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Abstract—Programmers need explicit tool support for software
maintenance tasks, and a prerequisite for this is an understanding
of where the boundaries between distinct tasks lie. Asking devel-
opers to indicate manually when they switch tasks is disruptive
to their normal work flow, so researchers have sought ways to
infer task boundaries automatically based on the content of the
interaction histories with the IDE. Coman previously reported
a fully automated algorithm that achieved 80% accuracy in a
lab validation study. In this paper, we evaluate the use of this
algorithm within an industrial setting. We found two problems:
first, a large number of the tasks identified are in fact only
sessions or subparts of a larger task; second, the demonstrable
effects of interruptions are not considered. We argue that the
problem of task boundary detection consists of two sub-problems:
first, detecting task sessions; and second, linking task sessions.
Coman’s algorithm only partially addresses the first, and ignores
the second.
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I. INTRODUCTION

Software maintenance tasks, such as fixing bugs and adding
features, are typically highly labour intensive. Explicit tool
support for tasks is often weak, and different kinds of sub-
tasks require a variety of skills, artifacts, and tools [1], [2], [3].
Moreover, a task may be interrupted or switched out, causing
extra effort in managing task context [4], [5].

Recently, practitioners and researchers have begun exploring
ways to provide explicit support for typical maintenance tasks.
For example, researchers have proposed to improve IDEs by
providing task-friendly views, to recommend task relevant
information [3] and to build task-aware software development
[6]. A fundamental problem for these task-aware applications
is to detect task boundaries, that is when a task is started,
interrupted, resumed, or finished. Without an understanding of
where the boundaries lie, supporting tools may unknowingly
mix task contexts together and provide inappropriate informa-
tion at inappropriate time.

The problem of task boundary detection is challenging
[6]. The ways to start a task vary from the task type, the
comprehension strategy, and programmers expertise. Also,
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various cases of interruption and task switching make the
problem more complicated.

To our knowledge, Coman et al. have proposed the only
automated algorithm for detecting task boundaries from inter-
action histories [7], [8]. In a lab validation study, this algorithm
has shown 80% success in identifying the number of tasks.
However, industrial software development is quite different
from lab setting. Software systems are often much larger,
tasks are more complex, and interruptions are common. In this
work, we have sought to evaluate how Coman’s algorithm may
perform within an industrial setting.

We performed an industrial case study involving six profes-
sional software developers working on their normal real-world
tasks. From over a month’s worth of raw data, we examined 12
randomly chosen person-days in detail. We applied Coman’s
algorithm on the interaction histories captured by the IDE, and
compared the output against the “ground truth” as reported by
the developers themselves. When we noticed surprising results,
we further examined the details of the data to obtain insights
into the algorithm and the problem space, and considered
possible ways to improve the algorithm.

We first discuss the problem in Section II. We next review
Coman’s algorithm and lab study, and present our research
questions in Section III. We present the case study design in
Section IV and the results in Section V. We discuss related
work in Section VI, and threats to validity in Section VIIL.
Finally, we conclude in Section VIII.

II. THE PROBLEM AND CHALLENGE

A programmer’s work is driven by tasks, such as fixing
bugs or adding new features. In a diary study of 13 industrial
developers, 13 types of tasks are found, such as estima-
tion/investigation, code and high-level test [9]. However, it
should be pointed out that there is no generally accepted
categorization of developer task types. In our work here, we
consider only software maintenance tasks that include the
modification of code. Such tasks are usually categorized into
four kinds: adaptive, corrective, perfective, and preventative.

Programmers may spend a lot of effort solving a given
software maintenance task. They need to go through several



different stages, such as coming to an understanding of desired
behavior, gathering relevant information, and testing hypothe-
ses. At each of these stages, they usually need to develop
goals, hypotheses, and ask questions [1], [2]. Moreover, in
a large software system, task-related information is often
scattered around in different places [3]. Developers may need
to navigate and search a lot to find task relevant artifacts.
Tasks may be decomposed into subtasks. For example, when
a current task requires code change by another programmer,
then a subtask may be created for the other programmer [5].

A task may also be interrupted or switched out, causing
extra effort in managing task context. Programmers may
interrupt themselves or be interrupted [4]. If the current task
changes to a lower priority, it may be switched out in favor of
a higher-priority task. Both in cases of interruption and task
switching, the context of tasks need to be saved and loaded,
resulting in much mental effort. Task switching is considered
by programmers as a serious problem in their work [5].

