
Automated topic naming to support cross-project analysis
of software maintenance activities

Abram Hindle
Dept. of Computer Science

University of California, Davis
Davis, CA, USA

abram@softwareprocess.es

Neil A. Ernst
Dept. of Computer Science

University of Toronto
Toronto, Ontario, CANADA
nernst@cs.toronto.edu

Michael W. Godfrey
David Cheriton School of

Computer Science
University of Waterloo

Waterloo, Ontario, CANADA
migod@uwaterloo.ca

John Mylopoulos
Dept. Information Eng. and

Computer Science
University of Trento

Trento, ITALY
jm@disi.unitn.it

ABSTRACT

Researchers have employed a variety of techniques to ex-
tract underlying topics that relate to software development
artifacts. Typically, these techniques use semi-unsupervised
machine-learning algorithms to suggest candidate word-lists.
However, word-lists are difficult to interpret in the absence
of meaningful summary labels. Current topic modeling tech-
niques assume manual labelling and do not use domain-
specific knowledge to improve, contextualize, or describe re-
sults for the developers. We propose a solution: automated
labelled topic extraction. Topics are extracted using Latent
Dirichlet Allocation (LDA) from commit-log comments re-
covered from source control systems such as CVS and Bit-
Keeper. These topics are given labels from a generalizable
cross-project taxonomy, consisting of non-functional require-
ments. Our approach was evaluated with experiments and
case studies on two large-scale RDBMS projects: MySQL
and MaxDB. The case studies show that labelled topic ex-
traction can produce appropriate, context-sensitive labels
relevant to these projects, which provides fresh insight into
their evolving software development activities.

Categories and Subject Descriptors

D.2.9 [Software Engineering]: Management—Lifecycle;
D.2.1 [Software Engineering]: Requirements/Specifications—
Tools

General Terms

Human Factors, Management, Measurement

Keywords

Topic analysis, LDA, non-functional requirements

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MSR ’11, May 21-22, 2011, Waikiki, Honolulu, HI, USA
Copyright 2011 ACM 978-1-4503-0574-7/11/05 ...$10.00.

1. INTRODUCTION
A key problem for practising software maintainers is gain-

ing an understanding of why a system has evolved the way
it has. This is different than how a system has evolved,
because the behaviour of change itself is the how. Looking
back on streams of artifacts scattered across different repos-
itories, inferring what activities were performed, when, and
for what reasons, is hard to do without expert advice from
the developers involved. In this work we seek to provide
a method of automatically labelling development topics ex-
tracted from commit logs.

Topic modeling is a machine learning technique which cre-
ates multinomial distributions of words extracted from a text
corpus. This technique infers the hidden structure of a cor-
pus using posterior inference: the probability of the hidden
structure given the data. Topic models are useful in software
maintenance because they summarize the key concepts in a
corpus, such as source code, commit comments, or mailing-
list messages, by identifying statistically co-occurring words.
Among other uses, it can quickly give developers an overview
of where significant activity has occurred, and gives man-
agers or maintainers a sense of project history.

While machine learning techniques can automatically iden-
tify clumps of commonly recurring terms, devising an ap-
propriate summary label for each clump/topic is harder. A
given topic extracted from a set of commit logs might consist
of the following terms: “listener change remove add fire”.
This topic might reasonably be labelled as “event handling”
by a developer who understands the domain well, despite
the fact that this label does not appear in the word list
itself. Current approaches to topic labelling rely on man-
ual intervention by human experts, and also are limited to
project-specific topic labels. In this paper, we introduce la-
belled topic extraction, an approach to topic labelling that
creates labels automatically that are project independent.

In general, the fruits of mining software artifacts are of-
ten project specific and hard to generalize. However, in our
previous work we investigated topic trends — that is, topics
that recur over time — we observed that topic trends often
corresponded to non-functional requirements (NFRs) [11],
which is further emphasized in this paper due to the large
numbers of NFR labelled topics. This is encouraging, as



NFRs have the property of being cross-domain and widely
applicable. In this sense, they are useful abstractions for
developer conversations about different software projects.
Furthermore, there is a series of standards on NFRs, such
as ISO9126 [12], that are specifically intended to apply to
projects of varying types; this suggests that our goal of
trying to extract NFR-related development topics, such as
those related to software quality models, holds promise.
Concrete applications of topics and labelled topic extrac-

tion range from project dashboards to annotating software
artifacts such as revisions and bug reports with NFR-related
tags. Project dashboard [9] are typically employed by man-
agers and are used to provide quick summaries of the effort
put into a software project. In this case, labelled topic ex-
traction would allow managers to track effort related to NFR
topics, such as portability. These techniques also allow for
the annotation of commit comments and other software arti-
facts with NFRs. This would enable querying of bug reports
and artifacts by relevant NFRs. For instance a manager can
confirm if their developers were focused on usability by look-
ing for usability-relevant revisions and bug reports.
In this paper, we describe automated labelled topic extrac-

tion. It addresses two gaps in the topic mining literature:

1. Topic mining of software has been limited to one project
at a time. This is because traditional topic mining
techniques are specific to a particular data-set. Auto-
mated labelled topic extraction allows for comparisons
between projects.

2. Topic modeling creates word lists that require inter-
pretation by the user to assign meaning. Like (1), this
means that it is difficult to discuss results indepen-
dent of the project context. Our technique automati-
cally, or with some initial training, assigns labels across
projects.

