
The Secret Life of Patches: A Firefox Case Study

Olga Baysal, Oleksii Kononenko, Reid Holmes, and Michael W. Godfrey
David R. Cheriton School of Computer Science

University of Waterloo
{obaysal, okononen, rtholmes, migod}@cs.uwaterloo.ca

Abstract—The goal of the code review process is to assess
the quality of source code modifications (submitted as patches)
before they are committed to a project’s version control
repository. This process is particularly important in open
source projects to ensure the quality of contributions submitted
by the community; however, the review process can promote
or discourage these contributions. In this paper, we study the
patch lifecycle of the Mozilla Firefox project. The model of a
patch lifecycle was extracted from both the qualitative evidence
of the individual processes (interviews and discussions with
developers), and the quantitative assessment of the Mozilla
process and practice. We contrast the lifecycle of a patch in pre-
and post-rapid release development. A quantitative comparison
showed that while the patch lifecycle remains mostly unchanged
after switching to rapid release, the patches submitted by
casual contributors are disproportionately more likely to be
abandoned compared to core contributors. This suggests that
patches from casual developers should receive extra care to
both ensure quality and encourage future community contri-
butions.

Keywords-Open source software, code review, patch lifecycle.

I. INTRODUCTION

Code review is a key element of any mature software
development process. It is particularly important for open
source software (OSS) development, since contributions —
in the form of bug fixes, new features, documentation, etc.
— may come not only from core developers but also from
members of the greater user community [1]–[4]. Indeed,
community contributions are often the life’s blood of a
successful open source project; yet, the core developers
must also be able to assess the quality of the incoming
contributions, lest they negatively impact upon the overall
quality of the system.

The code review process evaluates the quality of source
code modifications (submitted as patches) before they are
committed to a project’s version control repository. A strict
review process is important to ensure the quality of the
system, and some contributions will be championed and
succeed while others will not. Consequently, the carefulness,
fairness, and transparency of the process will be keenly felt
by the contributors. In this work, we wanted to explore
whether code review is a democratic process, i.e., contri-
butions from various developers are being reviewed equally
regardless of the developers’ involvement on a project. Do
patches from core developers have a higher chance of being

accepted? Do patches from casual contributors take longer
to get feedback? OSS projects typically offer a number of
repositories or tools to communicate with the community on
their feedback. For example, Mozilla provides Bugzilla for
filing bug reports or submitting patches for a known defect.
Users are also able to leave their feedback (praise, issues,
or ideas) for Firefox on a designated website [5].

Improving community contribution and engagement is
one of the challenges that many open source projects face.
Thus, some projects establish initiatives to improve com-
munication channels with the community surrounding the
project. Such initiatives aim at identifying bottlenecks in the
organizational process and creating improved eco-systems
that actively promote contributions.

For example, the Mozilla Anthropology [6] project was
started in late 2011 to examine how various stakeholders
make use of Bugzilla in practice and to gain a sense of how
Bugzilla could be improved to better support the Mozilla
community. During this process, Martin Best — one of the
Mozilla’s project managers — interviewed 20 community
members on their engagement and experience with Bugzilla
bug tracking system.

By studying the interview data [7], we noticed that there
is a perception among developers that the current Mozilla
code review process leaves much room for improvement:

“The review system doesn’t seem to be tightly
integrated into Bugzilla.” (D10)
“There are issues with reviews being unpre-
dictable.” (D11)
“People have different definitions of the review
process and disagree a lot, different types of re-
quests”. (D16)

Developers also expressed interest in having a version
control system on patches, as well as better transparency
on code review and statuses of their patches.

This paper provides a case study to evaluate Mozilla’s
current practice of patch review process and suggests pos-
sible improvements to foster community contributions. In
particular, we address the following research questions:
Q1: Do pre- and post-rapid release patch lifecycles for

core contributors differ?
We expect to find differences in how patches are being
reviewed before and after Mozilla’s switch to rapid
release schedule.

Q2: Is the patch lifecycle different for casual contribu-
tors?
We presumed that code review should not be biased by
the contributor’s reputation.

Q3: How long does it take for a patch to progress
through each state of its lifecycle?
We expected to find that patches are being addressed
in a more timely fashion in the post-rapid release
development model.

The main contributions of the paper are:
1) Development of a model of a patch lifecycle.
2) A case study of a real world code review practice and

its assessment using Mozilla Firefox.
The rest of the paper is organized as follows. Section II

summarizes prior work. Section III describes Mozilla’s code
review policy and presents a model of a patch lifecycle.
Section IV presents results of the empirical study on eval-
uation of the patch review process in Mozilla Firefox and
Section V discusses our findings on patch review process,
and also addresses threats to validity. And finally, Section VI
provides final remarks on the main findings.