To help programmers, researchers have tried to provide
explicit task support for software development. Murphy et
al. argued that task structure can be used to improve IDEs
by providing task-friendly views, to recommend task relevant
information, and to build a group memory for collaboration
[3]. Robillard et al. proposed to support task-aware software
development environment based on navigation analysis [6].

However, the problem of task boundary detection remains
challenging. There are many ways a given developer might
choose to start a given task, making it hard to detect the
starting point. Moreover, there are various reasons why a task
might be interrupted or switched out, making it hard to identify
the transition points between tasks.

Comprehension strategy, task type, programmer expertise,
and other factors may all affect how a task is started. Some
developers may start a task by building and exploring hypothe-
ses (top-down) while some may by reading code (bottom-
up) [1]. Some may begin with searching while some with
navigation [10], [11]. For corrective tasks, the common first
step may be recreating the problem; for perfective tasks, the
first step may be comprehending the desired behavior. Even for
the same initial step, the methods used may be different: for
example, to comprehend the desired behavior, some developers
may use debugging while some may prefer searching the
documentation.

Also, programmer expertise affects how a task may be
started. An experienced programmer with a good understand-
ing of the code may go directly into the code locations that
need to be changed, while a newcomer may have to explore
code for hours just to find an appropriate starting point.

Various cases of interruption and task switching also make
the problem hard to solve. Many events may trigger the
transition of tasks: changing of task priority, getting blocked,
getting a request from colleagues, lunch time/conference, or
simply getting tired of the current task. These events are often
not explicitly recorded anywhere, therefore providing little
information that a task boundary detection algorithm may rely
on.

1II. COMAN’S ALGORITHM AND LAB STUDY

Coman et al. proposed an algorithm that detects task bound-
aries automatically based on programmer interaction histories.
The main ideas behind the algorithm are:

« Each task has a set of artifacts that are essential for
performing the task, namely the rask core.

« When programmers work on a task, there is a time
period when the task core is accessed intensively at
approximately the same time.

Based on these assumptions, the algorithm first computes
the time intervals of intensive access (TIIAs) for each method
— these are the time periods with intensive access to the
method. Time moments with a large number of TIIAs are then
identified as task core moments. Using these task core moment
as seeds, the TIIAs are grouped into task subsections based
on the temporal distances. The resulting task subsections are
finally identified as the tasks.

Since we refer to the details of the algorithm in later
discussions, we now describe the main steps and parameters
of Coman’s algorithm:

1) Compute TIIA(m)
Based on interaction histories, the algorithm computes
TIAs of each method based on degree of access (DOA),
which is defined as DOA(m,t) = %ﬁ’t), where
AT(m,t) is the amount of time that a method is
accessed and (t —tg) is the total interval of time period.
By definition, the value of DOA is between O and 1.
A TIIA of a method starts when it is first accessed, and
ends when its DOA decreases below a stated threshold,
th. The higher the th, the stricter for being considered
as “intensive access”, therefore the more likely to end
an existing TIIA in case of no access. th is a parameter
for tuning.

2) Form TIIA time series
Once all of the TIIAs have been computed for all of
the methods, the number of TIIAs at each time can be
computed. This forms a TIIA time series.

3) Smooth TIIA time series
The TIIA time series is smoothed using weighted central
moving average (WCMA). Every data point is computed
as an average of the current point and a number of data
points on either side, with weights decreasing as the
temporal distance increases. Smoothing transforms the
TIA time series into a continuous line so that peaks
and valleys can be identified later on.
The number of data points used in WCMA is a param-
eter for tuning, namely ta.

4) Identify task core moments
Peaks on the TIIA time series indicate moments when
a large number of methods are accessed within a short
period. By assumption, these methods are task cores and
the peaks are task core moments.
Only peaks with height greater than a threshold ¢p are
considered as task core moments. The height of a peak
is computed as the difference between the peak and the



higher of the two adjacent valleys. tp is a parameter for
tuning.

5) Expand task core moments to subsections
The task core moments are then expanded by adding all
of the TIIAs one by one. Each TIIA is grouped with the
task subsection that has the smallest distance to it. The
distance of a TIIA and a task subsection is defined as
the spanning difference of the task subsection if adding
the TIIA.
Each task subsection is then identified as a task.

