
The Universal Repository of Everything
Niko Schwarz

University of Bern
Daniel M. German
University of Victoria

Serge Demeyer
University of Antwerp

Michael W. Godfrey
University of Waterloo

Douglas H. Martin
Queen’s University

Abstract—Clone detection might strike the casual observer as
a proverbial research solution looking for a problem. However,
when carefully considered, it can be seen as comprising three
closely related problems: clone detection, code diffing, and code
search. Techniques proposed for any one of them can typically
be used for the others as well. Together, these techniques are
hugely successful both in research and practice. This article
recollects success stories of the techniques, points out open
problems, and suggests a vision of the whole that the techniques
may be forming: the universal repository of everything.

Index Terms—clone detection; software provenance;

I. INTRODUCTION

Clone detection seeks duplication in programs, either
exact or near-miss, [1] and has been studied heavily from a
somewhat algorithmic point of view. There is a plethora of
clone detection techniques with estimates on their precision
and recall, as well as their performance figures and scalability.

The dual of clone detection is code diffing: the search for
dissimilarities between programs. Since two snippets of a
program are either similar or dissimilar, diffing and clone
detection are two sides of the same coin.

Code search is somewhat broader than the previous two
techniques in that the search term need not resemble the
representation of the best find, it need only express the same
concept. Since literal resemblance often implies conceptual
resemblance, clone detection is one ingredient among many
to good searching.

In this paper, we recollect success stories of the above
three problems and the techniques used to solve them, and
we suggest a vision of the whole that the techniques may
be forming: the universal repository of everything. By this
we mean a dictionary that maps the signatures of all artifacts
ever encountered to the place they were encountered in.

A. The Universal Repository of Everything

Many of the techniques that we discuss in this article follow
the same underlying principle: an artifact is reduced to a
signature, which is then compared to other signatures in order
to find similar artifacts from elsewhere. Since every artifact has
at least one binary representation, the simplest signature is the
hash of that representation. To allow for similar but different
things to be identified, the signatures are derived from abstrac-
tions, i.e., reductions of the original artifact by stripping away
minutiae detail that aren’t important for overall similarity.

This leads us to the vision of the universal repository of
everything. It stores the signatures of all digital artifacts ever
produced, in all of their versions. It maps from the signature

to a descriptor of the origin of the artifact. This allows to
track the divergent evolution of software artifacts [10], as
well as establish the provenance of every artifact encountered.
We believe there are countless possible applications. As a
rule of thumb, with massive amounts of data to help, difficult
problems can suddenly become a lot easier [6].

While our repository might never be realized concretely,
we note that since signatures are fixed in size, the size of our
repository is linear in the number of all artifacts ever produced,
which may already be feasible from a memory and perfor-
mance point of view (for workable definitions of “artifact”).

The open problem to produce the universal repository of
everything is a working catalog of techniques that produce
signatures that reflect just the amount of similarity that is
needed. In the rest of this paper we will look at current
techniques that abstract artifacts, and we will see applications
of these abstractions.

II. CLONE DETECTION IN BINARIES

Clone detection is ordinarily performed on program
sources, but can also be run on binaries. Depending on
whether the binary analysis is assumed to be adversarial
(i.e.,, with the intent to hide the underlying implementation),
different abstractions may be employed. For non-adversarial
clone detection, a simple technique has been shown to
be surprisingly successful: programs are scanned for the
frequency of certain markers. In the detection of violations of
the GPL license in firmware binaries, the search for strings
in binaries has been shown to be highly effective [7].

Beyond license violations, looking up a binary in a global
repository of binaries could reveal which version of the binary
it is—a question Java developers seem to be asking about
their binaries with astonishing frequency. In some cases, a
global repository of hashes of binaries can identify the correct
version. However, in practice, there is often more than one
binary in circulation for any given version, due to the choice
of compiler or compile-time options selected. A number of
markers have been proposed to allow a fuzzy search for Java
binaries [3], [4], which focus on the underlying version of
the jar, but ignore the compiler that was used to produce it.

Computing the differences between binaries is important to
the security of software systems. When a system gets patched,
the patch necessarily contains information on the vulnerability
that was fixed. Since not all users of software will immediately
perform an update, it is important to software providers to
make it difficult for their binaries to be diffed, in order to



protect the yet unpatched installations. Conversely, developers
want to know where their systems are vulnerable.

Open Questions: For two binaries, can we answer whether
one of them is a descendant of the other? How can code
duplication tools on binaries be benchmarked?

III. PROVENANCE

Provenance, in general, refers to the record of origin and
ownership of an artifact. In the software engineering world,
the problem of provenance of a software artifact refers to the
recovery of its origin or source. The Internet has made it easy
to copy source code (particularly open source). Unfortunately,
version control systems only start recording the history of
an artifact the moment that it is a added, and does not link
it to its original source. The question of provenance arises
naturally in the following domains.

License compliance: An organization needs to identify
the origin of the software they create (either locally created
or licensed) in order to verify that it has satisfied any legal
obligations.

