
Software Bertillonage: Finding the provenance of an entity

Julius Davies†, Daniel M. German†, Michael W. Godfrey‡,
† Department of Computer Science, University of Victoria, Canada

‡ David R. Cheriton School of Computer Science, University of Waterloo, Canada
juliusd@uvic.ca, dmg@uvic.ca, migod@uwaterloo.ca

ABSTRACT
Deployed software systems are typically composed of many
pieces, not all of which may have been created by the main
development team. Often, the provenance of included com-
ponents — which may include external libraries or cloned
source code — is not clearly stated. This raises a number
of both technical and ethical/legal concerns. Technically,
it is often hard to maintain such a system if its external
dependencies are not well documented. Ethically, code frag-
ments that have been copied from other sources, such as
open source software, may not have licences that are com-
patible with the released system. In this work, we motivate
the need for recovery of the provenance of software entities
by a broad set of techniques that include source code fact ex-
traction, software clone detection, call flow graph matching,
string matching, and historical analyses. We liken our goals
to that of Bertillonage, a simple and approximate forensic
analysis technique based on bio-metrics that was developed
in France before the advent of fingerprints.

As a motivating example of this kind of work, we con-
sider the PCI DSS security standard for e-commerce, which
requires that an application should provide precise version
information about any libraries that are packaged with it.
In practice, this information is often not provided and so we
have sought ways to infer it from available evidence.

We used a single Bertillonage metric of own invention, an-
chored signature matching, to analyze Java libraries from a
proprietary e-commerce Java application. The application
of this single metric allowed us to automatically provide ex-
act version information for over 57% of our sample set, and
to narrow the search space significantly for another 39%,
providing actionable information on 96% of the libraries
within the e-commerce application.

Keywords: Code search, mining software repositories,
open source systems.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICSE ’2011 Waikiki, Honolulu, Hawaii
Copyright 2011 ACM X-XXXXX-XX-X/XX/XX ...$10.00.

1. INTRODUCTION
Most deployed software systems are composed of many

pieces drawn from a variety of disparate sources. While
the bulk of a given software system’s source code may have
been developed by a relatively stable set of known devel-
opers, often components of the shipped product may have
come from external sources. For example, software systems
commonly require the use of externally developed libraries,
which evolve independently from the target system. To en-
sure library compatibility — and avoid what is often called
“DLL-hell” — a target system may be packaged together
with specific versions of libraries that are known to work
with it. In this way, developers can ensure that their system
will run on any supported platform regardless of the par-
ticular versions of library components that clients might or
might not have already installed.

Many North American financial instutions implement the
Payment Card Industry Data Security Standard (PCI DSS)
[1]. Requirement 6 of this standard states “All critical sys-
tems must have the most recently released, appropriate soft-
ware patches to protect against exploitation and compromise
of cardholder data.” Suppose a java application running in-
side a finanical institution is found to contain a dependency
on a java archive named foo.jar. Satisfying the PCI DSS
requirement in this example is difficult:

• Which version of foo.jar is the application currently
running?

• How hard will it be to upgrade to the latest version of
foo.jar?

• Has the copyright or patent license of foo.jar changed
in the newest version in a way that prevents upgrad-
ing?

We can use a variety of techniques for this: If we have
source code we can do software clone detection. If we have
binaries, we can use a variety of techniques including clone
analysis of assembler token streams, call flow graph match-
ing, string matching, mining software repositories, and his-
torical analyses.

This kind of investigation can be performed at various
levels of granularity, from code chunks to function and class
definitions to files and subsystems up to compilation units
and libraries. But the fundamental question we are con-
cerned with is this: Given a software entity, can we deter-
mine where it came from? That is, how can we establish its
provenance?

1

1.1 Contributions
We summarize the contributions of this paper as follows:

• We define the concept of software Bertillonage: a method
to reduce the search space when trying to find an en-
tity in a corpus where simple comparisons fail and no
fingerprinting exist for the type of entity.

• We exemplify the use of software Bertillonage by pre-
senting our method: anchored signature matching. This
method finds matches between a supplied Java artifact
(binary jar or Java source archive) and original Java
artifacts within a large corpus.