The algorithm has three parameters that can be tuned: th
for the DOA threshold, ta for the number of data points (or
the time) on each side in smoothing, and ¢p for peak height
threshold. Coman et al. state that parameter tuning is important
for applying the algorithm, but they do not provide specific
guidelines for doing so.

To investigate the proposed algorithm empirically, Coman
et al. performed a laboratory experiment. Three students
were allowed 70 minutes to solve five maintenance tasks
for the Paint program, which has 9 classes and 503LOC.
Both the tasks and the Paint code were developed by other
researchers. In this study, the parameter values used were
th = 2 x median(accesses) * 15, ta = 250(4min), and
th = 0.2, where median(accesses) is the median length of
the accesses. The definition of th takes the characteristics
of programmer accesses into consideration. If a programmer
tends to have long accesses, a single lack of access would not
make th decreases rapidly and end the current TIIA. Parameter
ta was set to 250 , which equals roughly 4 minutes on either
side. Peak threshold ¢th was set to 0.2.

In this lab study, the algorithm was able to correctly identify
9 out of the 11 tasks that were attempted, achieving a success
rate of 81%. All of the task subsections that were identified as
tasks did indeed correspond to a “ground truth” task. The error
of 19% came from that two small tasks were not identified by
the algorithm.

A. Research questions

We know from experience that industrial software develop-
ment is often quite different from the artificial setting in the
lab. In industry, the software systems are often very large, the
tasks to be solved are complex, and interruptions are common.
All these factors may cause techniques that work well in the
lab to behave differently in an industrial setting.

With this in mind, we chose to investigate two research
questions:

QI: How does Coman’s algorithm perform in an industry
setting?

If the algorithm performs differently than expected,
why?

Q2:

1V. CASE STUDY DESIGN

To answer our research questions, we performed an indus-
trial case study of detecting task boundaries. The study was

TABLE I
BACKGROUND OF PARTICIPANTS

Prog Proj Years Years Years
in Proj | in Java | in Eclipse
NI H3.DBM 0.8 4 2
P1 H3.DBM 0.8 4 2
P2 H3.DBM 0.8 5 2
P3 H3.SYS 2 S 2
P4 H3.KNW 0.6 6 2
PS5 Learning 0 1 2
P6 Learning 0 2 2

performed in Heweisoft, a software company located in Shang-
hai, China whose main expertise is in building information
system for enterprise and government.

Six programmers from the R&D department participated in
this study; we shall refer to them as P1, P2, etc. All of them
were actively involved in the development of an internal plat-
form called H3, a middleware system for distributed enterprise
applications. The programmers were working on different
sub-projects of H3: P1 and P2 were developing H3.DBM, a
distributed database engine of about 300KLOC, P3 worked for
H3.SYS, a system management component of about SOKLOC,
and P4 was in H3.KNW subproject, a knowledge management
system of about 100KLOC. At the time of the study, the H3
platform was being used by two other projects for building
business applications and was in active maintenance.

Before the study, each programmer completed a question-
naire about their background and experience. The results are
shown in Table I. At the time the study was performed, P1,
P2, P3, and P4 had been on the H3 team for about two
years, and all were considered to have good understanding
of the whole project. P1, P2, and P4 had switched to their
current sub-project six to eight months previously; all had
become experienced developers of the sub-project. PS5 and
P6 were newcomers to both the project and the team, having
just joined the company the previous week. During the first
period of learning, they were assigned some tasks to become
familiar with the software system. To ensure that the level of
granularity of a task in our study is comparable to Coman’s
study, we pointed out to programmers that typical software
maintenance tasks include adding a new feature and fixing a
bug.

For each programmer, we captured their interaction histories
for a month using a special-purpose plug-in tool we created
for their development environment, Eclipse. Captured events
have the format (time, action,artifact) which indicate re-
spectively the time at which a developer acted on an artifact
(method or file), whether the action was a view or a change,
and the identity of the artifact. The tool required no input
from the user and was invisible to the programmers, although
of course they were all aware of its existence and use.

