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Abstract—Bug assignment in large software projects is typ-
ically a time-consuming and tedious task; effective assignment
requires that bug triagers hold significant contextual information
about both the reported bugs and the pool of available developers.
In this paper, we propose an auction-based multiagent mechanism
for assigning bugs to developers that is intended to minimize
backlogs and overall bug lifetime. In this approach, developers
and triagers are both modeled as intelligent software agents
working on behalf of individuals in a multiagent environment.
Upon receiving a bug report, triager agents auction off the bug
and collect the requests. Developer agents compute their bids
as a function of the developer’s profile, preferences, current
schedule of assigned bugs, and estimated time-to-fix of the bug.
This value is then sent to the triager agent for the final decision.
We use the Eclipse and Firefox bug repositories to validate our
approach; our studies suggest that the proposed auction-based
multiagent mechanism can improve the bug assignment process
compared to currently practised methods. In particular, we found
a 16% improvement in the number of fixed bugs compared to
the historic data, based on a sample size of 213,000 bug reports
over a period of 6 years.

Index Terms—Multiagent system, market mechanism, bug
lifetime, bug repositories

I. INTRODUCTION AND MOTIVATION

Estimating the time and effort it takes to release a product
is a key task for almost every software project. Post-release
modification is inevitable, as all software systems have bugs,
and eventually need new features and other improvements
also. Maintenance is expensive; the planning and allocation
of resources can be difficult if we are unable to estimate how
long it takes to fix these bugs [1]. With good estimates, project
managers can effectively schedule the resources for upcoming
releases and development phases.

Most software projects, both industrial and open source,
use an issue tracking system such as Bugzilla to help manage
the maintenance process. These systems permit both end-users
and developers to enter contextual information about observed
failures, and to document the historical progress towards their
resolution [2]. Once a bug has been reported, trusted team
members must perform bug triage: they analyze the report,
evaluate its merit, assess its seriousness and urgency, and
decide if the bug should be assigned to a developer for
fixing. The process of assigning bugs to suitable develop-
ers is done manually by the triagers; it is time consuming

and tedious, and requires that the triager hold significant
contextual information about the reported bugs, developers,
priorities, preferences, and dependencies between bug reports
(i.e., duplicates, complements, etc.) [3] [4]. This assignment
is strongly influenced by the discretion and expertise of the
triager; due to the various human factors involved, it is also
prone to being subjective and sub-optimal. The triager should
take the limitations and preferences of each developer into
account, avoiding overloaded backlogs for one developer and
increased idle times for others. However, it is unrealistic to
require that triagers have perfect knowledge of every possible
developer’s expertise, experience, and availability. Mistakes in
bug assignment can potentially delay the resolution of a bug
report, and as a result, increase the overall bug fixing time.

Compounding the problem, developers may not accurately
report their experience, domain knowledge, availability, etc.
they may over- or under-sell their abilities according to their
egos and commitment level to the project [5]. On the other
hand, we don’t want to bug developers too often; it would be
best if their stated preferences could speak for them when
bug assignment is being considered; the cost of bothering
a user must be weighed against the expected utility of the
result [6]. Developers strive to achieve “flow”, a state of deep
concentration, an experience of full immersion, of harmony
between one’s actions, skills, and goals [7]. It takes time and
effort to get into flow, and it is a relatively fragile state, yet
achieving it is extremely important for successful creative
activities. Consequently, if a software agent is able to act
effectively on behalf of a developer in representing their bug
fixing preferences, this would likely be seen as a benefit, and
that it is extremely important for successful creative activities.

In this paper, we consider the following research questions:
Can an automated multiagent approach improve the quality of
bug assignment in large software projects? How can predicted
fix time improve the intelligent bug allocation process? Can
bug allocation be improved through intelligent multiagent
systems?

A. Framing the Idea

Automating the process of bug assignment can decrease
the load on the triager and system as well as providing
a more suitable allocation by 1) preventing huge backlogs,



2) minimizing the overall bug lifetime by finding the most
appropriate allocation, and 3) increasing satisfaction by not
overloading developers, as a side effect of intelligent bug
assignment.