• We demonstrate the effectiveness of our method with
an empirical study that involves finding exact version
information of binary jars used in an e-commerce ap-
plication of a financial institution.

2. FORENSIC BERTILLONAGE AND SOFT-
WARE PROVENANCE

In the mid to late 18th century, police forces in Europe
and elsewhere were beginning to take advantage of emerg-
ing technologies. For example, suspected criminals in Paris
were routinely photographed upon arrest, and the photos
were organized by name in a filing system. Of course, crimi-
nals soon found out that if they gave a false name upon being
arrested that their chances of being identified from the huge
pool of photos was very small unless the police were particu-
larly patient or happened to recognize them from a previous
encounter. Alphonse Bertillon, the son of a statistician, had
the idea that if suspects could be routinely subjected to a
series of simple physical measurements — such as height,
length of right ear, length of left foot, etc. — then the pho-
tos could be organized hierarchically using the bio-metrics
data, and the set of photographs that had to be examined
for a given suspect could be reduced to a small handful.
This approach, which was subsequently termed Bertillonage
in his honour, proved to be very effective and was a huge
step forward in criminology [2].

As a forensic approach, Bertillonage also had its draw-
backs. Using the specialized measuring equipment required
extensive training and practice to be reliable, and it was
time-consuming to perform. Each of 10 measurements was
performed three times, because if even one measurement was
off then the system did not work. Also, the measurements
taken did not have a high degree of independence; tall peo-
ple tended to have long arms too.1 In time, the emerging
science of fingerprinting proved to be a much more effec-
tive and accurate identification mechanism and Bertillonage
was forgotten. Nevertheless, Bertillon and his other inven-
tions — including the modern mugshot and crime scene pho-
tograpy — showed how simple ideas combined intelligently
could greatly reduce the amount of manual effort required
in forensic investigations. Despite its limitations, Bertillon-
age was considered the best method of identification for two
decades [3].

Our goal in this work is to devise a series of techniques to
aid determining the provenance of software entities. That
is, given a software entity such as a function definition or

1When Francis Galton realized this, he devised statistical
correlation.

an included library, we would like to be able answer the
question: Where did this come from? Of course, most often
the answer will be that the entity in question was designed
to fit exactly where it is within the design of the system, but
sometimes entities are moved around, designs are refactored,
new is copied from old and then tweaked. We would like be
able to answer this question authoritatively: this is version
1.3.7 of the X library; this SCSI driver is a tweaked clone of
a driver of a similar card; most of this function f was split
off from function g during a refactoring effort in the last
development cycle. Sometimes, however, our answers will be
a best effort guess, especially if we do not have authoritative
access to the original developers.

We therefore use the metaphor of software Bertillonage,
rather than say software fingerprinting, as we often lack suf-
ficient evidence to make a conclusive indentfication. Instead,
we use a set of simple and sometimes ad hoc techniques to
narrow the search space down to a level where a manual
determination may be feasible.

3. RELATED WORK
In software engineering research, similar questions have

been addressed in various guises. For example, there is a
large body of work in software clone detection that asks the
question: Which software entities have been copied (and
possibly tweaked) from other software entities. Our own
work [4] on the problem of “origin analysis” asked: If func-
tion f is in the new version of the system but not the old,
is it really new or was it moved / renamed / merged / split
from another entity in the old version? The emphasis here
is to broaden the question even more: given the recent ad-
vances in the field of mining software repositories, can we
take advantage of the vast array of different kinds of soft-
ware development artifacts to draw conclusions about the
provenance of software entities?

There exist many studies on the origin, maintenance and
evolution of clones [5, 6, 7, 8, 9, 10]. Others have concen-
trated on their lifespan and genealogy [11]. Our main differ-
ence with those studies is that we study provenance across
applications, and are not only interested in finding similar
(or identical) entities, but where they come from. We are
also interested in matching similar (or identical) entities to
when one of them is in compiled form.

Clone detection methods (such as [12, 13]), as well as the
tracking of clones between application [14] provided a start-
ing point for our investigation. Similar to Holmes et al. [15]
we build our own code-search index.

Di Penta et al. [16] used code search engines to find the
source code that corresponds to a Java archive (they used
the fully qualified name of the class). They found that their
main limitation was the inability to match a binary jar to
the precise version it came from. We, however, consider this
a simple method of Bertillonage.