For each programmer, we randomly picked three days
before the start of the study as the days for applying the
task splitting algorithm. The developers did not know ahead
of the time which days had been picked. At the end of each



TABLE II
BASIC RESULTS

#Tasks self- # Interaction Events
reported/predicted on the day
(“-": no report)
Prog || DI D2 D3 D1 D2 D3
Pl 1/16 2/23 - 7141 22221 -
P2 2/15 3/15 10485 | 10072
P3 3/0 2/1 1701 1367
P4 2/2 - - 752 - -
P5 171 1/12 1/4 478 6444 1060
P6 - 1722 2/5 - 8527 1496

of those days, developers were asked to send email detailing
what tasks they had performed that day, and how their time
had been broken up into tasks. The email asked two questions:
1) What tasks have you performed today? 2) How was your
time segmented into these tasks? The developers were asked to
do this at the end of these chosen days so that the knowledge
of what they had done that day would still be fresh in their
memories. In case that programmers did not response, which
we may detect in the next morning, we did not ask developers
to recall yesterday’s tasks again, since we thought that it might
be too hard on them. So we ignored all the non-reponses.

For each of the selected days, we applied the algorithm and
compared the results with the number of self-reported tasks,
which served as our ground truth. We first ran the algorithm
with the same parameter values had been used in the lab study;
we refer to these as the baseline values for the parameters. We
then tuned the parameters to find values that best fit our data.
Since Coman et al. provided no guidance on parameter tuning,
we did so based on our own understanding of the algorithm:
for each combination of parameter values, we applied the
algorithm and chose the parameter values that best fit with
the self-reported number.

We did not verify the results of Coman’s algorithm with
programmers since we thought that might affect programmers’
response. Verification for this study is better done when
programmers still have fresh memory about their work, which
means at the end of all the selected days. However, showing
the results on multiple days may make programmers speculate
the purpose of the study and tend to report numbers that are
close to that.

V. CASE STUDY RESULTS

We received a total of 12 email messages from the develop-
ers describing their tasks and time spent, although 18 had been
expected. Table II shows these results, as well as the number
of interaction events on those days to give a rough idea of the
activity level.

We can see from the table that the number of tasks every-
day is small, ranging from one to three. Most programmers
reported only a very rough time segmentation, often one in
the morning, and another in the afternoon. We consider this
understandable since it is much more difficult to recall the
details of time periods than the number of task. Most tasks
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reported were “debugging and fixing X bug”, “deploying X to
server”, “learning X module”, and “preparing training system”,
so we consider the granularity of tasks in our study is quite
similar to Coman’s study. For PS5 and P6, since they were
newcomers, the tasks they reported were mostly “learning X”.

A. QIl: How does Coman’s algorithm work in an industry
setting?

To answer Q1, we applied the algorithm and compare the
results with self-reported data, the ground truth. We ran the
algorithm under two situations, with baseline parameters and
with parameter tuning.

1) Results with baseline parameters: For each of the 12
days, we apply the task splitting algorithm using the baseline
parameters: th = % * median(accesses) * %, ta = 250, and
tp = 0.2. Table II shows the results.

We can see that the number of tasks detected fits poorly
with the self-reported number overall. The total number of
tasks with the baseline parameters was 112, while the total
number of the self-reported value was only 21.

The algorithm’s accuracy varied over the different days of
the study. On two days, P4.D1 and P5.D1, the number of tasks
detected was the same as the self-reported. But in half of the
12 total cases, such as P1.D1 and P1.D2, the number of tasks
found by the algorithm was much larger than the self-reported
number. In the case of P3.D1, no tasks were detected. Further
analysis shows that this was because no peak has height greater
than the threshold value (the highest peak has height of 0.14).

2) Results of parameter tuning: We tried to tune the pa-
rameters to better fit our data. Since the baseline parameter
values worked well in the lab study, we judged it likely that
the best parameters for our study would be somewhere close
by. Consequently, we performed the parameter tuning around
baseline values. For each parameter, we pick a few values
below and a few above the baseline values. In more detail, we
tune the parameters th, ta, and tp as follows:

e DOA threshold: th
th is the threshold for the level of DOA that ends a TITA.
Itis set to th = Zxmedian(accesses)x = in the baseline,
where median(accesses) is the median duration between
accesses. A larger value for th means shorter TIIAs, and
thus fewer tasks.
In our case study, the median(accesses) of the 12 days
have total four values, four of 1, four of 2, one of 3, and
one of 6. This means the range of th is from 0.067(th=1)
to 0.4 (th=6). So following the rationale of “close to the
baseline”, we choose the following values:
th = 0.04, % * median(accesses) * %, 0.2,0.4.