This paper makes the following contributions:

• introduces the concept of labelled topic extraction, us-
ing a non-functional requirements (NFR) taxonomy for
our labels;

• evaluates three kinds of automatic topic labelling meth-
ods: semi-unsupervised labelling of topics (word-lists),
supervised labelling of topics with a single NFR (ma-
chine learning), and supervised labelling of topics with
multiple NFRs (multi-label machine learning);

• provides a method of cross-project analysis via topic
labelling; and applies these techniques to visualize NFRs
over time, and to analyze maintenance activities.

We begin by discussing related work in Section 2. Next,
we describe how we generated our data (Section 3.1). For
semi-unsupervised classification (Section 3.2), we begin by
creating word-lists to signify when a topic matches an NFR
label. We then apply our classifier and analyze the results.
In Section 3.3, we manually annotate the topics, and use
those annotations as training data for supervised classifica-
tion. To demonstrate an application of labelled topic extrac-
tion, we use an exploratory case study of two open source
database systems to show how named topics can be com-
pared between projects (Section 4). The paper concludes
with a discussion of limitations (Section 5), and future work.

2. PREVIOUS WORK
The idea of extracting higher-level concerns and topics,

also known as concepts, aspects or requirements, has been
approached from documentation-based and repository-based
perspectives.

Cleland-Huang and her colleagues have investigated min-
ing requirements documents for non-functional requirements
(NFR) (quality requirements) [5]. Their approach is similar
to ours, as they mined keywords from NFR catalogues. They
differ because they mine requirements documents where as
we mine revisions. They demonstrated a recall of 80% with
precision of 57% for the security NFR, but could not find a
reliable source of keywords for other NFRs. Instead, they
developed a supervised classifier by using human experts to
identify an NFR training set. Our research differs because
we use a more comprehensive set of terms based on the tax-
onomy we chose. Another difference is that we make cross-
project comparisons instead of focusing on a single project.

Similarly, Mockus and Votta [18] studied a large-scale in-
dustrial change-tracking system. Mockus and Votta lever-
aged WordNet [8], an English-language “lexical database”
that contains semantic relations between words, including
common related forms (similar to word stemming), meronymy
and synonymy. They used WordNet for word roots as they
felt the synonyms would be non-specific and cause errors.
Mockus et al. validated their labels with system developers.
Since we study multiple projects, instead of a single project,
these kind of interviews are somewhat infeasible (particu-
larly in the distributed world of open-source software).

Another approach is to extract concerns from software
repositories. Marcus et al. [15] use Latent Semantic Index-
ing (LSI) to identify commonly occurring concerns for soft-
ware maintenance. The concerns are given by the user, and
LSI is used to retrieve them from a corpus. Topic mod-
elling generates topics that are independent of a user query,
and relate only to word frequencies in the corpus. With
ConcernLines, Treude et al. [19] show tag occurrence using
colour and intensity. They mine developer created tags in
order to analyze the evolution of a single product. The pres-
ence of a well-maintained set of tags is obviously essential
to the success of this technique.

In Baldi et al. [2], topics are named manually: human ex-
perts read the highest-frequency members of a topic and as-
sign a label accordingly. As discussed earlier, given the topic
“listener change remove add fire”, Baldi et al. would assign
the label event-handling. The labels are reasonable enough,
but still require an expert in the field to determine them.
Furthermore, these labels are project-specific, because they
are generated from the data of that project. E.g., we might
have a label called ‘Oracle’ in the MySQL case, since Oracle
owns MySQL. Our approach differs: first of all, we automate
the process of naming the topics; secondly, we label topics
with project-independent terms, in order to permit cross-
project comparison.

Mei et al. [17] use context information to automatically
name topics. They describe probabilistic labelling, using the
frequency distribution of words in a topic to create a mean-
ingful phrase. They do not use external domain-specific in-
formation as we do, but we do not generate phrases from
the topics.

Finally, in Ernst et al. [6], we describe our earlier project,
similar to this, that identifies changes in quality require-
ments in GNOME software projects; this approach was more



Figure 1: Research methodology process view.

exploratory, had less validation, uses different word-lists,
solely uses text-matching, and does not leverage machine
learning strategies. Hindle et al. [11] propose a windowed
method of topic analysis that we extend with labelled top-
ics, NFRs and new visualizations.

3. STUDY DESIGN AND EXECUTION
Figure 1 gives an outline of our methodology. We began by

gathering source data and creating topic models. For semi-
unsupervised labelling, we generated three sets of word-lists
as signifiers for NFRs. In supervised learning, we trained
our data with manual annotations in order to match topics
with NFRs. Finally, these topics were used to analyze the
role of NFRs in software maintenance.

3.1 Generating the data
To evaluate our approach, we sought candidate systems

that were mature projects and had openly accessible source
control repositories. We selected systems from the same
application domain, to control for differences in functional,
rather than non-functional, requirements. We selected MySQL
3.23 and MaxDB 7.500 as they were open-source, partially-
commercial database systems. MaxDB started in the late
1970s as a research project, and was later acquired by SAP.
As of version 7.500, released April 2007, the project has over
940, 000 lines of C source code1. The MySQL project started
in 1994 and MySQL 3.23 was released in early 2001. MySQL
contains 320, 000 lines of C and C++ source code. We ex-
plicitly chose older versions of mature projects from a stable

1generated using David A. Wheeler’s SLOCCount,
http://dwheeler.com/sloccount.

problem domain to increase the likelihood that we would
encounter primarily maintenance activities in our studies.