4. A FRAMEWORK FOR SOFTWARE
BERTILLONAGE

The main goal of Software Bertillonage is to address the
problem of finding the source of a software artifact, even
when such artifact is in binary form (compiled). Software
Bertillonage (Bertillonage from now on) will help to signifi-
cantly reduce the large search space for potential candidates.
This is different from software fingerprinting, where the ob-

2

jective is to define a method to uniquely identify a subject–
Bertillonage is not accurate enough to consistently provide
a unique identifier. In fact, accurate fingerprinting is still
an open problem. To our knowledge, there are currently no
published fingerprinting techniques that will always match
a binary to its source code.

First we define a ‘subject’ as the entity for which we are
interested in tracking its provenance. We define ‘candidates’
as a set of entities that are likely matches to the subject.
A desirable property of Bertillonage is to provide, for any
subject, a relatively small set of candidates.

Once a smaller set of candidates has been identified, other
methods (usually significantly more expensive to apply) can
be used to verify the identity of the subject (such as clone
detection, or differencing tools, if the subject and the candi-
dates are all in source code form) or assembly code to source
comparison (if the subject is binary and the candidates are
source), or assembly to assembly comparison (if candidates
and subjects are all binary). Some of these methods might
require significant manual labour.

4.1 Bertillonage Metrics
Like the traditional Bertillonage, it is necessary to define

a set of metrics that can be measured in a potential subject,
that will be relatively unique to it. This is particularly dif-
ficult when trying to match binary to source code, because
many of the original features of the source code might be
lost during the compilation; for example, identifiers might
be lost, some portions might not be compiled, source code
entities are translated into binary form (which might include
optimizations), etc.

Given the variety of programming languages, we presume
that each will require different Bertillonage metrics. For
instance, compilation to Java is easier to analyze than com-
pilation to C++, and contains richer information. In turn,
C++ binaries maintain more information than compiled C
(C++ maintains parameters types –to support overloading–
while C does not).

Another important consideration is: what is the level of
granularity of the Bertillonage? To match an entire soft-
ware system it might not be necessary to look inside each
function/method. But if the objective is to match a func-
tion/method, then the only information available to measure
are method bodies and type signatures.

Bertillonage is concerned with measuring the intrinsic prop-
erties of a subject. These measurements can be of different
types, for example:

count-based: how many of these “objects” the entity con-
tains, such as number of calls to external libraries, or
uses of an obscure feature (how many times is setjmp,
longjmp used);

set-based: compute a set of “objects” the entity contain,
such as a set of string literals defined by this entity (for
example, The GPL Compliance Engineering Guide,
developed under the auspices of the Linux Founda-
tions, recommends the extraction of literal strings to
determine potential violations [17]), or set of classes
defined in a package;

sequence-based: compute a sequence of “objects” in the
entity (i.e. preserve the order of the objects), such as

the sequence of methods signatures of a class, or se-
quence of calls in a method, sequences of tokens types
(commonly used in clone detection), etc;

relationships-based: use other entities or “objects” that
the “object” under measurement is related to; for ex-
ample, what are the dynamic libraries used by this
program, what are the C standard library functions
used by this function, what is the internal callgraph of
this program.

Table 1 summarizes these observations. A good Bertillon-
age metric should be computationally inexpensive, applica-
ble to the desired level of granularity and programming lan-
guage, and when applied, it should significantly reduce the
search space (i.e match few candidates from a large number
of potential ones).

Granularity Code Snippet
Function/Method
Class
Package
Program/Library
etc.

Type of subject Source
Binary

Type of Metric Count-based
Set-based
Sequence-based
Relationship-based

Applicable Language C
Java
etc.

Table 1: Characteristics of Bertillonage Metrics

5. MATCHING THE EXACT VERSION OF
A JAVA BINARY ARCHIVE TO ITS
SOURCE CODE

To exemplify the concept of Bertillonage, we propose a
Bertillonage metric that addresses the problem: if we are
given a java binary archive, can we determine its original
source code?

