 
time period ago, but also on the better result pre-
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cisely one, two, etc. weeks ago.  It might also 
readily leverage metrics such as those shown in 
Table 2. 

 
Frequency weighting: Given a training 

period, we can experiment with various weighting 
formulas, selecting that formula which has the 
most desirable behavior.  In particular, we can 
observe the (perhaps windowed) discrete 
frequency distribution of partitioned utilizations 
f(u), and then weight not by a predefined formula 
but by the shape of this changing distribution.  To 
coerce regression into behaving as if all utilization 
partions had the same number of data points 
within them, thus balancing the scale of resulting 
errors across partitions, give each utilization u a 
weight max(f)/f(u).  

 
Within the adaptive algorithm, we can coerce 

the weighted algorithm to give additional weight 
to which ever utilization partitions are not likely 
to be well modelled by our base prediction 
algorithm. Rather than using the formula (1+u)^c, 
we can use other formuli such as (2-f(u)/max(f))^c 
or (max(f)/f(u))^c (Fig. 26). 

 

 
Figure 26: Alternative weighting strategies 

6 Long Term Predictions 
For long-term scheduling of resources, utilization 
is not a very useful predictive quantity.  Instead of 
asking how busy a machine is likely to be (which 
presumes that the number of machines in the sys-
tem is to remain static) it is far more useful to ask 
how much work must be handled by the system.  
This permits some exploration as to how best to 
accommodate this total work load, through pur-
chase of additional resources, or reductions in the 
online availability of these resources. 
 

 If it is naively assumed that utilization scales 
linearly with workload (being observed workload 
divided by maximal workload) predicted work-
load can be approximated.  Simply permit utiliza-
tion predictions to potentially exceed 1.0, and 
multiply the resulting utilization prediction by the 
known maximal workload available during the 
predicted period.  

 
Alternatively, the total work load per service 

may be directly monitored, and the future antici-
pated work load then predicted from this data, 
using the above techniques. 

 
In general, we must consider the possibility 

that trends [4, 31, 33] impacting upon the accura-
cy of our long-term predictions.  

 
There was almost no observable linear regres-

sion slope [10] in any of the input sources. During 
the 3 month training period the maximum slope 
was 3.83E-4, the minimum was -5.57E-4 and the 
average was -5.12E-6.  In the 3 month testing 
period the maximum slope was 3.73E-4, the min-
imum was –4.8E-4 and the average was 2.1E-6.  
The covariance across all inputs between the input 
training and testing slope was -3.82E-12, suggest-
ing that there was no correlation between these 
two slopes. 

 
To explore whether useful trends might exist 

within peak usage, we then deleted all hours 
where utilization was less than 25%.   Within the 
shortened time series, we again computed sepa-
rately for each input the slope during the training 
and testing period, and then looked for a correla-
tion in trends between these two periods. 

 
The maximum trend in peak utilizations dur-

ing the training period was 0.117, the minimum -
0.0043 and the average 0.00016.  During the test-
ing period the maximum was 0.0188, the mini-
mum -0.119 and the average -0.00014.  The 
majority of the input sources had no conspicuous 
trend either during the testing or the training peri-
od.  The covariance between trends in the training 
and testing period was 1.713E-7.  The overall 
trend line (y = 0.009x - 0.0001) within the scatter 
plot (Fig. 27) was itself almost flat, suggesting 
that trend was more conspicuous in the training 
period than in the testing period.   
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The lack of trend is perhaps not as surprising 
as it might at first appear, since while one might 
hope for increased utilization of business software 
over time, it is to be expected that individual us-
age of virtual desktops will not change radically 
over time. 

 

 
Figure 27: Linear trends in peak utilizations 

7 Validating Data Set 
CA then provided us with data from a second in-
dependent cloud environment, employing 211 
ESX hosts.  This ran globally distributed produc-
tion applications for a Fortune 500 company.  The 
applications   included   the   company’s   enterprise  
resource planning applications, internal infor-
mation systems, email, technical support and sys-
tems management, and external customer-facing 
web site and customer support.  Some of the serv-
ers processed geographically local workload traf-
fic and showed significant hour-of-the-day and 
day-of-the week patterns, whereas other servers 
processed worldwide workload traffic and showed 
less clear patterns.   
 