II. RELATED WORK

Code review processes and contribution management
practices have been previously studied by a number of
researchers. Mockus et al. [8] were one of the first re-
searchers who studied OSS development. By studying the
development process of the Apache project, they identified
the key characteristics of the OSS development, including
heavy reliance on volunteers, self-assignment of tasks, lack
of formal requirement or deliverables, etc.

Rigby and German [2] presented a first study that investi-
gated the code review processes in open source projects,
They compared the code review processes of four open
source projects: GCC, Linux, Mozilla, and Apache. They
discovered a number of review patterns and performed a
quantitative analysis of the review process of the Apache
project. While they found that 44% of pre-commit patches
get accepted, our study shows that on average 78% of
patches receive positive reviews. Rigby and German looked
at the frequency of reviews and how long reviews take
to perform. In our study, we differentiate negative and
positive reviews and investigate how long it takes for a patch
to be accepted or rejected depending on the contributors
participation on a project (frequent vs. occasional).

Later, Rigby and Storey [9] studied mechanisms and
behaviours that facilitate peer review in a open source
setting. They performed an empirical case study on five
open source projects by manually coding hundreds of re-
views, interviewing core developers and measuring various
characteristics of the OSS review processes.

Asundi and Jayant [4] looked at the process and method-
ologies of free/libre/open source software (FLOSS) develop-
ment. They examined the process of patch review as a proxy

for the extent of code review process in FLOSS projects.
They presented a quantitative analysis of the email archives
of five FLOSS projects to characterize the patch review
process. Their findings suggested that while the patch review
process varies from project to project, the core developers
play the vital role in ensuring the quality of the patches
that get in. They defined core-group members as those who
are listed on the project’s development pages. We observed
that for Mozilla project some official employees submit
very few patches, while developers outside of the core
development team provide frequent contributions. Therefore,
we employed a different definition of core and casual con-
tributors. In spite of the differences in definitions, our study
confirms some of the results reported in [4]. In particular,
we also found that core contributors account for a greater
proportion of submitted patches and that patches from casual
contributors are more likely to be left unreviewed.

Sethanandha et al. [10] proposed a conceptual model of
OSS contribution process. They presented the key practices
for patch creation, publication, discovery, review, and appli-
cation and also offered some recommendations on managing
contribution process. Bettenburg et al. [11] performed an
empirical study on the contribution management processes
of two open source software ecosystems, Android and
Linux. They developed a conceptual model of contribution
management based on the analysis of seven OSS systems.
They compared the code review processes of Android and
Linux and offered some recommendations for practitioners
in establishing effective contribution management practices.
While Sethanandha et al. [10] and Bettenburg et al. [11]
aimed at developing models of contribution management
process, we focus on formalizing the lifecycle of a patch.

Nurolahzade et al. [1] examined the patch evolution pro-
cess of the Mozilla development community. They quantita-
tively measure parameters related to the process, explained
inner-workings of the process, and identified a few patterns
pertaining to developer and reviewer behaviour including
“patchy-patcher” and “merciful reviewer”. While also study-
ing Mozilla Firefox and exploring patch review process,
we modelled the lifecycle of patches rather than the patch
evolution process. We also investigated whether the code
review is affected by the contributor’s participation on a
project.

Weissgerber et al. [12] performed data mining on email
archives of two open source projects to study patch con-
tributions. They found that the probability of a patch be-
ing accepted is about 40% and that smaller patches have
higher chance of being accepted than larger ones. They
also reported that if patches are accepted, they are normally
accepted quickly (61% of patches are accepted within three
days). Our findings show that 63% of pre- and 67% of post-
rapid release patches are accepted within 24 hours.

III. PATCH REVIEW

This section describes the Mozilla’s code review policy
and presents a model of a patch review process.

A. Mozilla’s Code Review Process
Mozilla employs a two-tier code review process for val-

idating submitted patches — review and super review [13].
The first type of a review is performed by a module owner or
peers of the module; a reviewer is someone who has domain
expertise in a problem area. The second type of review is
called a super review; these reviews are required if the patch
involves integration or modifies core Mozilla infrastructure.
Currently, there are 29 super-reviewers [14] for all Mozilla
modules and 18 reviewers (peers) on Firefox module [15].
However, any person with level 3 commit access — core
product access to the Mercurial version control system —
can become a reviewer.