As described in Di Penta et al. [16], Java applications
are frequently bundles of binary artifacts. To avoid de-
pendency problems such applications include in their dis-
tributable archive copies of the dependencies. These copies
are of two types. The first is embedding binary archives
(which in turn might include other binary archives); and
the second making copies of the source code of these depen-
dencies, such that they are compiled and included as part of
the application.

The most obvious source of information is the name of the
archive itself (i.e. commons-codec-1.1.jar would come from
commons-codec, an Apache project, version 1.1)2. But not all
projects adhere to consistent naming and numbering poli-
cies, and mechanisms for auto-numbering a binary’s version

2This is similar to a policeman asking a subject for her/his
name and expecting a correct answer.

3

can be difficult to implement. This approach breaks when
the source of the project is copied into the tree of the given
application, as there is no longer a specific archive for the
embedded dependency.

Another approach, implemented by Di Penta et al. [16], is
to use fully qualified name of each class, and a code search
engine. While effective to find the source of a class, the
main drawback of this approach is that it cannot match the
binary to a precise version of the source.

On the opposite end of the spectrum, we could build a
database of exact source-to-byte matches by compiling all
known sources and indexing the results. False positives are
impossible under such a scheme, and thus matches would
provide a direct and unquestionable link back to source code.
But false negatives could arise in several ways, among these:
variation of compilers (e.g. Oracle’s javac7 vs IBM’s jikes1.22),
debugging symbols (on or off), and different optimization
levels. To address these we could try to compile our sources
under all known compiler variations. Unfortunately, addi-
tional avenues for false negatives remain. For example, the
build scripts themselves might inject information at build-
time directly into the class files (mechanisms for auto-numbering
binary versions sometimes do this). Theoretical limitations
aside, many practical concerns prevent us from attempting
to compile all known versions of all known sources in the
open source java universe: engineering such an index would
be computationally and organizationally challenging, and li-
brary dependencies can be difficult to satisfy (especially for
older artifacts) making full compilation a problem.

Applying Bertillonage to binary archives requires us to
find characteristics that we can use to match the binary
archive components (the class files) to their source code,
and that are easy to measure and compare such that, even if
they do not guarantee a perfect match, they will significantly
reduce the search space.

Class and package names very rarely change over a li-
brary’s lifetime since such changes break drop-in compati-
bility for integrators, but other features of the library are
free to change as a library evolves (besides the source code
inside each method body). We are particularly interested in
features that survive the compilation process. For Java we
considered the following list of attributes that are present in
both source and binary forms:

• inheritance tree,

• implemented interfaces,

• constructors,

• annotations,

• method names, their return types, and their parame-
ters (names and types),

• class, method, and constructor visibility,

• some class and method modifiers (i.e. abstract), and

• relative position of methods in the class.

Many other features are lost during compilation. This in-
cludes: comments, import statements (the original import
statement is“resolved”and replaced with the actual one that
depends on the environment in which it is compiled—such
as the value of the CLASSPATH variable), parameter modi-
fiers (such as final), and absolute position of methods, since

1 package a . b ;
2
3 import g . h . ∗ ;
4
5 /∗∗
6 ∗ @author Jane Doe
7 ∗ @since January 1 , 2001
8 ∗/
9 pub l i c c l a s s D implements I<Number> {

10
11 synchron ized s t a t i c i n t a (
12 S t r i ng s
13) throws E {
14 // }}}}} A comment ! ! ! !
15 S t r i ng b = ”// { ” ;
16 re turn b . hashCode () − s . hashCode () ;
17 }
18 }

Figure 1: Hypothetical source code of a class D.

line numbers are preserved only when the class is compiled
with debug info.

In a nutshell, our proposal for applying Bertillonage to
binary archives is to define a metric that can be used to
match a binary class file to its likely source file (we will
formally define it below). Not all source code classes are
included into a binary; for example, test classes are usually
not included, and sometimes a source archive is split into
two or more binary archives. To match a binary archive, we
try to find the source archives with the largest overlap of
classes between the binary archive and a source archive.