 
Figure 28: Cloud utilization over time 

 
 From this data we obtained service utiliza-
tions every hour for 2,620 services, over a 12 
week period between 2012 and 2013.  Once again, 

the utilizations were very skewed. The maximum 
utilizations each hour were consistently close to 1, 
but the average was only 7.7% (Fig. 28). 95% of 
utilizations did not exceeding 25% (Fig. 29). 
 

   
Figure 29: Distribution of utilizations 

 
 Using this data we again executed our adap-
tive algorithm, which used the scaled FT with 
MVLR then being applied to the residue, using 
the 10 maximal auto correlated lags during the 
training period, as well as weighted MVLR. 
   

 
Figure 30: |Error| using adaptive algorithm 
 

 
Figure 31: Error using adaptive algorithm 

 
 Because the vast majority of utilizations were 
small it is not surprising that we observed very 
small average errors (Fig. 30 and 31).  Employing 
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MVLR on the scaled FT residue (as before) re-
duced the average absolute error during the train-
ing period, and corrected the bias introduced into 
the average error by scaling the FT. 

 
The adaptive algorithm again performed better 

than either of the prediction algorithms it was 
based on (Fig. 32 and 33). 

 

 
Figure 32: Accuracy of algorithm for |u-p|≤0.025 

 

 
Figure 33: Accuracy of algorithm for |u-p|≤0.075 

 
For small utilizations, the adaptive algorithm 

was exploiting the scaled FT+MVLR.  But for 
peak utilizations, the adaptive algorithm was 
clearly exploiting weighted regression (Table 3).   

 
 FT+MVLR (1+u)^14 Both 
Good 0.463698 0.285634 0.749332 
Bad 0.121118 0.12955 0.250668 
Used 0.584816 0.415184 1.0 

Table 3: The adaptive algorithms metrics 
 

 FT+MVLR (1+u)^20 Both 
Good 0.524988 0.250245 0.775233 
Bad 0.107134 0.117633 0.224767 
Used 0.632122 0.367878 1.0 

Table 4: The metrics for (1+u)^20 

When a weighting of (1+u)^20  was used the 
overall results were very similar, but the metrics 
were slightly better (Table 4). 

 
As a further validation of our approach we 

then used the function (2-f(u)/max(f))^14 within 
the weighted MVLR.  The results are similar to 
Figure 32, but show improvement in some 
utilizations at the expense of others (Fig. 34 and 
Table 5). 

 

 
Figure 34: Using weights (2-f(u)/f(max))^14 

 
 FT+MVLR Weighted Both  
Good 0.537169 0.211399 0.748569 
Bad 0.114686 0.136745 0.251431 
Used 0.651855 0.348145 1.0 

Table 5: (2-f(u)/max(f))^14 metrics 

8 Threats to validity 

This research was predicated on two sources of 
data that described performance of a very large 
number of physical and virtual services, running 
in two cloud environments, during a comparative-
ly short six month interval.  While there was con-
siderable variability in the behaviour of these 
services, as a collective they appeared for the 
most part to be idle.  This may not be typical 
within all cloud computing environments. 

 
The appearance that these machines were not 

heavily utilized might be flawed.  Average hourly 
utilization, can potentially be low, even if there 
are bursts of intense activity within that hour.  
Performance information was sometimes unavail-
able, as consequence of either the machines being 
deactivated, or the monitoring software being 
disabled.  It is not known how such disruptions 
impacted upon the averages provided us.  
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We made a best effort to accommodate miss-
ing data, but assumptions as to what missing val-
ues might have been, necessarily compromise 
predictive algorithms.  Our decision to truncate 
utilizations greater than 1.0 to 1.0, and to set an 
upper bound on predicted utilizations at 1.0, 
helped ensure that prediction appeared closer to 
high actual utilizations than might otherwise have 
been the case. 

 
In the second data set, we considered estimat-

ing the maximal CPU usage that each service 
would require, by discovering its maximum utili-
zation within the training period, so as to normal-
ize the range of utilizations across the various 
services. 