« Smoothing parameter: ta
ta defines the number of data points on either side
involved in smoothing. The larger the ta is, the smoother
the time series will be, and thus the peak height will be
smaller and fewer tasks will be identified.
The baseline value of ta is 250, roughly 4 minutes on
either side, so we choose following ta values:
ta = 180,250, 300, 420(3min, 4min, 5min, 7min)



e Peak height threshold: tp
tp is the threshold for peak identification in the time
series. The larger tp is, the harder it is for a peak to be
considered as a task core moment, thus leading to fewer
peaks and fewer tasks.
The baseline value of tp is 0.2, so we try following
values:
tp =0.1,0.2,0.4,0.6
For each combination of parameter values, we ran the task
splitting algorithm. The results are shown in Figure 1: the 12
series represent the 12 programmer days, the X-axis represents
particular combinations of parameter value, and the Y-axis rep-
resents the number of tasks being detected. There are a total of
64 data points on the X-axis, since each of the three parameters
has four values. These data points are sorted in the order of th,
ta, and tp, starting from th = 0.04,ta = 180(3min),tp = 0.1
and ending at th = 0.4, ta = 420(7min), tp = 0.6.
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Fig. 1. Parameter tuning

As we can see from the figure, some series are quite spiky,
such as P1.D1 and P6.D2, while some are smoother, such as
P5.D1. We notice a common pattern for a large number of
series: a total of 16 spikes on a series, and every 4 form
a group; within each group, the height of the four spikes
decrease and each spike is sharp; and across the groups, the
overall height decreases slightly. This pattern suggests that the
effect of parameters has some regularity.

The rapidly decreasing height of each spike indicates that
the effect of ¢p on the algorithm is strong. Increasing ¢p lifts
the threshold of being identified as peaks, and greatly reduces
the number of tasks greatly.

Within each group, the decreasing height of the four spikes
shows the effect of ta, since the only difference between the
four spikes is ta. The bigger ta, the stronger the smoothing,
which causes lower peaks and higher valleys. The rapidly
lowering spikes within a group suggests that smoothing has
a strong effect on the algorithm.

Across the four groups, the change of the overall height
is the result of changing ¢h, as the only difference between
the groups is th, the threshold of DOA. We found that the
four groups look quite similar, with only a slight decrease of
the overall height. This suggests that the effect of th on the
algorithm is relatively small,

For each parameter combination, we compare the number
of tasks being detected with the self-reported number. The
parameter sets that have the smallest total difference for all
the 12 cases are chosen as the best fits.

We found that the parameters that fit best are (th =
0.4,ta = 180,tp = 0.6)(51), and (th = 0.4,ta = 420,tp =
0.4)(62). In both cases, the total difference of number of tasks
identified is 16. The total number of self-reported tasks is 21,
so the overall error rate is about 16/21=76%. In both parameter
sets, no tasks are detected in half of the 12 programmer days,
or that the parameters are over-tuned for these cases. This
suggests that parameter tuning for the algorithm may not be
as simple as finding a universal set of values. It may depend
on factors such as programmer, task, and the software system.

We feel it is important to pay attention to the underlying
meaning of the parameter values while tuning the parameters.
For example, smoothing means that information is lost. Setting
ta = 600 means 10 minutes on each side participated in
smoothing, which means 20 minutes in total. However, 20
minutes may be long enough to solve a small task. So would
such small tasks be washed away in such smoothing? Also for
tp, increasing its value means that higher peaks are considered
as task cores, which also means that more methods should be
accessed intensively in a shorter time period to be identified as
a task core. It is unclear that this is a reasonable assumption.

3) Answer to QI : From the results presented above, we
can see that the performance of the algorithm in our industrial
setting is much different from that observed in the lab setting
in the original study. With the same parameters as in the lab
study, the total number of tasks being detected was about 5
times that of the self-reported number. Results vary with cases:
some are the exactly same, some are below, but most are well
above the self-reported number. After tuning the parameters,
the best cases still have error rate of about 76%. The parameter
tuning may be more complicated than finding a universal
applicable parameter set.

B. Q2: If the algorithm performs differently than expected,
why?

Since the results of the Coman algorithm were quite dif-
ferent in our industrial study than the original lab results, we
sought to understand why this might be the case by performing
a deeper analysis of the data and the assumptions of the
algorithm.