Bugzilla users flag patches with metadata to capture code
review requests and evaluations. A typical patch review
process consists of the following steps:

1) Once the patch is ready and needs to be reviewed, the
owner of the patch requests a review from a module
owner or a peer. The review flag is set to “r?”. If the
owner of the patch decides to request a super review,
he may also do so and the flag is set to “sr?”.

2) When the patch passes a review or a super review,
the flag is set to “r+” or “sr+” respectively. If it fails
review, the reviewer sets the flag to “r-” or “sr-” and
provides explanation on a review by adding comments
to a bug in Bugzilla.

3) If the patch is rejected, the patch owner may resubmit
a new version of the patch that will undergo a review
process from the beginning. If the patch is approved,
it will be checked into the project’s official codebase.

B. A Model of the Patch Lifecycle
We modelled the patch lifecycle by examining Mozilla’s

code review policy and processes and compared them to how
developers worked with patches in practice. We extracted the
states a patch can go through and defined the final states it
can be assigned to. Figure 1 presents a model of the lifecycle
of a patch. The diagram shows the various transitions a
patch can go through during its review process. A transition
represents an event which is labelled as a flag and its status
reported during the review process.

We considered only the key code review patches having
“review” (r) and “supperreview” (sr) flags on them. Other
flags on a patch such as “feedback”, “ui-review”, “checkin”,
“approval aurora”, or “approval beta”, as well as patches
with no flags were excluded from the analysis.

The code review process begins when a patch is submitted
and a review is requested; the initial transition is labelled
as “r? OR sr?”, i.e., a review or super review is requested
respectively. There are three states a patch can be assigned

Figure 1. The lifecycle of a patch.

to: Submitted, Accepted, and Rejected. Once the review is
requested (a flag contains a question mark “?” at the end),
the patch enters the Submitted state. If a reviewer assigns
“+” to a flag (e.g., “r+” or “sr+”), the patch goes to the
Accepted state; if a flag is reported with a status “–” (e.g.,
“r–” or “sr–”), the patch is Rejected.

Both the Accepted and the Rejected states might have self-
transitions. These self-transitions, as well as the transitions
between the Accepted and the Rejected states illustrate the
double review process. The double review process takes
place in the situations when a reviewer thinks that the
patch can benefit from additional reviews or when code
modifications affect several modules and thus need to be
reviewed by a reviewer from each affected module.

We define and call end points as Landed, Resubmitted,
Abandoned, and Timeout. These end points represent four
final outcomes for any given patch. During the review
process each patch is assigned to only one of these four
groups:

• Landed — patches that meet the code review criteria
and are incorporated into the codebase.

• Resubmitted — patches that were superseded by addi-
tional refinements after being accepted or rejected.

• Abandoned — patches that are not improved after being
rejected.

• Timeout — patches with review requests that are never
answered.

The cumulative number of the patches in Landed, Resub-
mitted, Abandoned, and Timeout is equal to the number of
the Submitted patches.

IV. QUANTITATIVE ASSESSMENT OF THE PATCH
REVIEW PROCESS

In this section, we present our empirical study on the patch
contributions within the Mozilla Firefox project. We follow
our research questions to evaluate current patch submission
and review practice of Mozilla Firefox.

Figure 2. Patch lifecycle for core contributors for pre-rapid release time.

Q1: Do pre- and post-rapid release patch lifecycles for
core contributors differ?

Approach
On April 12, 2011 Mozilla migrated to a rapid release

model (with releases every 6 weeks) from a more traditional
release model (with releases averaging every 10 months). We
were interested to investigate whether the patch lifecycle of
the pre-rapid release differs from the post-rapid release pro-
cess. Therefore, we compared patch contributions between
the following time periods:

• pre-rapid release span: 2010-04-12 to 2011-04-12
• post-rapid release span: 2011-04-12 to 2012-04-12.
One of the key properties of open source projects is that

community members are voluntarily engaged in a project.
Thus, the amount of the patches received from a particular
member varies depending on his interest (and ability) in
contributing to the project. The total number of patches
submitted in pre- and post-rapid release periods are 6,491
and 4,897 respectively.

We looked at the amount of patches each developer
submitted during a two-year timespan and compared var-
ious groups of the received contributions. We empirically
determined the right amount of contributions to define
two different groups of contributors: casual and core. We
compared patch distributions within the lifecycle model for
different sets: 10, 20, or 50 patches or fewer for casual con-
tributors; and more than 10, 20, 50, or 100 patches for core
contributors. We did not find a significant difference in the
distribution of patches for casual developers among 10/20/50
patch sets or for core developers among 10/20/50/100 patch
sets. However, to avoid being biased toward the core group
when choosing the right threshold for the core group (due
to large amount of patches), we decided that 100 patches
or more is reasonable to define core contributors. Therefore,

Figure 3. Patch lifecycle for core contributors for post-rapid release time.

we chose to set the casual group at 20 patches or fewer and
core group at 100 patches or more. Thus, we considered both
the distribution of patches in a patch lifecycle within each
group of contributors and the distribution of patches between
casual and core groups. The contributors who submitted
more than 20 and fewer than 100 patches (12% of all
contributors) were out of the scope of the analysis.