Our proposed approach works as follows: When a bug
is reported to the tracking system, a preliminary analysis
extracts basic information such as type, priority, severity, etc.
using simple textual analysis. Having extracted the bug’s basic
information, the system then automatically assigns the bug
to a triager based on the bug category. Here, bug triagers
are software agents that are responsible for collecting bugs,
holding auctions, and assigning the bug to the auction winner.
Each developer is also represented by a software agent, which
is responsible for placing bids on bugs on their behalf.
The developer agents are embedded into the bug repository
platform, and are responsible for proactively monitoring and
gathering information about the developers’ experience, ex-
pertise, and preferences based on their historic interactions.
This information is combined with details of the open bugs
in their current work queue to create their profile, which
is continually updated as new actions are performed by the
developer. Developer agents reveal their willingness-to-pay
values on behalf of the developers using an internal pricing
mechanism. This internal function can be developed to include
simple or complex attributes of the developers. Every time
a triager agent announces a new bug, the developer agent
calculates the expected utility of the bug to place a bid over the
new bug report. After collecting all bug requests, the triager
makes the final decision and assigns the bug report to the
winner developer.

Figure 1 summarizes our proposed approach. Incoming bugs
are reported and stored in a bug tracking system. Once a record
of the bug has been made, it is passed to the bug lifetime
prediction engine which takes the stated characteristics of the
bug such as severity, platform, priority, etc. and predicts how
long it will take to fix the bug using data mining on the bug
fixing history of the project. The estimated lifetime is used as
part of our function for determining the “price” of a bug. The
bugs are then split off based on their category and given to an
auctioneer. For example, one auctioneer handles bugs in the
UI category, another in the database category, and so on. Now
developer agents are able to bid on the bugs they wish to fix.
The bug is assigned to the developer with the highest bid at
the time, which is based on aspects of the developer such as
experience and current bug queue.

This paper is organized as follows: In Section II, we
discuss recent research related to mining bug repositories and
bug assignment methods. Section III describes our model
using machine learning to predict bug lifetime. Section IV
proposes an intelligent model for improving bug allocation
using a market-based mechanism. In Section V, we validate
our approach through empirical study of the Eclipse and
Firefox projects. We consider threats to validity of our model
in Section VI. Finally, we summarize our work, and discuss
future directions in Section VII.
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Fig. 1: Overview of our bug assignment approach

II. RELATED WORK

A lot of of the research in the mining software repositories
field has concerned bug prediction. Hooimeijer and Weimer
[8] looked at how much time was required to triage a bug
in the Mozilla Firefox project. Linear regression was used
on the bug report data, and it was found to have performed
significantly better than random chance in terms of precision
and recall. Bettenburg et al. [9] investigated what makes a
good bug report by sending out a survey to see the infor-
mation mismatch between what developers require and what
information users supply in a bug report. They developed a
tool called CUEZILLA which measures the quality of new
bug reports. It was found that well-written bug reports are
likely to get more attention than poorly written ones. The
first work that used data mining techniques on bug reports
to directly predict bug lifetimes was done by Panjer [10], who
predicted the life of a bug in Eclipse from confirmation to
resolution into a discretized log scaled lifetime class. He used
a number of different algorithms, including 0-R, 1R, decision
trees, Naive Bayes, and logistic regression. Overall, logistic
regression performed best with an accuracy of 34.9%.

Bougie et al. [11] reproduced Panjer’s experiment using



FreeBSD instead of Eclipse as the target system. The same
algorithms were used but in this instance, bug lifetimes could
only be predicted with only 19.49% accuracy. This shows how
the predictive accuracy can vary depending on the software
project. Giger et al. [12] extended Panjer’s study by comparing
the predictive power of newly reported bugs to see if they
would improve with post submission data within 1 to 30 days
after. Classification is done only using decision tree analysis
to classify bug fix time as either fast or slow. They found
that between 60-70% of bugs could be correctly classified
and that post-submission data improves the model by 5-10%.
To develop an automated bug assignment system, there has
been some work in finding the most useful bug assignment
using the information extracted from bug repositories. Anvik
et al. [13][14] suggested a semi-automated approach that
recommends a set of suitable developers to whom the bug
report can be assigned using supervised machine learning algo-
rithms, clustering algorithms, and expertise networks [15]. The
authors argued that the process of bug triage cannot be fully
automated, since this process requires some sort of human
interaction to include the required contextual knowledge for
decision making.