5.1 Anchored Class Signature
We characterize a class C, with methods M1, ...,Mn (in

either source or binary form) to possess an anchored class
signature, denoted as ϑ(c), and defined as a tuple:

ϑ(c) = 〈σ(c), 〈σ(M1), ...σ(Mn)〉〉

where σ(a) is the type signature of the class or methods a.
That is, the anchored signature of a class is the type signa-
ture of the class itself, and the ordered sequence of the type
signatures of each of its methods. We say the signature is
anchored because it includes the fully qualified name, in-
cluding the namespace, of the Java file. Similarily we could
define an un-anchored signature to be the same, but without
the fully qualifed name (missing the “package” part).

When building the surface signature, all fully qualified
names in the decompiled bytecode are stripped of their pack-
age prefixes (i.e. g.h.I becomes I and java.lang.String

becomes String) since identifying the fully qualified names
from source depends on Java’s import mechanism, which is
indeterminate, as mentioned above. Fully qualified names
referenced directly in source, though rare, are also stripped
of their package prefixes, since we have no way of knowing
in the bytecode if the name came from an import or from
an inline declaration.

Consider a class file D.java (depicted in figure 1) and its
corresponding decompiled bytecode (shown in figure 2). The
java compiler will insert an empty constructor if no other
constructors are defined, and for that reason the bytecode
version contains an empty one. Class D’s surface signature is
depicted in figure 3, and it is composed of the type signature
of the class, the type signature of the default constructor D,
and the type signature of its method a.

4

1 package a . b ;
2
3 pub l i c c l a s s D extends java . lang . Object implements

g . h . I {
4
5 pub l i c D() {
6 // An empty d e f au l t c on s t ru c to r i n s e r t ed by

javac ,
7 // s i n c e a l l c l a s s e s must have con s t ru c to r s .
8 }
9

10 synchron ized s t a t i c i n t a (
11 java . lang . S t r i ng s
12) throws a . b .E {
13
14 /∗ [compi led byte code] ∗/
15
16 }
17 }

Figure 2: Hypothetical decompiled version of a class
D.

σ(D) = public class a.b.D extends Object implements I

σ(M1) = public D()
σ(M2) = default synchronized static int a(String) throws E

ϑ(D) = 〈σ(D), 〈σ(M1), σ(M2)〉〉

Figure 3: Normalized class signature for both D.java
and D.class.

5.2 Similarity Index of Archives
To compare two archives we define a metric called the sim-

ilarity index of archives, which is intended to measure how
similar are the two archives with respect to the query sur-
faces of the classes that compose them. Formally, given an
archive A composed of n classes ci A = c1, ...cn, we extend
the definition of surface signature to an archive as the

ϑ(A) = {ϑ(c1), ..., ϑ(cn)}

We define the Similarity Index of two archives A, B, de-
noted as sim(A,B), as the Jaccard coefficient of their surface
signatures:

sim(A,B) =
|ϑ(A)

⋂
ϑ(B)|

|ϑ(A)
⋃

ϑ(B)|

Ideally, a binary archive B would have been originated in
source archive S if sim(B,S) = 1. In practice, however, this
is not the case, as many classes in the source archive are not
included in the binary archive (such as test cases). A source
archive with a very large number of test classes might have a
low similarity coefficient with its binary archive. Similarly,
a large archive that includes a copy of source code of the
original system (shade linking) will have a low similarity
index with its binary archive, even though it might contain
an exact match within its source code. To address these
issues we define the concept of inclusion similarity.

5.3 Inclusion Index of Archives
The inclusion index of archive A in B, denoted as

inclusion(A, B) is the proportion of class signatures found
in both archives with respect to the size of A.

inclusion(A,B) =
|ϑ(A)

⋂
ϑ(B)|

|ϑ(A)|

We interpret that, when the inclusion index between a
binary archive A and source archive B is close to 1, the
classes in A are present in the source code of B.

5.4 Finding candidate matches of a binary
archive

Given a binary archive b, we can use the similarity and
inclusion indexes to rank the likelihood that any archive in
a corpus might contain the same code found in the binary
archive. The higher the similarity index, the more likely
both are instances of the same source code; and the higher
the inclusion index, the more likely the candidate matched
archive will contain a copy of the source code that created
the subject binary archive. A candidate archive that has
low similarity index, but high inclusion index is likely to be
a bundle of several java applications, one of them the one
that corresponds to the subject binary archive.