Comparison of the Patch Lifecycles
We first compared patch lifecycles for pre- and post-rapid

release periods; we considered only patches submitted by
core contributors.

Figure 2 and Figure 3 illustrate the lifecycles a patch goes
through in pre- and post-rapid release time periods. Edges
represent the percentage of the patches exiting state X and
entering state Y.

Comparing Figure 2 and Figure 3, we observed the follow-
ing. Post-rapid release is characterized by the 4% increase
in the proportion of patches that get in and the 4% decrease
in the percentage of the patches that get rejected. Although
the post-rapid release world has a slightly higher percentage
of the patches that pass the review and land in the codebase
(61% vs. 59% submitted before April 2011), there are more
patches that are abandoned (2.5% vs. 1.8%) and twice as
many patches that receive no response. After switching to
rapid release, developers are less likely to resubmit a patch
after it fails to pass a review – a 6% decrease in the number
of such patches.

Super reviews are, in general, sparse – only 0.4% (before
April 2011) and 0.5% (after April 2011) of the patches
are being super reviewed. The proportion of patches that
pass super reviews remains unchanged, at 0.3% for both
periods; while post-rapid release super-reviewers reject twice
as many patches than before.

For post-rapid world, we found that there are two times

of
resubmission

s

0 71% 793

0%

20%

40%

60%

80%

0 1 2 3 4 5 6+

79

189

793

23 13 7 20

of patch resubmissions

%
 o

f
b

u
g

s

0%

20%

40%

60%

80%

0 1 2 3 4 5 6+

55

159

641

15 12 9 12

Figure 4. Patch resubmissions per bug for pre- (left) and post-rapid (right)
release periods.

more patches that are first rejected but are later accepted
and that the proportion of the initially accepted patches that
are rejected during the second review phase is increased by
a factor of 2.3x, from 0.7% to 1.6%. The situation when a
patch goes from r+ to r– occurs quite often in practice. In
such a situation, a patch is approved and is checked into the
try or main tree, but subsequently fails to pass tests on the
try server or during the nightly builds. As soon as it crashes
the tree trunk it gets flagged “r–”.

Patches submitted and accepted after April 2011 are more
likely to go through the second round of reviews (4.3% vs.
1.8%). This happens in two cases: 1) when someone else
comes up with a better version of a patch or an alternative
approach of performing a change; 2) when a reviewer flags
the patch as “r+ w/ nits”. Such “reviews with nits” are
quite common. Reviewers approve a patch even if they
are not completely satisfied with the patch. While they
comment on what changes (nits), typically small, need to be
fixed, they leave it to the contributor to fix them. Such flag
assignment requires a certain level of trust between reviewer
and developer. “r+ w/ nits” can also happen when a patch
requiring small modifications is approved and fixed by the
reviewer himself. It is likely that these patches come from
casual developers who do not have commit access to checkin
the patch themselves.

While the results report some differences in the proportion
of patches on each transition of the model in pre- and
post-rapid release, the patch lifecycle appears not to have
changed much.

Patch Resubmissions
We noticed that 39% (pre-rapid) and 36% (post-rapid) of

all patches are being resubmitted at least once. We checked
all the bugs including ones with no patch resubmissions.
Figure 4 presents two histograms showing the proportion of
bugs and the number of patch resubmissions for pre- (left)
and post-rapid (right) release periods. There were 1,124 and
903 bugs filed by core contributors during pre- and post-
rapid release periods respectively.

The results show that pre and post-rapid release bugs

Figure 5. Patch lifecycle for casual contributors.

have a similar distribution of the resubmitted patches. 71%
of bugs had no patches that were resubmitted. While 1.8%
of pre-rapid release bugs had patches that were resubmitted
over 6 times compared to 1.3% of the post-rapid release
ones, the highest number of resubmissions in a bug, i.e., 25
patches, is found in the post-rapid release world.

Q2: Is the patch lifecycle different for casual contrib-
utors?