1) Large number of predicted tasks: We wondered why, in
many cases, Coman’s algorithm tended to detect many more
tasks than were reported by the developers themselves. We
examined the details of the data: the TIIA time series, the
peaks, the task core, and task subsections. We used P1.DI
under the baseline parameter as our example. On that day
programmer P1 reported performing only one task.

Figure 2 shows the TIIA time series of P1.D1 before
and after smoothing. 16 peaks on the smoothing series are
identified as the task core moments, yet no single peak is
dominant.
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Fig. 2. TIIA time series being smoothed

We further looked into the task cores, as shown in Figure 3.
In this figure, each method that is ever included in at least one
task core is plotted on the X-axis. Each row represents a task
as detected from the algorithm. A dot at (X, Y) represents that
method X is included in the core of task Y. As we can see,
the size of the task core is small, about 2 methods on average.
There are small overlaps between task cores: e.g., the task core
of S7 is exactly the same as S14, and is a subset of the task
core of S8.
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Fig. 3. Methods in task cores

Figure 4 shows the artifacts included in each task that was
detected. This figure is similar to Figure 3 except that X-axis
is files and a dot at (X,Y) means that file X is included in the
task of Y. We plot files instead of methods since the number of
methods is quite large. We can see from the figure that artifacts
between tasks overlap greatly. Many consecutive tasks have a
large number of common artifacts. For example, all of the
artifacts in S9 are contained in S10, same is for S13 and S14.

We used the same methods examining the other days that
have a large number of tasks. We observed that the data
shows a common pattern: no dominant peak, small size of
task cores, small overlap between task cores, and large overlap
between task artifacts. Such pattern suggests that a task is
completed through multiple stages (multiple peaks), with a
set of methods that are essential to the stage being accessed
intensively approximately the same time (peak); the methods
core to each stage may vary, but since for solving one task,
the sets of artifacts involved in each stage have large overlaps.

We wonder what these stages mean. Do they correspond to
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Fig. 4. Files in tasks

the typical stages of solving a complex task? For example,
when fixing a bug, a programmer may first analyze the
behaviour, then change the code, and finally check other code
to make sure no new bugs are introduced. Can the first stage
as detected by the algorithm be “analyzing behaviour”? More
studies into this are needed.

So our data shows that the underlying assumption that arti-
facts that are accessed approximately the same time are a task
core can be problematic in industrial software development.
For complex tasks and under normal time pressure, a task is
often completed through multiple stages, and artifacts essential
to each stage are intensively accessed at the same time. In
the lab study, since the software system is small and the task
is simple, plus programmer working under very strict time
pressure, the multiple stages are combined.

2) The effect of interruptions: Interruptions to the work
flow of a task are not explicitly considered by Coman’s
algorithm; yet, it seems clear that interruptions can and do
have important bearing on real-world task performance.

In the algorithm, a period of “no access” for an method
will decrease the DOA and may end the TIIA. When an
interruption occurs, the DOA of all the artifacts decreases
rapidly, which may result the ending of a large number of
THAs, forming a gap in the TIIA time series. The gap may
result in a valley in the smoothed time series. The more
valleys, the more possible peaks, and finally the more tasks.
Therefore, interruptions may affect the number of predicted
tasks.

Also in the algorithm, the task boundaries are determined
by the overlap of TIIAs. Interruptions may cause large gaps
of TIHAs. According to the algorithm, TIIAs before the gap
will be grouped into some task before the gap, even though
the core of the real task is after the gap. So, interruptions may
also affect boundaries of the task.

To assess the effect of interruptions on the number of tasks,
we decided to artificially “shrink” the interruptions in the
interaction history and compare the number of tasks before
and after the shrinking. For example for P1.D1, if we shrink
all the interruption longer than five minutes to one minute, then
the number of tasks is reduced from 16 to 13. Table III shows
the difference. We can see that the effect of interruptions does
indeed affect the output of the algorithm: in seven out of the



TABLE III
#TASKS CHANGE WHEN INTR SHRINK

#Tasks before — #Tasks after
Prog || D1 D2 D3
Pl 16 — 13 | 23 — 22 | -
P2 15— 14 | 15— 15 | -
P3 0—0 1—0 -
P4 2 — 1 - -
P5 1 —1 12—12 | 4—3
P6 - 22 —20 | 5—4
TABLE IV

TASK BOUNDARIES OVERLAP WITH INTR

#Tasks overlap / #Tasks
Prog || DI D2 D3

Pl 8/16 6/23 -
P2 5/15 6/15 -
P3 -/0 -/1 -
P4 172 - -
PS5 -/1 9/12 2/4
P6 - 10/22 4/5

12 cases, the number of tasks decreased.