If the similarity index is zero, then no archive in the cor-
pus contains a single class signature in common with the
binary archive. A very low inclusion index might point to-
wards a match to an archive that implements a common
class signature.

We can formalize finding the best match(es) for a binary
archive in an archive corpus as follows: given a set of archives
S = {s1, ..., sn} (the corpus), we find the best candidate
matches a of binary archive b as the subset of L ⊆ S such
that:

∀si ∈ L sim(b, si) > 0 ∧ sim(b, si) = maxsim[S, b]

where maxsim[S, b] is the maximum similarity index of b
and the elements in S.

Ideally, the size of L is 1: only one source (or one binary)
archive matches the binary archive. In general, the corpus
could have several candidate matches of the archives (iden-
tical, or non-identical, such as changes in documentation).
Furthermore, the same archive signature might be matched
by more than one version of the same system (such as when
an upgrade might not make any changes to the signature of
any of the methods or classes in the archive, nor has added
a new class–this is typical in minor release updates).

6. IMPLEMENTATION

6.1 Building a corpus
To be effective, any system that implements Bertillonage

requires a corpus that is as comprehensive as possible. For
Java the Maven 2 central repository fulfils this requirement.
This repository acts as the Java community’s de facto library
archive. The repository was originally developed as a place
from where the Maven build system could download required
libraries to build and compile an application. Thanks of
its broad coverage and depth, many competing java build
systems and dependency resolvers currently make use of it.

6.2 Extracting the class signatures
We developed two distinct tools to extract the signatures

of compiled class files and source files. Each tool addresses
one type of artifact: one for bytecode and one for source.
Similar to Di Penta et al. [16] we chose the bcel5 library
for bytecode. We wrote our own parser for analyzing source
files. As described in the previous sections, our goal is to cre-
ate a normalized class signature that can be used to match
bytecode to source.

5

6.2.1 Extracting a class signature from source
When analyzing a source file we need to first discard four

things: annotations, import statements, generics and pa-
rameter names and modifiers. After discarding, we then
must extract the class signature as we have defined it.

• Extract the package and class line. We must re-introduce
the default ‘extends Object’ declaration as part of our
normalization if the source in question does not sub-
class anything. For our example in Figure 1, the result
is:

public class a.b.D extends Object implements I

For classes that implement more than one interface,
we sort the interfaces in lexicographical order.

• If necessary, re-introduce the default constructor. The
java compiler will insert an empty constructor if no
other constructors are defined; we must also do the
same:

public D()

• Extract methods, careful to preserve order. If there
are exception types listed in the throws clause, we
sort these lexicographically. As for visibility, should
a method declare itself neither private, protected, nor
public, we then store it as ‘default’ in our signature,
i.e:

default synchronized static int a(String) throws E

Due to limitations of our prototype java parser, we
are currently ignoring inner-classes, abstract methods,
and native methods.

6.2.2 Extracting a class signature from bytecode
The approach on the bytecode side is somewhat inverted.

Consider the hypothetical ‘decompiled’ Figure 2 for D.class,
from before.

Normalization here involves three activities:

• Extract the package and class line. As before we as-
semble a package and class line; this time we must
shorten the fully-qualified names that bcel5 extracts.

• Extract methods, careful to preserve order. We shorten
the fully-qualified names among the method paramater
types and exception types. A visibility of ‘default’
is stored if necessary. Unlike the current version of
our source parser, bcel5 has no problem extracting in-
terfaces, abstract methods, inner classes, and native
methods. We must note such and ignore them.

• Remove methods introduced to implement non-generic
interfaces. Classes sometimes contain additional meth-
ods added by javac at the end of their definitions to
satisfy non-generic implementations of genericized in-
terfaces (for backwards compatibility). We tried our
best to remove such methods, since they cause oth-
erwise perfectly matching signatures to diverge. We
suspect these continue to cause a number of match
failures in our index despite our best efforts. Future
work is needed here.

When normalization completes for either of our two exam-
ples, D.java, and D.class, we should possess a class signature
identical to Figure 3.

6.3 Matching a subject artifact to artifacts within
the corpus

The source and bytecode tools we developed to extract
the signatures are employed both in the construction of a
corpus database, as well as the generation of queries for the
database. Matching subjects against the corpus involves 4
steps:

1. We create a database with all the class signatures from
the corpus. To improve performance we index the
database using a hash (SHA1) of the class signature.