Since the lifecycle of a patch for the post-rapid release
phase remains almost unchanged, we decided to explore
whether there is a difference between patch lifecycles for
core (>100 patches) vs. casual (<20 patches) contributors
(for a post-rapid release phase only). Since we found no
difference in patch lifecycles of casual and core contributors
for pre- and post-rapid release periods, we only report the
comparison of casual and core contributors for a post-rapid
release model to avoid repetition of the results.

Comparing the lifecycles for core (Figure 3) vs. casual
contributors (Figure 5), we noticed that, in general, casual
contributors have 7% fewer patches that get accepted or
checked into the codebase and have 6% more patches that
get rejected. The amount of the patches from casual con-
tributors that received no response or are being abandoned
is increased by the factor of 3.5x and 3.12x respectively.
Review requests with timeouts are likely those that are
directed to wrong reviewers or landed to the “General”
component that does not have an explicit owner. If a review
was asked from a default reviewer, a component owner, the
patch is likely to get no response due to heavy loads and long
review queues the default reviewer has. Since contributors
decide what reviewer to request an approval from, they might
send their patch to the “graveyard” by asking the wrong
person to review their patch. The process, by design, lacks

0%

6%

12%

18%

24%

30%

1hr 3h 6h 12h 1d 2d 3d 4d 5d 6d 7d 7+d

Accepted

pre-rapid release post-rapid release

0%

5%

10%

15%

20%

25%

30%

1hr 3h 6h 12h 1d 2d 3d 4d 5d 6d 7d 7+d

core contributors casual contributors

Figure 6. How long does it take for a patch of a core contributor to be
accepted?

transparency on the review queues of the reviewers.
Moreover, casual contributors are more likely to give up

on a patch that fails a review process – 16% fewer patches
are resubmitted after rejection. Unlike patches from core
developers, once rejected patches from “casual” group do
not get a chance to get in (0% on the “r– !+” transition)
and are three times more likely to receive a second negative
response.

The results show that patches submitted by casual devel-
opers do not require super reviews, as we found no super
review requests on these patches. We found this unsurpris-
ing, since community members who participate occasionally
in a project often submit small and trivial patches [12].

Our findings suggest that patches from casual contributors
are more likely to be abandoned by both reviewers and
contributors themselves. Thus, it is likely that these patches
should receive extra care to both ensure quality and encour-
age future contributions from the community members who
prefer to participate in the collaborative development on a
less regular basis.

Q3: How long does it take for a patch to progress
through each state of its lifecycle?

While previous questions showed the difference in the
patch distribution on each transition of the model for both
core and casual developers in pre- and post rapid release
spans, the model lacks the temporal data on how long these
transitions take.

A healthy code review process needs to handle patch
submissions in a timely manner to avoid potential problems
in the development process [11]. Since a patch can provide
a fix to an existing software bug, patches should ideally be
reviewed as soon as they arrive.

Since the lifecycle of a patch remains almost unchanged
after Mozilla has switched to rapid release trains, we wonder

0%

5%

10%

15%

20%

25%

30%

1hr 3h 6h 12h 1d 2d 3d 4d 5d 6d 7d 7+d

Rejected

pre-rapid release post-rapid release

0%

5%

10%

15%

20%

25%

30%

1hr 3h 6h 12h 1d 2d 3d 4d 5d 6d 7d 7+d

core contributors casual contributors

Figure 7. How long does it take for a patch of a core contributor to be
rejected?

whether patches are reviewed in a more timely fashion.
To answer this question, we analyzed the timestamps of

the review flags reported during the review process. We
considered only the review flags that define the transitions
of the patch lifecycle model. We looked at the time a review
flag is added at and computed deltas (in minutes) between
two sequential flags in a patch. These two consecutive flags
form a flag pair that corresponds to a transition in the patch
lifecycle model.

We were interested to determine the time it takes for a
patch to be accepted and rejected for core developers in
pre- and post-rapid release phases. Figure 6 and Figure 7
report the results.

About 20% and 23% of pre- and post-release patches
are accepted within the first hour of being submitted; and
63% and 67% of the overall patches are accepted within
24 hours. Thus, since April 2011 Mozilla has increased the
amount of patches that get in within 24 hours by 3-4%,
while decreasing the number of patches that require longer
attention (over a week review cycle) by 3% (compared to
previous 11%).

Mozilla has also increased the amount of patches that
receive a negative decision within first hour after switching
to rapid release (20% vs. 14%). The number of patches that
stay in a review queue for longer than a week is reduced by
more than half (from 17% to 8%). One possible explanation
is that Mozilla tries to manage the overwhelming number of
the received contributions by enforcing reviewers to address
patches as soon as they come in.

We then compared the time it takes for patches to be
accepted (Figure 8) and rejected (Figure 9) for core and
casual contributors.