Security: The origin of a copy is likely to continue to
evolve. It is important to know if any of the copied artifacts
contain security related bugs that have been fixed after the
copy was made.

Verification of binaries: When supplied with both source
code and binaries, one might want to verify that the binaries
provided come exactly from the provided source code.

Plagiarism: The owner of the original artifact might want
to verify if a copy has been improperly made. In this scenario,
the owner might want to find copies of her software artifacts.

The wish for descriptive meta information on software has
led to the creation of the Software Package Data Exchange
format [9], which marks every software module with where
it came from, what the license is, and who developed it,
much like the sticker on a ship container, or a hardware bill
of materials listing every screw. Currently, ad hoc methods
prevail in the search for provenance of source code.

There are several techniques that try to solve this problem
on the level of the build system or package manager [5].
These methods record and track identifiers in the software
artifact, albeit with limited success.

Open Questions: What type of information is present in
the source that is preserved in the binary?

IV. NON-CODE CLONES

The artifacts in modern software projects include more
than source code. This leads to a problem: while source code
is nearly universally stored in plain text, other artifacts like
UML diagrams can be stored in a variety of formats. We may
still be able to use existing techniques on these other formats
if we manipulate them to find the right granules [8].

To prevent and punish copyright violations, copyright
holders are scanning the Internet for similar copies of their
pictures. Websites that host copyrighted material, to be
protected by “safe harbor” laws, are now offering the search
for “clones” in images and videos.

Open questions: How can images be reduced to signatures,
so that similar pictures still produce the same signature?

A. Clones in Bug Reports
A software systems with a large user base receives a huge

amount of bug reports. For instance, projects like eclipse,
GNOME and Mozilla received between 2500 and 6900 bug
reports over the course of three monthsMany of these bugs
are duplicates; Eclipse for instance identified 20 % duplicates
or on average 371 duplicates per month [2]. As such, finding
duplicate bugs has received considerable attention in recent
years and several techniques such as text mining, or matching
stack traces, have been explored with reasonable success.

Open Questions: Can we see if the bug was already reported
to a subcontractor? Can we identify which component releases
are more trustworthy than others?

V. SUMMARY

We have proposed the universal repository of all artifacts of
software engineering ever produced. We identified open ques-
tion on our quest towards a catalog of techniques that allow us
to store signatures of all kinds of artifacts in one repository.

ACKNOWLEDGMENT

We gratefully acknowledge the financial support of
the Swiss National Science Foundation for the project
“Synchronizing Models and Code” (SNF Project No.
200020-131827, Oct. 2010 - Sept. 2012). This paper comes
from Schloss Dagstuhl Seminar 12071 - Software Clone
Management Towards Industrial Application. We thank
Armijn Hemel and Jens Krinke for their contributions.

REFERENCES

[1] Ira D. Baxter, Andrew Yahin, Leonardo Moura, Marcelo Sant’ Anna,
and Lorraine Bier. Clone detection using abstract syntax trees, 1998.

[2] N. Bettenburg, R. Premraj, T. Zimmermann, and Sunghun Kim.
Duplicate bug reports considered harmful. . . really? In Software
Maintenance, 2008. ICSM 2008. IEEE International Conference on,
pages 337 –345, 28 2008-oct. 4 2008.

[3] Julius Davies, Daniel M. German, Michael W. Godfrey, and Abram
Hindle. Software bertillonage: finding the provenance of an entity. In
Proceedings of the 8th Working Conference on Mining Software Repos-
itories, MSR ’11, pages 183–192, New York, NY, USA, 2011. ACM.

[4] M. Di Penta, D.M. German, and G. Antoniol. Identifying licensing
of jar archives using a code-search approach. In Mining Software
Repositories (MSR), 2010 7th IEEE Working Conference on, pages 151
–160, may 2010.

[5] Eelco Dolstra. The Purely Functional Software Deployment Model.
PhD thesis, Utrecht University, January 2006.

[6] Alon Halevy, Peter Norvig, and Fernando Pereira. The unreasonable
effectiveness of data. IEEE Intelligent Systems, 24:8–12, 2009.

[7] Armijn Hemel, Karl Trygve Kalleberg, Rob Vermaas, and Eelco Dolstra.
Finding software license violations through binary code clone detection.
In Proceedings of the 8th Working Conference on Mining Software
Repositories, MSR ’11, pages 63–72, New York, NY, USA, 2011. ACM.

[8] Douglas Martin and James R. Cordy. Analyzing web service similarity
using contextual clones. In Proceedings of the 5th International
Workshop on Software Clones, IWSC ’11, pages 41–46, New York,
NY, USA, 2011. ACM.

[9] Phil Odence and Kate Stewart. A common software package data
exchange format:1.0 release update and discussion, August 2011.

[10] Nikolaus E. Schwarz, Erwann Wernli, and Adrian Kuhn. Hot clones,
maintaining a link between software clones across repositories. In
Proceedings of the 4th International Workshop on Software Clones,
IWSC ’10, pages 81–82, New York, NY, USA, 2010. ACM.

2