2. For each subject artifact, we first extract its set of sig-
natures using the same logic for building the database.
We then query the database for any intersections with
this subject set.

3. Intersections are grouped by the associated artifacts’
absolute path within our Maven 2 mirror. Grouping
only by jar name is inadequete because of the chance
of duplicate jar names existing on separate paths.

4. The cardinalities of the intersections and unions are
calculated. From these the index of similarity is calcu-
lated as shown in the formula above for sim(A,B).

Note that, even in a perfect match, the archive signature
similarity index might not be equal to 1. This is because the
source package might contain some source java files that are
not included in the binary jar, such as unit tests. However,
every class in the binary archive should be present in the
source archive.

7. EMPIRICAL STUDY
To evaluate the usefulness of our method for identifying

correct original artifacts (binary and source) using a subject
artifact of unknown provenance, we performed an empirical
study. Using a mirrored version of the Maven 2 repository as
our corpus, and 84 jars from a proprietary e-commerce java
application as our subject set, our objective was to answer
the following research questions:

RQ1: How useful is the archive signature similarity index
at finding the original binary archive for a given binary
archive?

RQ2: How useful is the archive signature similarity index
at finding the original sources for a given binary archive?

RQ2: How reliable is the version information stored in a
jar file’s name?

We downloaded the complete Maven 2 central repository
(between June 12th and 15th, 2010) using the following com-
mand:

rsync -v -t -l -r mirrors.ibiblio.org::maven2 .

Thus we obtained over 150G of jars, zips, tarballs, and
other files. First we decompressed all tar-related archives to
disk (.tgz, .tar.gz, .tar.bz2, etc.), including tars inside tars.
Zip-related archives, including jar files, were processed in
memory, including zips inside zips. We were surprised by
the number of times an archive is included in another one;
for example over 75,000 class signatures came from archives

6

Archives within archives Level
jasmine-assemblies-deployment-1.1.2-bin.zip 1

bundles

org.ow2.jasmine.jade.legacy.jonas4-4.8.6.jar 2

jonas4.8.4-tomcat5.5.17.zip 3

lib

client.jar 4

org

jacorb

ir

gui

typesystem

remote

IRSequence.class

Figure 4: Example of how archives are included in
other archives. In this case, it results in 4 different
levels of inclusion.

nested 4-levels deep. Figure 4 shows an example of this deep
nesting.

There were a total of 130,000 binary jars3. Of them 75,000
were unique. We processed a total of 27 million binary class
files and 4 million source Java files (including many dupli-
cates). We were surprised by the disproportion between the
number of binary and source files (6 times more). We will
revisit this issue in the next section.

For RQ1, for each of the 84 e-commerce jars, we computed
their similarity index against every binary archive in the
corpus, and selected the set of matches with the highest
similarity as the binary archive match.

For RQ2, the same procedure is performed as in RQ1,
but instead the similarity index is computed against every
source archive in the corpus.

For RQ3, we manually extracted the version information
from the 84 e-commerce jars, and we determined whether
the version information was correct or not by performing
binary comparisons against jar files downloaded from project
websites.

For RQ1 and RQ2 we classified a match into one of three
categories:

Perfect. The set of matches included a version identical
to the e-commerce subject jar.

Correct product. The set of matches included versions
either precedent or subsequent of the same library as
the e-commerce subject jar, but an identical version
was not matched.

Incorrect. The set of matches was either the empty set
(no matches found), or the matches included only li-
braries that were different than the e-commerce sub-
ject jar. Any matches in this case indicated a degree of
cloning between the matched jar and the subject jar.

8. RESULTS
This section reports results of analyzing jar libraries from

a proprietary e-commerce java application to answer the re-

3Our definition of binary archive is a jar file that contains
at least .class file.

search questions formulated in Section 5. Data for replica-
tion is available on-line4.

8.1 RQ1: How useful is the archive signature
similarity index at finding the original bi-
nary archive for a given binary archive?