The main difference is that patches from casual developers
are accepted faster, they are more likely to be approved
within first hour (26% vs. 23%). Since contributions from
casual developers tend to be smaller, this observation is not

0%

6%

12%

18%

24%

30%

1hr 3h 6h 12h 1d 2d 3d 4d 5d 6d 7d 7+d

Accepted

pre-rapid release post-rapid release

0%

5%

10%

15%

20%

25%

30%

1hr 3h 6h 12h 1d 2d 3d 4d 5d 6d 7d 7+d

core contributors casual contributors

Figure 8. Time until patches from core and casual contributors get accepted
in post-rapid release period.

surprising. This finding conforms to the previous research
that patches from casual contributors are accepted faster than
those from core developers, since reviewers tend to favour
smaller code modifications as they are easier to review [3].
In general, the acceptance rate and the proportion of patches
for each time interval is consistent among two groups of the
contributors.

We observed that patches from core contributors are
rejected faster, around 20% of these patches are rejected
within first hour of their submission. While we did not
account for the size of patches, contributions from core
developers are generally larger and more complex [2], [4].
By rejecting larger patches early, core developers are noti-
fied quickly that their code needs further work to comply
with quality standards, thus letting core developers make
necessary changes quickly without wasting much time [11].
In contrast to core contributors, casual developers do not
receive negative feedback on their patches until a later time,
with 13% of all the patches being rejected over a week later.
In general, core developers considered as the elite within
the community [10] as their contributions are more likely
to affect the quality of the codebase and the development
of the OSS project. Therefore, it is unsurprising that their
patches receive faster negative response. On the other hand,
if a patch fails to attract reviewer’s attention, the review is
likely to be postponed until the patch generates some interest
among reviewers or project team members [9].

Lifespan of Transitions
We measured the time it takes for a patch to go from one

state to another. Table I reports the median time (in minutes)
each transition of the model takes.

Statistically significant results are achieved for transitions
“r? ! r+” and “r? ! r–” when comparing pre- and post-
rapid release populations of patches (p-value<0.05). This
shows that after the switch to a rapid release model, deci-

0%

5%

10%

15%

20%

25%

30%

1hr 3h 6h 12h 1d 2d 3d 4d 5d 6d 7d 7+d

Rejected

pre-rapid release post-rapid release

0%

5%

10%

15%

20%

25%

30%

1hr 3h 6h 12h 1d 2d 3d 4d 5d 6d 7d 7+d

core contributors casual contributors

Figure 9. Time until patches from core and casual contributors get rejected
in post-rapid release period.

Table I
THE MEDIAN TIME OF A TRANSITION (IN MINUTES); * INDICATES

STATISTICAL SIGNIFICANCE.

Transition Pre Post
Core Casual

r? ! r+ 693* 534* 494
r? ! r– 1206* 710* 1024
r+ ! r– 1181 390 402
r– ! r+ 1350 1218 15
sr? ! sr+ 525 617 n/a
sr? ! sr– 6725 9148 n/a

sions on whether to accept or reject a contribution are made
faster.

The transition “r? ! r+” is a lot faster than “r? ! r–” for
all three groups such as pre core, post core and casual. This
means that reviewers provide faster responses if a patch is
of good quality.

To our surprise, the fastest “r? ! r+” is detected for casual
developers. Our findings show that contributions from casual
developers are less likely to get a positive review; yet if they
do, the median response rate is about 8 hours (in contrast
to 9 hours for core developers).

Super reviews, in general, are approved very quickly,
within 8-10 hours. This finding conforms to the Mozilla’s
code review policy – super-reviewers do provide response
within 24 hours of a super review being requested. However,
it takes much longer for a super-reviewer to reject a patch
requiring an integration. It takes over 4 to 6 days for a super-
reviewer to make such a decision, often through an extensive
discussion with others.

“r+ ! r–” is a lot faster for the rapid release world (6.5
hours compared to 20 hours), meaning previously accepted
patches are more likely to be reviewed first during the second
round of a review process. A possible explanation for this is
that a reviewer might expect that such patches are of better
quality and thus they appeal more to him.

In a post-rapid release phase “r– ! r+” is a lot slower for
core developers, mainly because there is only one occurrence
of this transition for the “casual” group.

Lifespan of Patches
In our study, we define the lifespan of a patch to be the

period during which a patch exists, i.e., from the time the
patch is submitted until the time it is in one of the three final
outcomes (Landed, Abandoned, or Resubmitted). Patches
with no review responses (in a Timeout state) are excluded
from the analysis since they are “undead” until they attract
interest among developers.