To see the effect of interruptions on the task boundary, we
compared the boundaries of tasks with the interruptions within
the interaction history. For example for P1.D1, for the total 16
tasks as detected, 8 of them have a starting time that overlaps
with one of the top 20 interruptions.

Table IV shows the number of overlaps between the task
boundary and interruptions for all the 12 days. Overall, one
third to half of the task boundaries overlap with the top 20
interruptions. In some cases, such as P5.D2 and P6.D3, the
degree of overlapping is large.

We also note that when the parameters are changed, overlap-
ping is still present. For example, Table V shows the number
of overlaps for P1.D1 under different parameters. We can see
that about half of the starting time of the tasks overlap with
the interruptions.

TABLE V
INTR OVERLAP WHEN PARAMS CHANGE

#Tasks overlap / #Tasks
P1.D1 ta =180 | ta =250 | ta =300 | ta =420
tp=0.2 8/20 8/16 9/14 517
tp = 0.4 6/12 6/10 6/8 3/5
tp = 0.6 5/8 4/7 3/4 3/5

3) Answer to Q2: From the above discussions, we can see
that there are two problems with Coman’s algorithm that may
account for its inconsistent performance between an industrial
setting and a lab setting:

1) The assumption that the task core is accessed intensively
at approximately at the same time is unrealistic. The tasks
identified under such assumption may be just stages of solving
a complex task. Due to the artificial lab setting, the stages of
solving a simple task are clustered. But in an industrial setting,

this assumption does not hold and resulted in many more tasks
being identified.

2) The effects of interruptions on the algorithm were ig-
nored, yet interruptions are common in real-world develop-
ment and affect the performance of the algorithm. The lab
setting assumed no interruptions, but in an industrial setting
with many interruptions, the effects were significant.

C. Discussion

1) Insights into the problem: Interruptions and task switch-
ing are a fact of life for software developers, and result
in fragmented task sessions. Therefore we consider that the
problem of identifying the task boundaries in fact consists of
two sub-problems. a) detecting task sessions — time periods
when programmer is working on a single task continuously,
and b) linking related task sessions together, such as grouping
task sessions that belong to a same task. Obviously, solving
the first sub-problem is the base for solving the second one.
But if the second sub-problem is not solved, task sessions of
the same task may be incorrectly identified as two different
tasks, therefore leaving the larger problem unsolved.

The algorithm proposed by Coman et al. partially addresses
the first sub-problem. The key of detecting task sessions is
to identify the starting point and the transition point of a
task session. As we discussed in Section II, various ways
of starting a task, interrupting, and task switching a task
make it a challenging problem. Coman’s algorithm ignores
interruption, therefore addresses only a simplified version of
the sub-problem. Due to the incorrect assumption, the task
sessions detected by the algorithm may be only stages of
solving a task. For a simple task, a task may appear to be
one stage as in the lab study. But in industry setting, a task
often involves multiples stages, and how to link multiple stages
is not clear.

The second sub-problem of linking task sessions remains
unsolved, but we consider it closely related to linking multiple
stages of a task. If we are able to link two stages through some
criteria, such as common artifacts, we may also be able to link
two sessions through the same criteria.

2) How to make it better?: Coman’s algorithm may be
improved by taking interruptions into consideration. One
technique may be making the algorithm be aware of regular
interruption time period, such as lunch time. When the DOA
computation goes across the regular interruption period, it
is handled differently. Another method is to “shrink” the
interruption to reduce the gap effect, as we did in the case
study. When an interruption occurs, the DOAs of all the
methods decrease greatly and may result a gap in the TIIA
time series that affects the task boundary detection. So if the
interruption time periods are artificially shortened, say from
longer than five minutes to one minute, then the decrease of
DOA may not be large enough to end all the TIIAs and result
a gap. At the same time, since there is still an interruption
time period of one minute, the DOA still exhibits a decrement
that reflects the effect of the interruption.