For each project, we used source control commit com-
ments, the messages that programmers write when they
commit revisions to a source control repository. Most com-
mits we observed had commit comments. Commit com-
ments are often studied by researchers, as they are the most
readily accessible source of project interactions, and devel-
opers are often required to create them by the repository
mechanism (e.g., Git). Additionally, relying only on commit
comments makes our approach more generalizable, as we do
not assume the presence of other artifact corpora. An exam-
ple of a typical commit message, from MySQL, is: “history
annotate diffs bug fixed (if mysql real connect() failed there
were two pointers to malloc’ed strings, with memory corrup-
tion on free(), of course)”. We extracted these messages and
indexed them by creation time. We summarized each mes-
sage as a word distribution minus stop-words such as “the”
and “at”.

For the commit message data-sets of each project, we cre-
ated an XML file that separated commits into 30 day peri-
ods. We chose a period size of 30 days as it is smaller than
the time between minor releases but large enough for there
to be sufficient commits to analyze [11]. For each 30 day
period of each project, we input the messages of that period
into Latent Dirichlet Allocation (LDA), a topic analysis al-
gorithm [3], and recorded the topics the algorithm extracted.

A topic analysis tool such as LDA will try to find N
independent word distributions within the word distribu-
tions of all input messages. Linear combinations of these N
word distributions are meant to represent and recreate the
word distributions of any of the original messages. These
N word distributions effectively form topics: cross-cutting
collections of words relevant to one or more of our commit
messages. LDA extracts topics in an unsupervised manner;
the algorithm relies solely on the source data and word dis-
tributions of messages, with no human intervention.

In topic analysis a single document, such as a commit
message, can be related to multiple topics. Representing
documents as a mixture of topics maps well to source code
repository commits, which often have more than one pur-
pose [11]. For this paper, a topic represents a word distribu-
tion generated from a group of commit log comments which
are related by their content.

We applied Blei’s LDA implementation [3] against the
word distributions of these commits, and generated lists of
topics per period. We set the number of topics to generate
to 20, because past experimentation showed that fewer top-
ics might aggregate multiple unique topics while any more
topics dilutes the results and creates indistinct topics [11].

3.1.1 The high-level labels
To facilitate cross-project comparison, we used a taxon-

omy of NFRs. This taxonomy is based on the ISO qual-
ity model, ISO9126 [12]. ISO9126 describes six high-level
NFRs: maintainability, functionality, portability, efficiency,
usability, and reliability 2. We claim that these NFRs are
maintenance concerns (to varying degrees) in all software
projects, and are therefore well-suited for comparisons be-
tween projects.

2While there may be lingering debate in some circles about
these terms, an ISO standard seems like a reasonable start-
ing point for our work.



3.1.2 Creating a validation corpus
To evaluate both semi-unsupervised and supervised clas-

sification, we created a validation set of manually labelled
topics. For MySQL 3.23 and MaxDB 7.500, the annota-
tors (the first two authors) annotated each extracted topic
in each period with the six NFR labels listed above. Anno-
tators did not annotate each other’s annotations, but some
brief inspection of annotations was used to confirm that the
annotators were acting similarly. We looked at each pe-
riod’s topics, and assessed what the data — consisting of
the frequency-weighted word lists and messages — suggested
was the label for that topic. We were able to pinpoint the
appropriate label using auxiliary information as well, such
as the actual revisions and files that were related to the topic
being annotated. For example, for the MaxDB topic con-
sisting of a message “exit() only used in non NPTL LINUX
Versions”, we tagged that topic portability. Given the top-
level annotations of none, portability, efficiency, reliability,
functionality, usability, and maintainability, the annotators
annotated each topic with the relevant label. Sometimes
they used finer-grained annotations that would be aggre-
gated up to one of these higher-level labels.
We validate classification performance using the Receiver

Operating Characteristic area-under-curve value [7], abbre-
viated ROC, and the F-measure, which is the harmonic
mean of precision and recall, i.e., 2 ∗ (P ∗R)/(P +R).
ROC values provide a score reflecting how well a partic-

ular learner performed for the given data. ROC maps to
the more familiar concepts of precision/sensitivity and re-
call/specificity: it plots the true positive rate (sensitivity)
versus the false positive rate (1 - specificity). A perfect
learner has a ROC value of 1.0, reflecting perfect recall and
precision. A ROC result of 0.5 would be equivalent to a
random learner (that is, issuing as many false positives as
true positives). The ROC of a classifier is equivalent to the
probability that the classifier will rank a randomly chosen
positive instance higher than a randomly chosen negative
instance. We consider our labelling classifiers acceptable if
they outperform a random classifier (0.5).

3.2 Semi-unsupervised labelling
In this section we describe how to label topics based on

dictionaries mined from sources external to the projects.

3.2.1 Generating word lists
In order to automatically label each topic with one of the

six high-level NFRs, we associate each NFR with a list of
keywords (word-lists, in our parlance). These word-lists were
determined a priori and were not extracted from the projects
themselves. We intersected the words of the topics and the
words of our word-lists. We “labelled” a topic if any of its
words matched any of the word-list’s words. A topic could
match more than one NFR. We used several different sets of
word-lists for comparison, which we refer to as exp1, exp2,
and exp3 in the text which follows.
Our first word-list set, exp1, was generated using the on-

tology described in Kayed et al. [13] . That paper constructs
an ontology for software quality measurement using eighty
source documents, including research papers and interna-
tional standards. The labels we used:

integrity, security, interoperability, testability, maintain-
ability, traceability, accuracy, modifiability, understand-
ability, availability, modularity, usability, correctness, per-
formance, verifiability, efficiency, portability, flexibility,
reliability.