Table II reports the mean lifespan of patches in each final
outcome.

Table II
AVERAGE (MEAN) LIFESPAN OF A PATCH (IN DAYS) FOR FINAL

OUTCOMES; * INDICATES STATISTICAL SIGNIFICANCE.

Final Outcome Pre Post
Core Casual

Landed 4.5 2.7 2.1
Abandoned 31.2 11.1 7.1
Resubmitted 3.8* 2.5* 4.3

Landed patches submitted by casual developers have
the shortest average “life expectancy” at 2.1 days; while
abandoned patches submitted by core developers prior April
2011 have the longest average “life” at 31.2 days.

The longest average lifespan in Landed group is for pre-
rapid release patches at 4.5 days (compared to 2.7 and 2.1
days for post-rapid release patches). The difference between
the average lifespans of the patches submitted by core
contributors before and after April 2011 was statistically
significant (p<0.005). As expected, after switching to a rapid
release model, the reviews of patches from core developers
are done faster (2.5 days vs. 3.8 days).

Decisions to land patches from casual contributors are
made very fast (⇠2 days) with 26% of receiving an “accept”
within the first hour. Since code modifications from the ca-
sual group members are of smaller size and less critical [9],
if they are found to be enough interesting or important, they
are quickly reviewed. In contrast, if these patches fail to
generate interest or have resubmissions, the review decisions
take longer (⇠4 days).

On average, the lifespan of a pre-rapid release patch is
4.6 days, while the lifespans of post-rapid release patches
are 2.8 days and 3.4 days for core and casual developers
respectively. Therefore, the shortest-lived Firefox patch is a
zero-minute patch submitted before April 2011. The review
request on the patch was made and self-approved and the
actual time delta was 14 seconds. We also calculated the
average lifespan of all the patches in our dataset. The average
patch “lives” for 3.7 days, which is about the same as the
common mosquito.

V. DISCUSSION

Software projects put considerable effort into defining and
documenting organizational rules and processes. However,
the prescribed processes are not always followed in prac-
tice. Therefore, we tried to detect any disconnects between
Mozilla’s code review policy and actual practice.

We noticed that two reviewer policies are not being strictly
enforced. Only 6.4% of patches from core developers and
5.4% of patches for casual developers are being double
reviewed. Mozilla’s policies are not consistent due to its
commitment to the open communication standards.

We noticed that super reviews happen only rarely. As
expected, patches from casual developers do not undergo
super reviews as these patches are unlikely to require any
integration changes (changes in API, significant architectural
refactoring, etc.). One of the Mozilla developers explains:

“You do not want to do large scale changes. If
the codebase is moving fast enough, your Bugzilla
patch can go stale in that approach” (D13).

We also looked at single patch contributions and found
that while 65% of submitted patches successfully landed
to the codebase, 20% of the initial review requests were
neglected and 15% of patches were abandoned after receiv-
ing “r–” reviews. To promote community contributions, open
source projects may wish to be more careful in reviewing
patches from the community members who are filing their
first patch.

Our findings suggest that rapid release review process
offers faster response rates. Within the last year, Mozilla
has hired more developers, as well as has started a campaign
on providing faster response on contributions (48 hours), in
particular for those submitted from the external community
members (i.e., not developers employed by the Mozilla
Corporation). This shows that Mozilla is learning from the
process and being more efficient in managing huge number
of contributions from the community.

Threats To Validity
While we performed a comprehensive assessment of the

patch review process and practice of Mozilla Firefox, our
empirical study is a subject to external validity; we can
not generalize our findings to the patch resubmission and
review processes of other open source projects. However, the
described model of the patch lifecycle is general enough to
be easily adjusted by other practitioners should they decide
to assess their own process.

Currently we assume that patches (code changes only)
within a bug are not independent. We treat consequent
patches as resubmissions of the initial patch. In most cases,
this assumption holds, an older patch becomes obsolete and
a new patch is added to the bug report. We are currently
working on the extraction of a richer dataset using the Elastic
Search database, a JSON based search query engine that is

mapped to Bugzilla but stores only the meta-data of a bug.
Mozilla’s intention is to make the Elastic Search database
publicly available; however, it is currently in a testing stage.

Our study considers only the review flags such as “review”
and “super review”. A possible extension of the work
would be to include other flags into the analysis such as
“feedback”, “checkin”, and “approval” flags. For example,
by mapping “checkin” and “approval” flags to the projects’
version control system, we could evaluate project’s release
management process and practice. Unfortunately, these flags
are often not accurately set in practice or are not reported
by the project’s release drivers.