Cubranic and Murphy [3] investigated the connection be-
tween bug reports and program features by applying super-
vised machine learning using a Naive Bayes classifier to
automatically assign reports to the developers within Eclipse.
By using text categorization, they were able to correctly
predict 30% of 15,859 bug report assignments from large
open-source projects. Baysal et al. [4] reported a theoretic
framework for assigning bug fixing tasks to developers based
on developers’ level of expertise. The system recommends a
list of suitable developers upon arrival of a bug report. They
used a vector space model to extract developers’ expertise
from the history of previously fixed bugs by mining the bug
repository. At the same time developers would provide their
preferences while fixing the bugs. Our approach is novel
because it allows the developers to request for suitable bugs
from the bug triagers, letting the developers make decisions
based on their preferences, expertise, and such. This approach
prevents huge backlogs and minimizes the overall bug lifetime
by finding the nearly optimal allocation.

III. PREDICTING BUG LIFETIME

This section provides the details of our method in predicting
bug lifetime.

A. Bug Repositories: Bugzilla

The data used to validate our model comes from a web-
based bug tracker called Bugzilla. This tool was first released
in 1998 as a piece of open source software to be used by
developers in the Mozilla project, but since then has been
adopted by many other organizations. At the core of Bugzilla
is a screen that displays information about a particular bug.
Each bug will have a number of fields that are used to describe
the bug to help developers get a better understanding of the
problem. There can be up to 19 different fields, with a number

Fig. 2: Bugzilla Bug Life Cycle [16]

of them being optional. For the purpose of predicting the
length of time it takes for a bug to go from reported state
to fixed state, certain fields were ignored. This is due to the
fact that some information would not be available at the time a
bug is reported (i.e., votes, # of comments, # of attachments).
Once a bug is reported, it has a life cycle which is summarized
in Figure 2.

When a bug is first reported, it is marked as UNCON-
FIRMED until triagers can confirm its existence, validity, and
uniqueness. Once this is done or if the bug is submitted from
a trusted user, it will now be classified as NEW where the bug
will be triaged and assigned with a severity, priority, product,
and a developer. A bug in this state is classified as ASSIGNED
[10]. When a bug is RESOLVED, VERIFIED, or CLOSED, it
can have a number of resolutions. The most common outcome
is that the bug is FIXED; however, there are also the cases
where a bug can be resolved as DUPLICATE, WONTFIX,
WORKSFORME, or INVALID. Our dataset from the Eclipse
Bugzilla database contains 213,000 records for bugs reported
from 2001 to 2007 and 366,112 bugs from Firefox dated
between 1997-2007.

B. Data Preparation and Pre-Processing

The data we used for the project was obtained from the MSR
mining challenge 2008 website [17]. The file downloaded was
the Eclipse Bugzilla export in an XML format containing bugs
1-213,000. This dataset is 3.2GB in size, split into 2130 files
and was retrieved from Bugzilla repository on December 19,
2007 by Thomas Zimmermann. We parsed these large XML
files and created a single CSV file in order be able to do more



manipulations. We have developed a custom parsing program
that converts XML files into CSV files, removing redundancies
in XML files. For the purposes of data mining, the count of
these optional or multiple element fields should be sufficient
in helping to construct a model. For detailed steps of our data
pre-processing approach please refer to Appendix A.

Not all the files were well-formed XML documents, and
thus our tool encountered some errors within an element. In
these cases, the bug was ignored and not copied over to the
CSV file. There were 999 such errors encountered throughout
the 213,000 〈bug〉 elements. It also appeared that the first 4920
elements contained the same creation date along with some
blank dates. This portion of the data was removed since it
was most likely an issue of importing old bugs to the new
Bugzilla database.

Having properly refined the data set, the final collection
contains 207,080 bugs with the following fields considered:
bug id, creation date, last updated date, classification id,
product, component, version, rep platform, op sys, bug status,
resolution, duplicate id, bug file location, keywords, priority,
bug severity, target milestone, dependent bugs, blocked, votes,
reporter name, assigned to name and number of comments.
Moreover, the resolution of each bug was filtered and it was
found that 29,479 records were either NEW or ASSIGNED
and thus removed, since they have not been fixed yet. After
filtering out the other resolution statuses, we are left with
106,187 uniquely fixed bugs for which we work with in our
project.