Our second word-list, exp2, uses the ISO9126 taxonomy
described above (Section 3.1) to seed the word-lists. The
terms from ISO9126 may not capture all words occurring
in the topics that are nonetheless associated with one of
the NFRs. For example, the term “redundancy” is one we
considered to be relevant to discussion of reliability, but is
not in the standard. We therefore took the NFRs from the
ISO9126 and added to them.

To construct these expanded word-lists, we used Word-
Net [8]. We then added Boehm’s software quality model [4],
and classified his eleven ‘ilities’ into their respective ISO9126
NFRs. We did the same for the quality model produced by
McCall et al. [16]. We then did a simple random analysis
of mailing list messages from an open source project, KDE.
If we judged a given message to contain terms that were
related to one of the NFRs in ISO9126, we added it to our
word-list. This allowed us to expand our word-lists with
more software-specific terms.

For the third set of word-lists, exp3, we extended the word-
lists from exp2 using unfiltered WordNet similarity matches.
Similarity in WordNet means siblings in a hypernym tree.
We do not include these words here for space considerations
(but see the Appendix for our data repository). It is not
clear the words associated with our labels in exp3 are specific
enough. For example, the label maintainability is associated
with words ease and ownership. In general, as we proceed
from word-list in exp1 to that in exp3, our lists become more
generic.

3.2.2 Automatic Labelled Topic Extraction
Using our three word-lists (exp1, exp2, exp3), we labelled

our topics with an NFR where there was a match between
a word in the list and the same word somewhere in the dis-
tribution of words that constitute the topic. A named topic
is a topic with a matching NFR label. Unnamed topics oc-
cur where there is no such match, which may indicate either
a lack of precision, or simply that this topic is not asso-
ciated with non-functional requirements. All experiments
were run on MaxDB 7.500 and MySQL 3.23 data. LDA ex-
tracted 20 topics per period for each project. This labelling
is semi-unsupervised because the corpus is not derived from
the project being analyzed, and we did not label the project’s
topics ourselves for a training set. The motivation behind
this technique is that because most software often addresses
similar issues, thus we can use the domain knowledge of
software to label relevant topics.

Table 2 shows how many topics were labelled for MaxDB
and MySQL.

For exp1 the labels with the most topics were correct-
ness (182 topics) and testability (121). We did not see
many results for usability or accuracy, which were associ-
ated with fewer than ten topics. We also looked for corre-
lations between our labels: excluding double matches (self-
correlation), our highest co-occurring terms were verifiability
with traceability, and testability with correctness (76 and 62
matches, respectively).



Label Related terms

Maintainability testability changeability analyzability stability maintain maintainable modu-
larity modifiability understandability interdependent dependency encapsula-
tion decentralized modular

Functionality security compliance accuracy interoperability suitability functional practical-
ity functionality compliant exploit certificate secured “buffer overflow” policy
malicious trustworthy vulnerable vulnerability accurate secure vulnerability
correctness accuracy

Portability conformance adaptability replaceability installability portable movableness
movability portability specification migration standardized l10n localization
i18n internationalization documentation interoperability transferability

Efficiency “resource behaviour”“time behaviour” efficient efficiency performance profiled
optimize sluggish factor penalty slower faster slow fast optimization

Usability operability understandability learnability useable usable serviceable usefulness
utility useableness usableness serviceableness serviceability usability gui acces-
sibility menu configure convention standard feature focus ui mouse icons ugly
dialog guidelines click default human convention friendly user screen interface
flexibility

Reliability “fault tolerance” recoverability maturity reliable dependable responsibleness
responsibility reliableness reliability dependableness dependability resilience
integrity stability stable crash bug fails redundancy error failure

Table 1: NFRs and associated word-lists – exp2

Project Measure exp1 exp2 exp3

MaxDB 7.500 Named Topics 281 125 328
Unnamed Topics 219 375 172
Total Topics 500 500 500

MySQL 3.23 Named Topics 524 273 773
Unnamed Topics 476 727 227
Total Topics 1000 1000 1000

Table 2: Automatic topic labelling for MaxDB and
MySQL

For exp2, there are more unnamed topics than exp1. Only
reliability produces a lot of matches, mostly with the word
“error”. Co-occurrence results were poor. This suggests our
word lists were overly restrictive.
For exp3, we generally labelled more topics. As we men-

tioned, the word-lists are broad, so there are likely to be
false-positives (discussed below). The most frequent label,
265 topics, was usability, and the least frequent label, 44
topics, was maintainability. Common co-occurrences were
reliability with usability, efficiency with reliability, and effi-
ciency with usability (200, 190, and 150 topics in common,
respectively).

3.2.3 Analysis of the semi-unsupervised labelling
For each quality we assessed whether semi-unsupervised

labels matched the manual annotations. As described in
Section 3.1 we used both ROC and F-1 measures to eval-
uate the performance of the classification. Figure 2 shows
our ROC results for MaxDB and MySQL. We describe F-1
results in the text below.
Because our ground truth annotations were relevant only

to ISO9126, we estimate that exp1 had poor performance
via the overlap between ISO9126 and the Kayed ontology.
For exp1 the F-measures for MaxDB were from 0 to 0.18

with an average of 0.03, and for MySQL were from 0 to 0.16
with an average of 0.05.

For exp2, the average F-measure (macro-F1) for MaxDB
was 0.24 with a range 0.091 to 0.37, and 0.16 for MySQL
with a range of 0 to 0.41. MaxDB had an average precision
and recall of 0.25 and 0.22 while MySQL had 0.41 and 0.10
respectively.