VI. CONCLUSIONS

The code review process is a key part of software de-
velopment. Like many open source projects, the codebase
of Mozilla Firefox evolves through contributions from both
core developers as well as the greater user community. Our
findings show that Mozilla’s effort to reduce the time patches
spend waiting for reviews after switching to the rapid-release
model was successful. We observed that review of patches
from core contributors follows “reject first, accept later”
approach, while review of patches from casual developers
follows “accept first, reject later” approach. While the size
of contributions might account for this difference, further
research is needed. While large portion of submitted patches
is accepted by reviewers, there is the risk of alienating
valuable contributors when reviewers do not respond to
the submitters of received contributions. This is particularly
important for the patches submitted by casual developers.
Creating a first positive experience with the review process
for community members is important to encourage possible
future contributions from them.

This paper proposes a model of a patch lifecycle that can
be used to assess the code review process in practice.

The main findings of our empirical study are as follows:
• Since switching to rapid release, patches are reviewed

more quickly.
• Contributions from core developers are rejected faster.
• Contributions from casual developers are accepted

faster.
• Patches submitted by casual contributors are dispropor-

tionately more likely to be abandoned compared to core
contributors.

• Patches “live” for 3.7 days on average.
We hope that our research findings can help inform the

decisions made by various practitioners, including Mozilla
Corporation, in improving their patch management practices.

ACKNOWLEDGEMENT

We wish to thank Martin Best and David Mandelin from
Mozilla for their feedback on the paper. We are most grateful
to Martin Best for fruitful conversations on Mozilla’s code
review and project management practices.

REFERENCES

[1] M. Nurolahzade, S. M. Nasehi, S. H. Khandkar, and S. Rawal,
“The role of patch review in software evolution: an analysis of
the mozilla firefox,” in Proceedings of the joint international
and annual ERCIM workshops on Principles of software
evolution (IWPSE) and software evolution (Evol) workshops,
2009, pp. 9–18.

[2] P. Rigby and D. German, “A preliminary examination of
code review processes in open source projects,” University
of Victoria, Canada, Tech. Rep. DCS-305-IR, January 2006.

[3] P. C. Rigby, D. M. German, and M.-A. Storey, “Open source
software peer review practices: a case study of the apache
server,” in Proceedings of the 30th international conference
on Software engineering, 2008, pp. 541–550.

[4] J. Asundi and R. Jayant, “Patch review processes in open
source software development communities: A comparative
case study,” in Proceedings of the 40th Annual Hawaii
International Conference on System Sciences, ser. HICSS ’07,
2007, pp. 166c–.

[5] Mozilla, “Firefox Input,” http://input.mozilla.org/, 2012.

[6] M. Best, “The Bugzilla Anthropology.” [Online]. Available:
https://wiki.mozilla.org/Bugzilla Anthropology

[7] O. Baysal and R. Holmes, “A Qualitative Study of Mozillas
Process Management Practices,” David R. Cheriton School of
Computer Science, University of Waterloo, Waterloo, Canada,
Tech. Rep. CS-2012-10, June 2012. [Online]. Available:
http://www.cs.uwaterloo.ca/research/tr/2012/CS-2012-10.pdf

[8] A. Mockus, R. T. Fielding, and J. D. Herbsleb, “Two case
studies of open source software development: Apache and
mozilla,” ACM Trans. Softw. Eng. Methodol., vol. 11, no. 3,
pp. 309–346, Jul. 2002.

[9] P. C. Rigby and M.-A. Storey, “Understanding broadcast
based peer review on open source software projects,” in
Proceedings of the 33rd International Conference on Software
Engineering, 2011, pp. 541–550.

[10] B. D. Sethanandha, B. Massey, and W. Jones, “Managing
open source contributions for software project sustainability,”
in Proceedings of the 2010 Portland International Conference
on Management of Engineering & Technology, July 2010.

[11] N. Bettenburg, B. Adams, A. E. Hassan, and D. M. German,
“Management of community contributions: A case study on
the android and linux software ecosystems,” 2010. [Online].
Available: http://nicolas-bettenburg.com/?p=399

[12] P. Weissgerber, D. Neu, and S. Diehl, “Small patches get in!”
in Proceedings of the 2008 international working conference
on Mining software repositories, 2008, pp. 67–76.

[13] Mozilla, “Code Review FAQ,” https://developer.mozilla.org/
en/Code Review FAQ, 2012.

[14] ——, “Code-Review Policy,” http://www.mozilla.org/
hacking/reviewers.html#the-super-reviewers, June 2012.

[15] MozillaWiki, “Modules Firefox,” https://wiki.mozilla.org/
Modules/Firefox, June 2012.