In order to predict for the time it takes a bug to go from
reported to FIXED, we calculate the time difference between
the time a bug is reported and the time it is fixed. As it is
impossible to figure out the exact amount of time a developer
has actually spent fixing a bug, we decided to examine the
lifetime of a bug and not the time it takes for a developer
to actually fix a bug. Also, reopening a completed bug is not
considered, since it is not a common practice and it is not
easily detectable. Thus, we are strictly looking at start date
and end date of the bug, that is, the time a bug is completely
fixed.

C. Machine Learning: Classification

Data mining is defined as the extraction of implicit, previ-
ously unknown, and potentially useful information from the
load of data in repositories. It is a set of processes performed
automatically whose task is to discover and extract hidden
features from large data sets [18]. In bug repositories, the large
volume of the bug reports makes manual analysis impractical.
Hence, by leveraging data mining techniques, we aim to devise
good indicators to predict the length of time it takes for a bug
to be resolved.

The prediction of bug lifetime is done using Weka [19],
which is a collection of machine learning algorithms and pre-
processing tools [18]. Weka supports only a single file or
relation, so in order to import the data to Weka, the entire
dataset must be processed into a single file, as described in
the previous section. To normalize our dataset before running
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Fig. 3: Discretizing the bug fix time (hours) into 10 bins

Algorithm FreeBSD Prediction Eclipse Prediction
0-R 10.00% 29.10%
1-R 17.00% 31.00%

C4.5 Decision Tree 19.49% 31.90%
Naive Bayes 18.45% 32.50%

Logistic Regression 16.53% 34.90%

TABLE I: Naive Bayes vs. Other Classifiers [10][11]

our algorithm, we use the discretize function, which changes
numerical data into nominal data by placing a range into
a values into bins. We have considered 10 bins of equal
frequency to classify bugs into different bins, predicating the
bug fixing time (Figure 3). A size of 10 was chosen since it
can be compared to previous related works and also because
it is large enough that we can get a good estimate of how long
a bug takes to get fixed. Next on the workbench is the classify
panel which is used to apply the classification algorithms. The
algorithms used for our prediction model are described below.

D. Applying a Machine Learning Algorithm

Bougie et al. [11] and Panjer [10] found no significant dif-
ference between the predictive ability of other well-established
algorithms such as SVM [20], C4.5, logistic regression, 0-R,
and 1-R. A simple Naive Bayes algorithm showed a difference
around +/-2% compared to the other algorithms. The results
of two studies are shown in Table I. Hence, we adopted Naive
Bayes as our classification algorithm. Moreover, according
to our experiments a decision tree with a reduced dataset
gets results around 9-14% correctly predicted, which is not
much better than randomly selecting 1 out of the 10 bins for
selection. Hence, we decided to rely our experiment on Naive
Bayes algorithm.

A Bayes classifier is a simple probabilistic classifier based
on applying Bayes’ theorem (from Bayesian statistics) with
strong (naive) independence assumptions. In spite of their
naive design and apparently over-simplified assumptions,
Naive Bayes classifiers have worked quite well in many com-
plex real-world situations. In 2004, analysis of the Bayesian
classification problem has shown that there are some theoret-



Dataset Firefox Eclipse
10 bins 33.56% 25.18%
5 bins 48.26% 39.19%

10 bins with post submission data 34.39% 26.41%

TABLE II: Prediction Accuracy Using Different Datasets

ical reasons for the apparently unreasonable efficacy of Naive
Bayes classifiers [21].