For exp3, the average F-measure (macro-F1) for MaxDB
was 0.26 with a range 0.11 to 0.47, and 0.36 for MySQL with
a range of 0.10 to 0.65. MaxDB had an average precision
and recall of 0.16 and 0.67 while MySQL had 0.3 and 0.48
respectively.

Thus we find that reliability and usability worked well for
MaxDB in exp2 and better in exp3. exp1 performed poorly.
MySQL had reasonable results within exp2 for reliability and
efficiency. MySQL’s results for efficiency did not improve in
exp3 but other qualities such as functionality did improve.
Many ROC scores were 0.6 or less, but our classifier still
performed substantially better than random.

3.3 Supervised labelling
Supervised labelling requires expert analysis of the correct

class/label to assign a label to a topic. In our approach, we
use the top-level NFRs in the ISO9126 standard [12] for our
classes, but other taxonomies are also applicable.

We used a suite of supervised classifiers, WEKA [10], that
includes machine learning tools such as support vector ma-
chines and Bayes-nets. We also used the multi-labelling
add-on for WEKA, Mulan [20]. Traditional classifiers label
topics with a single class, whereas Mulan allows for a mix-
ture of classes per topic, which is what we observed while
manually labelling topics. The features we used are word
counts/occurrence per topic, if a word occurs frequently
enough in a topic we consider it a feature of the topic.

To assess the performance of the supervised learners, we
did a 10-fold cross-validation [14], a common technique for
evaluating machine learners. The original data is partitioned
randomly into ten sub-samples. Each sample is used to test



      portability efficiency reliability functionality maintainability usability total

0.8

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75









Figure 2: Performance, ROC values (range: 0–1), of semi-unsupervised topic labelling for each NFR and per
word-list. The dashed line indicates the performance of a random classifier. This graph shows how well the
semi-unsupervised topic labelling matched our manual annotations.

      Portability Eciency Reliability Functionality Maintain. Usability

1

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95 



Figure 3: ROC value for the best learner per la-
bel for MaxDB and MySQL. Values range from 0–1.
Dashed line indicates the performance of a random
classifier.

against a training set composed of the nine other samples.
We have reported these results below.

3.3.1 Analysis of the supervised labelling
Because our data-set was of word counts we expected

Bayesian techniques, often used in spam filtering, to perform
well. We tried other learners that WEKA [10] provides: rule
learners, decision tree learners, vector space learners, and
support vector machines. Figure 3 shows the performance
of the best performing learner per label: the learner that had
the highest ROC value for that label. The best learner is
important because one uses a single learner per label. When

applying our technique, for each NFR one should select the
best learner possible.

Figure 3 shows that MaxDB and MySQL have quite dif-
ferent results, as the ROC values for reliability and function-
ality seem swapped between projects.

For both projects Bayesian techniques did the best out of
a wide variety of machine learners tested. Our best learn-
ers, Discriminative Multinomial Naive Bayes, Naive Bayes
and Multinomial Naive Bayes are all based on Bayes’s the-
orem and all assume, naively, that the features supplied are
independent. One beneficial aspect of this result is that it
suggests we can have very fast training and classifying since
Naive Bayes can be calculated in O(N) for N features.

The range of F-measures for MySQL was 0.21 to 0.77 with
an average of 0.48, while MaxDB had a range of 0.17 to 0.61
with an average of 0.39.

The less-frequently occurring a label, the harder it is to
get accurate results, due to the high noise level. Never-
theless, these results are better than our previous word-list
results of exp2 and exp3, because the ROC values are suffi-
ciently higher in most cases (other than MaxDB reliability
and MySQL efficiency). The limitation of the approach we
took here is that we assume labels are independent; how-
ever, labels could be correlated with each other. The next
section (3.4) addresses the issue of a lack of independence
and correlation between labels using multi-label learners.

3.4 Applying multiple labels to topics
As noted in Section 3.1, each topic in our data-set can be

composed of zero, one, or more NFRs. For example, a com-
mit message might address reliability in the context of effi-
ciency, or make a maintainability improvement in the source
code that related to usability. However, traditional machine
learning techniques, such as Naive Bayes, can only map top-
ics to a single class. The Mulan [20] library encapsulates
several different multi-label machine learners which can label



      CLR HOMER

1

0.4

0.5

0.6

0.7

0.8

0.9

BR





(a) MySQL

      CLR HOMER

1

0.4

0.5

0.6

0.7

0.8

0.9

BR



(b) MaxDB

Figure 4: MySQL and MaxDB macro (grey) and micro (black) ROC results per multi-label learner. Possible
values range from 0–1. Dashed line indicates the performance of a random classifier.

elements with multiple labels. Mulan also includes methods
for determining the performance of such techniques.
Two perspectives to evaluate multi-label learners are with

micro or macro measurements (used in Figure 4). Macro
measurements are aggregated at a class or label level (per
class) while micro measurements are at the element level
(per element). A macro-ROC measurement is the average
ROC over the ROC values for all labels, where a micro-ROC
is the average ROC over all examples that were classified.
For MaxDB, the macro-ROC values are undefined because
of poor performance of one of the labels.
Figure 4 presents the results of Mulan’s best multi-label

learners for our data. Calibrated Label Ranking (CLR)
is a learner that builds two layers. The first layer deter-
mines if an entity should be labelled, while the second layer
determines what labels should be assigned. The Hierar-
chy Of Multi-label classifiERs (HOMER) and Binary Rel-
evance (BR) act as a hierarchy of learners: BR is flat, while
HOMER tries to build a deeper hierarchy for a more ac-
curate learner [20]. These classifiers performed better than
other multi-label classifiers as they have the best micro and
macro ROC scores. The multi-label and single-label learners
had similar performance: for MySQL, BR and Naive Bayes
had similar macro-ROC scores of 0.74.