There is yet no solution to the second sub-problem of
linking task sessions. We think that the key to solving this
sub-problem is to find the link between the task sessions.
The link may be common artifacts (being viewed or changed),
closely related artifacts (such as peer concepts), code clones, or
others. Task sessions with a large number of common artifacts
that are ever accessed may belong to the same task. It is also
likely that task sessions with a small number of artifacts being
changed may belong to the same task. In principle, linkage
criteria can make use of all kinds of information available
in the interaction history, such as artifact, time, action (such
as editing, searching, debugging ). When task sessions are
linked, the purpose of task sessions may be also identified. For
example, if a task session with many searches and viewing is
followed by a session with a lot of editing, and if the artifacts
that are viewed most in the first is changed in the second,
then it may be the case that the first task session was to find
task relevant information, while the second was to perform the
appropriate changes.

We can also improve the algorithm by including new
information sources into analysis. A bug tracking system,
such as Bugzilla, is commonly used in a development team
to track all the reported issues, or tasks. It records various
information about each issue, such as priority, time being
reported, and time being solved. All of this information may be
used together with interaction history to improve the detection
of task boundaries. Another information source is the version
control system, such as CVS, subversion, or git. A version
control system records all the changes to a software plus
meta-data about the changes, including author identity, date,
and possibly a reference to a related bug report. In many
development teams, it is common to commit changes right
after the task is solved, and input task information (or the bug
ID) when committing changes. Therefore, depending on the
tools used and the known practices of the development team,
the rough time of a task may be recorded in the version control
system and could be used in identifying task boundaries.

D. Summary

Our study has shown that Coman’s task splitting algorithm
tends to detect more tasks than self-reported. Detailed data
examination suggests that the underlying assumption about
task core is unreasonable and the effects of interruption are
not considered. Further analysis of the general problem of
task boundary detection shows that the problem consists of
two sub-problems. Coman’s algorithm addresses the first sub-
problem but still need improvement, while the second sub-
problem remains unsolved.

VI. RELATED WORK
A. Mining Interaction history

Interaction history contains rich information about how
program artifacts are accessed during software maintenance.
Recent research suggests that it is a promising source for better
understanding software development. For example, Schneider
et al. proposed to study programmer interactions to improve

team coordination in distributed projects [12]. Parnin et al.
developed a technique to extract usage context by mining
interaction histories [13]. Zou and Godfrey used interaction
histories to detect couplings [14].

B. Task-aware Software Development

Tasks are the work units of software development. Re-
searchers have proposed to support tasks explicitly to assist
programmers work. Murphy et al. suggested to improve IDEs
and collaboration based on task structure — the subset of
program artifacts and relations that are relevant to a task [3].
Kersten et al. used task context to recommend task relevant
artifacts [15]. Robillard et al. proposed to support task-aware
software development environment based on navigation analy-
sis [6]. Rothlisberger et al. used heatmap to highlight artifacts
within an IDE in a configurable way [16].

VII. THREATS TO VALIDITY

In our study, the information of tasks are collected from
programmers’ self-reports at the end of the day. This assumes
that programmers know what a task is, they can recall what
they did, and they are willing to report it to us. This method
may cause programmers to give a compressed report naturally,
or only report their main tasks. We ignore non-responses
without further asking why. This may cause data bias. We
plan to address these issues in the future by performing
complimentary studies.

As with all the case studies, this research has external valid-
ity threat. We chose this company only because it was available
to us. The programmers participated the study because they
were willing to do so. More case studies should be performed
to answer our research questions in a more generalized basis.

VIII. CONCLUSIONS AND FUTURE WORK

In this paper, we performed an industrial case study of
Coman’s automatic algorithm for detecting task boundaries
from interaction histories. Based on the data from six pro-
grammers working for 12 days, we found that the algorithm
performed quite differently comparing with the original lab
validation study: many more tasks than self-reported were
detected, and the best results after parameter tuning still had
an error rate about 76%. Further analysis of the data led us
discover two problems within Coman’s algorithm: first, the
underlying assumption about task core may not be reasonable
in an industrial setting; and second, the demonstrable e?ects of
interruptions are ignored. We discussed the general problem of
task boundary detection and argued that the problem consists
of two sub-problems: identifying task sessions and linking
task sessions. Coman’s algorithm in fact addresses the first
sub-problem but under incorrect assumption. The second sub-
problem remains unsolved. We discuss possible techniques
that may be used to improve Coman’s algorithm and to address
the second sub-problem.
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