E. Evaluation and Results

A model produced from a training set of roughly 70,000
records or 66% of the total dataset was outputted along with
the calculated predictions for the values in the testing set.
Overall, we found that it correctly classified the duration it
took for a bug to get fixed 25.14% of the time (Recall value).
The results are better than those found in the FreeBSD system
(Figure I), but not as good as the ones Panjer described in [10].
This is most likely because in Panjer’s study, he only used 7
bins with the first bin having a size that is twice as large
as the other bins. By having fewer bins and hence a smaller
chance to make an incorrect prediction, the accuracy of the
model will increase. The matrix in Figure 4 summarizes the
predictions made by the Naive Bayes algorithm. We know that
it predicts the correct bin 25% of the time, but how far off
are the incorrect predictions? The rows represent the predicted
bin while the column is the actual bin the instance belongs to.
From this matrix, we can see that the classifier tends to get
most of the bugs that are fixed quickly or fixed slowly correct.
In addition, for these early and late bins; it seems that if a bin
is classified incorrectly, then it is likely to appear closer to the
correct bin. For example if we take a look at the row ‘a’, then
the 2nd and 3rd most incorrectly classified result is ‘c’ and
‘b’ respectively. This means that if a mistake were to occur,
it is likely to be close to the correct one. However for bins
in the middle, this correlation is not noticeable. The precision
and recall for each bin is also listed in Figure 4 and confirms
that there is a weakness in predicting bugs particularly in bins
‘b’, ‘d’, ‘e’, and ‘g’.

1) More on Validation: Besides the main experiment on
running Naive Bayes on Eclipse data with 10 bins the Bugzilla
reports for Firefox was parsed and classified as well to give a
comparison.

The first comparison made is by shrinking the number of
bins down from 10 to 5 (Table II). Doing so allows our model
to be more accurate in guessing the correct bin; however, the
trade-off is the bins become larger and thus we lose accuracy
within a bin. Depending on the nature of the application, a less
fine grain prediction might be a better choice. Post submission
data such as number of votes or number of comments was
included to the dataset. We wanted to see what kind of effect
this extra information had in helping the bug get fixed. One
can presume that if a bug report has more activity, then it
would mean that more developers are working on fixing the
problem. Thus, this extra information should help in predicting
the fix time of a bug. Table II shows that although this

Fig. 5: Eclipse bug report distribution over a period of 6 years

extra information has a positive effect on precision rate, the
improvement is not much significant. The accuracy of the
prediction for Eclipse increased by 1.23%, while Firefox just
increased by 0.83%.

In addition to the Eclipse data, 366,112 Firefox bugs were
retrieved from 1999-2007. The same process was done to
parse these bugs and have the data placed into the Naive
Bayes classifier. We found that the bug report data of Firefox
has a much better ability to predict bug fix time than does
Eclipse. All the fields used were the same as Eclipse, so there
was no extra information that the Firefox data provided. The
only difference noted between the two datasets is the bugs
in Firefox take longer to fix on average than do the ones in
Eclipse. For example, the first bin in Eclipse has bugs whose
fix time ranged from 0-18 hours while in Firefox the range was
from 0-91 hours. However, the bins are still of equal numbers
and so it is hard to tell why there is such a difference in
prediction accuracy.

IV. BUG ALLOCATION PROBLEM

In large open-source development projects, bug allocation
is a tedious and time-consuming task usually done by bug
triagers. Therefore, the quality of these assignments depends
heavily on the contextual knowledge of a triager about the
reported bug, and knowledge about the different developers
who are willing to contribute to the project in a timely
manner. In open-source projects, there are usually two groups
of developers involved: professional developers whose jobs are
maintaining the system and fixing defects/bugs, and amateur
developers who do not get paid but contribute as expert users
occasionally. In both cases, it is the triager’s responsibility
to assign the most proper bug to the appropriate contributor
who 1) is knowledgeable about that type of bug, and 2) has
availability in his/her schedule to fix the assigned bug as
quickly as possible.

In large open-source projects such as Eclipse and Firefox,
there may be thousands of developers involved, each with
different schedules, capabilities, expertise, etc. This makes it
almost impossible for triagers to take all these constraints
into account. Moreover, the number of bugs reported daily
in these projects is huge according to our preliminary analysis
in Figure 5. In fact, even the most updated systems are often



Fig. 4: Matrix for the Prediction Accuracy of the Naive Bayes Model Using Eclipse Data

unable to keep track of all the developers and the progress of
bug fixing. The decentralized nature of bug assignment makes
it an attractive candidate for using a distributed agent-based
approach for bug assignment.