 
This highlights a subtle difficulty with predict-

ing service utilizations.  We have been assuming 
that a service running at close to its maximum 
allowed CPU utilization is using sufficient CPU 
resources to be of concern to cloud placement 
algorithms, while those running at a small fraction 
of their maximum allowed CPU utilization, are of 
perhaps less concern.  These assumptions only 
hold if each service is itself assigned sensible and 
meaningful restrictions on how much CPU pro-
cessing power it can legitimately exploit.  

 
While multivariate linear regression can be 

expected to respond appropriately to changing 
trends, our presumption (predicated on studying 
the data) was that no trend would be present with-
in long-term seasonality.  If trends were present 
within the observed seasonality, it would be nec-
essary to attempt to scale the seasonality using 
something more complex than a simple linear 
equation. 

 
A final caveat is in order.  No matter how 

good a predictive algorithm is, or how much 
confidence can be place in it, it is inevitable that it 
will sometimes give misleading results.  And it is 
possible that a few misleading results will more 
than undermine the benefits of relying on such 
algorithms.   

9 Conclusions 
System utilization can peak both as a consequence 
of regular seasonality considerations, and as a 
consequence of a variety of anomalies, that are 
inherently hard to anticipate.  It is not clear that 

the optimal way of predicting such peak system 
activity is through standard approaches such as 
multivariate linear regression, since prediction is 
predicated on the totality of the data observed, 
and tends to produced smoothed results rather 
than results that emphasize the likelihood of sys-
tem usage approaching or exceeding capacity.   

 
We have presented a number of modifications 

to standard multivariate linear regression (MVLR), 
which individually and collectively improve the 
ability of MVLR to predict peak utilizations with 
reasonably small average absolute error. 

 
We found that windowing and scaling MVLR 

results to match the observed variance in the input, 
produced improvement.  Applying MVLR to 
powers of the input data, and employing weighted 
MVLR, proved to be good techniques for fitting 
predictions to large but infrequently observed 
utilizations, but resulted in worse fits against low 
utilizations. 

 
We explored seasonality using Fourier trans-

forms and have suggested how scaling can im-
prove the predictive capability of this analysis. 
We then suggested how MVLR can be applied to 
the residue that remains when seasonality is sub-
tracted from the input data, to further improve 
predictive capability. 

 
Within the data provided us, there was often 

crossover regions where particular algorithms 
could be seen to transition from providing better 
performance than the competition, to worse per-
formance.  Armed with the ability to determine 
which side of the crossover a future system pre-
diction was likely to be, we developed a hybrid 
algorithm, which adaptively decided to employ 
differing predictive strategies, predicated on the 
recently observed accuracy of these strategies.  

  
This adaptive algorithm leveraged Fourier 

analysis, auto correlation, MVLR, scaling and 
weighted MVLR, to improve our predictive capa-
bilities further.   

 
Significantly, the adaptive algorithm achieved 

a relatively flat distribution of average absolute 
errors, across all observed utilizations, even 
though great asymmetry existed between the fre-
quencies of high and low utilizations. 
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This adaptive algorithm provided the best pre-
diction of service utilizations, when compared to 
all other approaches, across the spectrum of ob-
served utilizations, on two separate cloud envi-
ronments.  

 
With the data provided us, we were able to ob-

tain good short-term (future hour) predictions of 
system utilization and to achieve good prediction 
of longer-term trends (measured in months).  Both 
are needed. We believe that the methods em-
ployed here have wide applicability, not only to 
utilizations within clouds, but also to other time 
series. 

 
In practice cloud environments track statistics 

about many variables, such as disk I/O, network 
I/O, memory usage, etc. Extending the number 
and type of predictive algorithms used by our 
adaptive algorithm; improving the mechanisms 
for obtaining good predictions within our adaptive 
algorithm; and increasing the number of input 
time series exploited by an adaptive algorithm, 
remain opportunities for further research. 

 
We hope that the ideas presented here will be 

implemented within commercial cloud placement 
and scheduling managers, thus permitting greater 
utilization of cloud resources, at reduced costs, 
while also permitting better planning and provi-
sioning of cloud resources.  
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