4. UNDERSTANDING SOFTWARE MAIN-
TENANCE ACTIVITIES

As we mentioned in the introduction, a key issue in soft-
ware maintenance is understanding why a system has evolved
the way it has [1]. In this section we demonstrate the value
of labelled topic extraction in addressing this issue. Labelled
topics address why because they show reasons why changes
occurred rather than how. The how of a change is the change
itself, the purpose or why is what we are after. We investi-
gate the history of the two large-scale database systems that
we studied. We use our technique to show the topic of de-
velopment efforts over time in each project. We motivated
our investigation with two research questions:

1. Do NFR frequencies change over time? If a particular
NFR was of more interest at one point in the life-cycle

than another, this suggests that development activity
shifted focus. For example, if a developer expected
to see a recent focus on reliability, but instead usabil-
ity dominated, they might re-prioritize upcoming work
items.

2. Do projects differ in their relative interest in NFRs? A
project manager, especially a systems-manager, would
be interested in knowing whether a particular NFR,
such as reliability, was more important for one project
than another. This could be to confirm the initial de-
sign goals, or to track the progress on that quarter’s
objectives. The difference in NFR proportion is inter-
esting because it implies a difference in focus between
two projects.

Figures 5a and 5b show the temporal patterns of NFR
frequencies. There are two measures represented. One, the
relative frequency, shown in the grey histogram boxes, rep-
resents the number of topics with that NFR in that period,
relative to the maximum number of topics assigned to that
NFR. For example, in Figure 5a we see a spike in portability
and functionality frequency in September 2002. The sec-
ond, absolute frequency, is shown using cell intensity, and
compares the number of topics labelled with that NFR per
period relative to the maximum number of labelled topics
overall. For instance, Figure 5a shows that the NFRs func-
tionality, portability and maintainability contain more la-
belled topics, since these NFRs have been more intensely
shaded; one interesting stream is efficiency which shows pe-
riodic activity, does this suggest that once maybe efficiency
related changes have longer lasting effects? The topmost
row in each diagram lists historical events for that project
(such as a release).

We analyzed each project’s developer mailing list for ex-
ternal validation. We use labelled topic extraction to pick out
the underlying NFR activity behind these events. For exam-
ple, both projects show a high number of NFRs recognized at
the first period of analysis. This is due to our window choice:
we deliberately targeted our analysis to when both MySQL
3.23 and MaxDB 7.500 were first announced. For MaxDB,
version 7.5.00 was released in December of 2003. We know



(a) MySQL 3.23

(b) MaxDB 7.500

Figure 5: NFR label per period. Each cell represents a 30-day period. Grid cell intensity (saturation) is
mapped to label frequency relative to the largest label count of all NFRs. Grey histogram bars indicate
label frequency relative to that particular NFR’s largest label count. Dashed vertical lines relate a project
milestone (*Key events* ) to our topic windows.

that release 7.5.00.23 saw the development of PHP inter-
faces, possibly accounting for the simultaneous increase in
the portability NFR at the same time. The gap in MaxDB
(Figure 5b) is due to a shift in development focus (from
February 2005 to June 2005) to MaxDB 7.6, which is re-
leased in June 2005.
The release of MySQL we study (Figure 5a) was the first

to be licenced under the GPL. Version 3.23.31 (January,
2001) was the production release (non-beta), and we see a
flurry of topics labelled with functionality and maintain-
ability. After this point, this version enters the maintenance
phase of its life-cycle. In May 2001, there is an increase in
the number of topics labelled with portability. This might be
related to release 3.23.38, which focused on Windows com-
patibility. Similarly, in August, 2002, both functionality and
portability are frequent, and mailing list data suggests this
is related to the release of version 3.23.52, a general bug fix
with a focus on security (a component of the functionality

NFR in the ISO9126 model). After this point, efforts shift
to the newer releases (4.0, 4.1, 5.0). We now address our
research questions:

4.1 Do NFR frequencies change over time?
In both projects the frequencies generally decreased with

age. However, there are variations within our NFR labels.
In MySQL, usability and efficiency do not appear very of-
ten in topics. A proportionately smaller number of commits
addressed these NFRs. Certain peaks in topic numbers coin-
cide with a particular emphasis from the development team
on issues such as new releases or bug fixes. This suggests
that maintenance activity is not necessarily strictly decreas-
ing with time, but rather episodic and responsive to outside
stimuli. In MaxDB, we can observe that Maintainability
topics became more prevalent as MaxDB matures. This
is likely due to our analysis time-frame for MaxDB being
shorter than the time-frame for the MySQL product.



4.2 Do projects differ in their relative topic in-
terest?

Yes. MySQL 3.23 had proportionally more topics labelled
functionality, while MaxDB had proportionally more effi-
ciency related topics. MaxDB was a very mature release
“donated” to the open-source community, whereas MySQL
was in its relative infancy, and security problems were more
common (security is a component of functionality in the
ISO9126 model). In both cases portability was a constant
maintenance concern and was prevalent throughout the life-
time of the projects. It may surprise developers how often
portability arises as a concern.