A. Multiagent Systems

A multiagent system is composed of several autonomous
intelligent agents having different information and/or diverging
interests. Multiagent systems can be used to solve problems
that are difficult or computationally expensive for an individual
agent or a centralized system to solve. Also, these systems are
used in situations where there is diverse information in the
system that is almost impossible for a centralized system to
gather all needed data. We have chosen to adopt a multiagent
based approach to tackle our problem of bug assignment,
because such systems allow the representation of every single
coordination object, i.e., the responsible entities, as single
autonomous agents with their own goals. The agents can
react with the needed flexibility to changes (as new bugs are
reported or schedules are changed) through proactiveness and
responsiveness [22].

In the bug allocation process, we model two types of active
agents involved as intelligent software agents: bug triagers
and developers. Triagers are responsible for assigning bugs
to the most qualified developers. Developers are modeled as
intelligent agents that are able to analyze information about
their respective developer, arranging schedules, calculate pref-
erences and limitations, and make decisions on their behalf.

B. Market-Based Solution

One of the mostly used, and yet simple, mechanisms for
marketing goods and services are auction-based processes.
Auctions are commonly used for allocating resources in
multiagent settings. Agents express their desire of having a
particular item by sending their bids to a central auctioneer
who is responsible for making the allocation based on the
received bids [23].

The basic interactions in any auction are included in two
major phases: bidding process, where individuals reveal their

willingness to buy an item by assigning a value, and winner
determination process where auctioneer identifies the winner
by applying specific judgment rules. In different types of
auctions, these two major processes vary in details and imple-
mentation. Auction is a simple and effective mechanism as it
keeps the communication level at minimum. Agents maximize
their local utility function with minimum communication with
the auctioneer. The auctioneer is in charge to receive bids from
agents and coordinate them based on a global function.

In this paper, we have modeled a market inspired coordina-
tion mechanism based on a simple sealed first-price auction,
also known as a first-price sealed-bid auction [24]. This type
of auction is a single-round mechanism, as oppose to English
auctions, where bidders simultaneously submit their bids to
the auctioneer without revealing the assigned value to other
bidders. As this is a single-round mechanism, bidders do
not have a chance to adjust their bids according to other
participants’ bid values [23]. Then the auctioneer identify the
highest bidder and announces the winner. Of course in this
type of auction, the winner pays exactly the same amount
of bid, as oppose to Vickrey auctions [25] where winner
pays the second-highest bid. First-price sealed-bid auctions
are not strategyproof1, meaning that bidders may choose to be
dishonest and lie about their private utility with the incentive
of winning the auction while paying less.

In this paper, triagers are modeled as auctioneers that receive
various bug reports at a time (as goods ready to be auctioned
off). Bidders are developers modeled as agents trying to
bid over a reported bug. The winner of each auction is the
developer agent with the highest bid who stated the highest
value for that particular bug. Upon receiving a bug report, the
triager opens up an auction based on the characteristics of the
reported bug such as bug category, severity, and priority.

1In the multiagent systems literature, strategyproof mechanisms refer to
ones where agents are truthful and have no incentive to lie or hide their
private information.



C. Market-Based Bug Assignment

The bug assignment mechanism consists of four phases: the
broadcasting phase, the subscription phase, the bidding phase,
and the awarding phase. This mechanism dictates the simple
auction process in market mechanism. The triager agent re-
ceives bug reports and opens up an auction by broadcasting the
bug’s stated category (e.g., user interface, database, etc.). All
developer agents receive this information, and will subscribe
to the auction if their expertise includes the bug category. A
developer agent has information about the developer’s current
status, schedules, and the number of bugs in the queue as well
as the number of bugs he/she has fixed so far and the average
fixing time of the bugs. The latter data is gathered dynamically
by looking at the performance of the developer. In the bidding
phase, developer agents compute the price they are willing to
pay for the specific bug and submit their bids for the needed
bug. Finally, the auctioneer (bug triager) announces the winner
of the auction, assigns the bug to the winner, and closes the
auction.