5. DISCUSSION

5.1 Annotation observations
We found many topics that were not actually non-functional

requirements (NFRs) but were often related to them. For
instance, concurrency was mentioned often in the commit
logs and was related to correctness and reliability, possibly
because concurrent code is prone to bugs such as race condi-
tions. Configuration management and source control related
changes appeared often; these kinds of changes are slightly
related to maintainability. A non-functional change that
was not quality-related was licensing and copyright; many
changes were simply to do with updating copyrights or en-
suring copyright or license headers were applied to files. In
these cases we assigned the None label to the topic.
We noticed that occasionally the names of modules would

conflict with words related to other non-functional require-
ments. For instance, optimizers are very common modules in
database systems: both MySQL and MaxDB have optimizer
modules. In MySQL the optimizer is mentioned but often
the change addresses correctness or another quality. Despite
this difference, the name of the module could fool our learn-
ers into believing the change was always about efficiency.
In these cases the advantages of tailoring topic names to
specific project terminologies are more clear. Project spe-
cific word-lists would avoid automated mistakes due to the
names of entities and modules of a software project.

5.2 Summary of techniques
While an unsupervised technique such as LDA is appeal-

ing in its lack of human intervention, and thus lower effort,
supervised learners have the advantage of domain knowl-
edge, which typically means improved results. Creating an-
notated topics (i.e., manual labels) for training is painstak-
ing, but with a suitably representative set of topics, the effort
is acceptable. To annotate all topics took us approximately
20 hours per project, but we estimate only 10% of the topics
need annotation to produce useful results.
Very rarely did exp2 and exp3 (semi-unsupervised word

matching) ever perform as well as the supervised machine
learners. For MaxDB, reliability was slightly better detected
using the static word list of exp2. In general, the machine
learners and exp3 did better than exp2 for both MaxDB
and MySQL. For both MySQL and MaxDB usability was
better served by exp2. Usability was a very infrequent label,
however, which made it difficult to detect in any case.
The semi-unsupervised labelling had difficulty distinguish-

ing between common labels and infrequent labels. The learn-
ers would occasionally mislabel a topic deserving of an infre-

quent label with a more common label. The word-lists for
correctness tended to be too lengthy, non-specific and broad,
especially if WordNet words were used, since the NFRs are
typically loosely defined concepts in common parlance.

We found that the multi-label learners of BR, CLR and
HOMER only did as well or worse for Macro-ROC as the
single-label Naive Bayes and other naive Bayes-derived learn-
ers. This suggests that by combining together multiple Naive
Bayes learners we could probably label sets of topics effec-
tively, but it would require a separate Naive Bayes learner
per label.

With ROC values ranging from 0.6 to 0.8 we can see there
is promise in these methods. exp2 and exp3 both indicate
that static information can be used to help label topics with-
out any training whatsoever. MySQL and MaxDB’s ma-
chine learners made some decisions based off a few shared
words: bug, code, compiler, database, HP UX, delete, memory,
missing, problems, removed, add, added, changed, problem,
and test. Adding these words to the word-lists of exp2 and
exp3 could improve performance while ensuring they were
only domain specific.

If the techniques used in exp2 and exp3 were combined
with the supervised techniques, we could reduce the training
effort by boosting training sets with topics classified with the
semi-unsupervised techniques. Both Naive Bayesian learn-
ers and the word-list approaches were computationally ef-
ficient. These results are promising because they indicate
that these techniques are accurate enough to be useful while
still maintaining acceptable run-time performance.

Since this work focuses on labelling natural language com-
mit log comments we feel it can be adapted to other natural
language artifacts such as mailing-list discussions and bug
reports, even though that was not evaluated in this paper.
Bug reports might not exhibit the same behaviour as com-
mits in terms of dominant topics.

5.3 Threats to validity
Construct validity – we used only commit messages rather

than mail or bug tracker messages. To extend further we
would need matching repositories for each project. Possibly
they would have influenced our results, but there would be
a degree of correlation between the corpora. Our taxonomy
for software NFRs is subject to dispute, but seems generally
accepted. Finally, there are exogenous sources, such as in-
person discussions, which we did not access, an omission as
noted in Aranda et al. [1]

Internal validity – We improved internal validity by try-
ing to correlate and explain the behaviours observed in the
analysis with the historical records of the projects. We did
not attempt to match our results to any particular model.
We were unable to assess inter-rater reliability.

External validity – Our data originated from OSS data-
base projects and thus might not be applicable to commer-
cially developed software or other domains. Furthermore,
our analysis techniques rely on a project’s use of meaning-
ful commit messages, although we feel this is the most fre-
quently occurring form of developer comments.

Reliability – each annotator, the first two authors, followed
the same protocol and used the same annotations. However,
only two annotators were used; their annotations could be
biased as we did not analyze for inter-rater reliability be-
cause they did not rate the same documents.



5.4 Future work
There are several avenues of further investigation. More

external validation would be useful. Although we validated
our comparisons using a mailing list for each project, inter-
views with developers would provide more detail. We also
think multi-label learning techniques, although in their in-
fancy, are crucial in understanding cross-cutting concerns
such as NFRs. We want to leverage different kinds of ar-
tifacts to discover threads of NFR-related discussions that
occur between multiple kinds of artifacts. Finally, we would
like to extend this analysis to other domains, to see what
patterns might occur in, for example, a consumer-facing soft-
ware product.

6. CONCLUSIONS
This paper presented a cross-project data mining tech-

nique, labelled topic extraction. Previous topic analysis re-
search produced project-specific topics that needed to be
manually labelled. To improve on this, we leveraged soft-
ware engineering standards, specifically the ISO9126 quality
taxonomy, to produce a method of partially-automated (su-
pervised) and fully-automated (semi-unsupervised) topic la-
belling. Since the word-list technique is not project-specific,
we used it to compare two distinct projects, where we showed
our technique produced interesting insight into maintenance
activity.
We validated our topic labelling techniques using multi-

ple experiments. We first conducted semi-unsupervised la-
belling using word-lists. Our next approach was supervised,
using single-label and multi-label learners. Both kinds of
learners performed well with average ROC values between
0.6 and 0.8. These results, along with the efficient perfor-
mance of our learners, demonstrate that labelled topic ex-
traction is a promising approach for understanding the oc-
currence of non-functional requirements in software projects.

APPENDIX

Our data and scripts are available at:
http://softwareprocess.es/nomen/

A. REFERENCES
[1] J. Aranda and G. Venolia. The secret life of bugs:

Going past the errors and omissions in software
repositories. In International Conference on Software
Engineering, pages 298–308. IEEE, Sep 2009.

[2] P. F. Baldi, C. V. Lopes, E. J. Linstead, and S. K.
Bajracharya. A theory of aspects as latent topics. In
Conference on Object Oriented Programming Systems
Languages and Applications, pages 543–562, Nashville,
2008.

[3] D. M. Blei, A. Y. Ng, and M. I. Jordan. Latent
Dirichlet Allocation. Journal of Machine Learning
Research, 3(4-5):993–1022, May 2003.

[4] B. Boehm, J. R. Brown, and M. Lipow. Quantitative
Evaluation of Software Quality. In International
Conference on Software Engineering, pages 592–605,
1976.

[5] J. Cleland-Huang, R. Settimi, X. Zou, and P. Solc.
The Detection and Classification of Non-Functional

Requirements with Application to Early Aspects. In
International Requirements Engineering Conference,
pages 39–48, Minneapolis, Minnesota, 2006.

[6] N. A. Ernst and J. Mylopoulos. On the perception of
software quality requirements during the project
lifecycle. In International Working Conference on
Requirements Engineering: Foundation for Software
Quality, Essen, Germany, June 2010.

[7] T. Fawcett. An introduction to ROC analysis. Pattern
Recognition Letters, 27(8):861 – 874, 2006.

[8] C. Fellbaum, editor. WordNet: An Electronic Lexical
Database. MIT Press, 1998.

[9] S. Few. Information Dashboard Design: The Effective
Visual Communication of Data. O’Reilly Media, 1
edition, Jan. 2006.

[10] M. Hall, E. Frank, G. Holmes, B. Pfahringer,
P. Reutemann, and I. H. Witten. The WEKA Data
Mining Software: An Update. SIGKDD Explorations,
11(1):10–18, 2009.

[11] A. Hindle, M. W. Godfrey, and R. C. Holt. What’s
hot and what’s not: Windowed developer topic
analysis. In International Conference on Software
Maintenance, pages 339–348, Edmonton, Alberta,
Canada, September 2009.

[12] Software engineering – Product quality – Part 1:
Quality model. Technical report, International
Standards Organization - JTC 1/SC 7, 2001.

[13] A. Kayed, N. Hirzalla, A. Samhan, and M. Alfayoumi.
Towards an ontology for software product quality
attributes. In International Conference on Internet
and Web Applications and Services, pages 200–204,
May 2009.

[14] R. Kohavi. A study of cross-validation and bootstrap
for accuracy estimation and model selection. In
International Joint Conference On Artificial
Intelligence, pages 1137–1143, Toronto, 1995.

[15] A. Marcus, A. Sergeyev, V. Rajlich, and J. Maletic.
An information retrieval approach to concept location
in source code. In 11th Working Conference on
Reverse Engineering, pages 214–223, November 2004.

[16] J. McCall. Factors in Software Quality: Preliminary
Handbook on Software Quality for an Acquisiton
Manager, volume 1-3. General Electric, November
1977.

[17] Q. Mei, X. Shen, and C. Zhai. Automatic labeling of
multinomial topic models. In International Conference
on Knowledge Discovery and Data Mining, pages
490–499, San Jose, California, 2007.

[18] A. Mockus and L. Votta. Identifying reasons for
software changes using historic databases. In
International Conference on Software Maintenance,
pages 120–130, San Jose, CA, 2000.

[19] C. Treude and M.-A. Storey. ConcernLines: A
timeline view of co-occurring concerns. In
International Conference on Software Engineering,
pages 575–578, Vancouver, May 2009.

[20] G. Tsoumakas, I. Katakis, and I. Vlahavas. Mining
multi-label data. In O. Maimon and L. Rokach,
editors, Data Mining and Knowledge Discovery
Handbook. Spring, 2nd edition, 2010.

http://softwareprocess.es/nomen/

	Introduction
	Previous Work
	Study design and execution
	Generating the data
	The high-level labels
	Creating a validation corpus

	Semi-unsupervised labelling
	Generating word lists
	Automatic Labelled Topic Extraction
	Analysis of the semi-unsupervised labelling

	Supervised labelling
	Analysis of the supervised labelling

	Applying multiple labels to topics

	Understanding software maintenance activities
	Do NFR frequencies change over time?
	Do projects differ in their relative topic interest?

	Discussion
	Annotation observations
	Summary of techniques
	Threats to validity
	Future work

	Conclusions
	References