D. Pricing Mechanism

In the proposed auction-based bug allocation mechanism,
the developer agents compete with each other over the bugs to
achieve the objectives of their corresponding developers [26].
In contrast to commercial domains of marketing, the utility
or pricing functions cannot be based upon monetary values.
While in e-commerce scenarios, the human principals reveal
their preferences through their willingness to pay, developers
cannot reveal their preferences through their willingness to
pay for a specific reported bug. The preferences rather have
to be based upon developers’ past history of fixing bugs and
expertise on fixing particular type of bugs. To do this, we
propose a pricing mechanism that takes all the history of
a developer into account as well as their current schedule
of assigned bugs. A developer’s willingness to pay (η) is
calculated as follows:

ηi = κ−1i

∑
b∈Bi

priorityb
Tb

, κi =
∑

j∈Queue

t̂j × 100 (1)

where Bi is the set of past fixed bugs in the history for the
ith developer, priorityb denotes the assigned priority level
(or severity level) of a certain bug report b, and Tb is the
actual fix time of bug b which have been resolved in the past.
t̂j is the predicted time it takes for developer i to fix bug j
extracted from the data mining algorithm. We use κ−1i as a
normalizing factor for developer i. This normalizing factor is
a linear decaying rate that ensures that developers will not be
overloaded by many bugs in their queue. If a developer has
already too many bugs in her schedule, she will not be willing
to bid high, and as a result, will not win the auction. Hence,
the more a developer contributes to the project in a timely
fashion, the higher she can bid over a bug.

The “willingness to pay” value models a developer’s expe-
rience and quickness in terms of response (fixing bugs) and
emphasizes on the number of fixed bugs by the developer. This

may be a simplistic representation of developers’ experience;
however, it encapsulates the necessary information to model
the contribution and reliability of developers. Nonetheless, the
pricing mechanism that outputs a developer’s willingness (or
reliability) to pay can be changed to any other utility function
representing developers’ utility when bidding on an item.

V. EVALUATION

We have implemented a Java program to simulate our
proposed auction-based mechanism. We now discuss how we
have used this tool to evaluate our ideas using real-life data
from the Eclipse project.

A. Data

In this section, we discuss the evaluation of our proposed
bug allocation mechanism. As data, we used the bugs reported
in the Eclipse project in the period of 2001–2007. We ran our
auction-based bug assignment mechanism on this data, and
validated the proposed allocation mechanism by comparing
it to the real-world data extracted from the Eclipse Bugzilla
reports. For simplicity, we assume that all the developers
can bid on all the reported bugs by just submitting their
“willingness to pay” value to the bug triager. To simplify the
allocation procedure, we do not consider multiple triagers for
each bug category, but rather have one triager who opens
up an auction upon receiving each bug report. Due to the
dynamic nature of the bug reports and uncertainty about the
fixing time of each reported bugs, we consider the time it
gets for a bug to be fixed by looking at the bugs with status
of FIXED or RESOLVED. Since the fixing time is derived
from the real values reported for each bug, it assures that our
market mechanism improves the structure of bug allocation.
Later in the next section we will evaluate our results using the
predictive time values obtained from our classifying approach
in Section III-C.

B. Results

In this section, we compare our allocation method with
observed industrial practice. As discussed before, Eclipse
development over the period of 6 years (2001–2007) is con-
sidered as simulation data.

1) Bug Allocation Mechanism with Real Bug Lifetime:
Figure 6a illustrates the results of simulation using real bug
reports. To evaluate the effectiveness of the market-based
allocation mechanism, we assume that the fixing time for
each bug is equal to the observed real-world fixing times. For
example, if a bug took 100 days to be fixed, our algorithm
allocates 100 days for this bug to be completed. Although,
in practice, the time it takes for a bug to be resolved may
depend on various factors such as developer who fixes the
bug, for simplicity we assume this time is equal for all the
developers. This will help us to have a fixed baseline for
validation purposes, since in this experiment we are interested
to see the effectiveness of our allocation mechanism.

As shown in the figure, the proposed allocation mechanism
outperforms the real practiced scenario in terms of having
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Fig. 6: The number of resolved bugs

more number of bugs fixed in each timestamp. Nevertheless,
due to the fixed number of bugs and equal fixing times,
both figures converge to the total number of bugs at the end
of simulation. To show the improvement over the practiced
data, we use percentage change based on relative difference
calculated as follows:

δ =
υ − υ̂
υ
× 100 (2)

where υ is the actual practiced data, and υ̂ is the result from the
simulation. The trend line shows improvement in all the stages
of simulation over the real practiced data with maximum
improvement of 74.73% and the average improvement of
approximately 16%. Within the first 4–5 months, our simulated
bug allocations appear to have bugs fixed at a rate that is up
to 74% faster than that of historic data. While in the last 4–5
months the rate is below 5% quicker. This is likely caused by
the fact that we are not taking into account the rate of which
bugs are reported. In the beginning, there is an overload of
bugs and so our system will allocate all of them, while near the
end, there are no new bug reports and so our bug allocations
converge with that of the historic data.

Moreover, Figure 7 demonstrates the number of allocated
to bugs to all the developers by the end of the timeline. This
shows that our algorithm respects the developers’ degree of
involvement in the project, i.e., the most focused and active
contributors still get the more bugs to fix than less active
developers. Moreover, if a developer becomes more active and
contributes more to the project, our system dynamically takes
this into account by increasing the developer’s bidding power,
resulting in more bugs to be assigned to the developer. This
essentially ensures the fairness of the bug assignment process.
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Fig. 7: Number of allocated bugs to each developer

2) Bug Allocation Mechanism with Predicted Bug Lifetime:
In order to validate the usage of our allocation mechanism,
we simulate the timeline on random bug reports. In this
experiment, we use the predicted fixing time for each bug
report estimated in Section III.

Figure 6b shows that allocation mechanism using predicted
bug lifetime does as well as an allocation mechanism using
real fixing times, and they both outperform the practiced
scenarios in Eclipse project. The quality of bug allocation
mechanism does not change even when adding predictive data.



VI. THREATS TO VALIDITY

In this section, we would like to express our awareness
about some of the possible validity threats to our studies.
First, we have used some simplifying assumptions for the
valuation function that indicates the value of each bug for the
developer. Although this will affect the final results in terms
of not serving the most urgent bugs right away, it would have
no impact on the proposed bug assignment mechanism as a
concept. In fact, our market-based mechanism will improve
by having more specific information about bug reports and
developers.

Second, we have applied a linear decaying factor to weight
out the developers with many bugs waiting in their job queue.
There are some opportunities to use different decaying factors
such as exponential decaying rates. However, we are unsure if
this would affect our results. As possible future work, we will
experiment with different approaches to find the most suitable
decaying factors in the bug allocation domain.

VII. CONCLUSION AND FUTURE WORK

Effective bug assignment in large software projects not
only requires significant contextual information about both the
reported bugs and the pool of available developers but also is a
time-consuming and tiresome process. In this paper, we pro-
posed an auction-based multiagent mechanism for assigning
bugs to developers that is intended to minimize backlogs and
overall bug lifetime. In this setting, developers and triagers are
both modeled as intelligent software agents working on behalf
of individuals in a multiagent environment.

We used a data mining technique to predict when a big
might get fixed, with prediction accuracy of 25.14% for
Eclipse and 33.54% for Firefox using 10 bins. We leveraged
the predicted fix time of the reported bugs to augment the
utility function in our bug assignment system. A preliminary
look at our market-based allocation system shows a 16% gain
against historic data based on a sample size of 213,000 bug
reports over a period of 6 years. Our approach outperforms
other attempts in automated bug assignment systems; however,
many future adjustments can be made to get a more accurate
bug allocation system.

As future work, we would like to examine the improvement
of our bug allocation algorithm when there are multiple
triagers involved in categorizing bugs and starting up the
auctions. This might decrease the number of requests sent
from the developers for a certain bug, and cause a faster
(and probably more efficient) method of task allocation for
bugfixes. Another interesting topic would be to study the cur-
rent bug assignment mechanisms and devise a more detailed
pricing mechanism that incorporates various preferences of the
developers. This would, in theory, result in more developer
satisfaction and in so doing would increase productivity.
Another interesting variation would be to set up a mechanism
where developers can bid for a bundle of desired bugs. This
idea is mainly based on the auction systems literature and
might improve the overall bug scheduling amongst individual
developers.
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