Similarity Type of Correct
index match Perfect product Incorrect

1 Single 48 3
Multiple 19 1
Subtotal 67 4 0

> 0 & < 1 Single 1 9 2
Multiple
Subtotal 1 9 2

0 No match 1

Total 68 13 3

Table 3: Using a binary-to-binary bertillonage tech-
nique to determine the provenance of 84 open source
binary archives in a proprietary e-commerce appli-
cation.

8.1.1 Single match, Similarity = 1
For 51 of the 84 binary jars (60.7%), our method correctly

found a single candidate from the corpus with a similarity
index of 1.0. This represents the best possible case for our
anchored signature approach: the search space was narrowed
such that additional metrics to further narrow the results
were unnecessary. Of these 51 jars, 48 were perfect matches,
and 3 were correct-product matches.

Subsequent analysis for each of these 3 correct product-
matches revealed the e-commerce application was using li-
brary versions missing from the corpus’s collection. A bet-
ter corpus would improve our results here, giving us perfect
matches instead of merely correct-product matches. Un-
fortunately, two scenarios show that some jar versions will
probably never be found in any corpus:

1. The application developers may choose to use an ex-
perimental or “pre-released” version of a library that
is unlikely to appear in any formal corpus. We ob-
served one example of this in our study (stax-ex-1.2-
SNAPSHOT.jar).

2. Developers may download libraries directly from an
open source project’s version control system, for ex-
ample, should they require a bleeding edge feature or
a particularly urgent fix. In these cases the jar is built
directly from the VCS instead of from an official re-
leased version.

Fortunately, the matches were close in version to the cor-
rect (missing) candidates. As shown in Table 4, the three
matched jars were close to the actual versions.

8.1.2 Multiple match, Similarity = 1
For 20 of the 84 binary jars (23.8%), our method found

several candidates in the corpus with similarity of 1.0. In
all cases the candidate set covered a contiguous sequence of
versions, as shown in Table 5, save for holes in the corpus’s

4http://juliusdavies.ca/uvic/jarchive/

7

Classification Library in question Top match Similarity Inclusion

Perfect match commons-digester-1.5.jar commons-digester-1.5.jar 0.100 0.182
Correct product matches commons-http.jar commons-http-1.1.jar 0.333 0.500

commons-ssl.jar not-yet-commons-ssl-0.3.11.jar 0.090 0.333
jax-qname.jar j2ee-1.4.jar 0.002 1.000
jaxws-rt.jar jaxws-rt-2.1.3.jar 0.898 0.952
jsse.jar j2ee-1.3.1.jar 0.026 0.265
namespace.jar stax-api-1.0.1.jar 0.143 1.000
parser.jar xml-apis-2.4.D1.jar 0.060 0.104
sjsxp-1.0-04.jar sjsxp-1.0.jar 0.915 0.956
soap-2.1.jar soap-2.2.jar 0.625 0.800

Incorrect match jcert.jar secureftp.jar 0.015 1.000
vreports.jar itext-0.99.jar 0.253 0.341

Table 2: 12 of the 85 jars (14.1%) resulted in low-confidence matches, with similarity scores between 0.000
and 0.999. The inclusion score represents the percentage of the library in question found inside the top
match. A low similarity index coupled with a high inclusion ratio can indicate cloning.

Correct jar Sim. Close match
(not in corpus)

jaxws-api-2.1.3.jar 1.0 jaxws-api-2.1.jar
stax-ex-1.2-SNAPSHOT.jar 1.0 stax-ex-1.2.jar

streambuffer-0.5.jar 1.0 streambuffer-0.7.jar

Table 4: Three matches with similarity=1 were close
in version to the correct (missing) jars.

collection. Of these 20 multiple matches, the perfect match
was present for 19 cases. The remaining case, xsdlib.jar, we
classified it as a correct-product match, (since the matched
jars, xsdlib-1.5.jar and xsdlib-20050614.jar, came from the
correct open source project), but as an incorrect version.
The correct (missing) version, xsdlib-20040524.jar, was not
present in the corpus.

Similarity to Artifacts from corpus
asm-attrs-2.2.3.jar

1.0 asm-attrs-2.1.jar
1.0 asm-attrs-2.2.jar
1.0 asm-attrs-2.2.1.jar
1.0 asm-attrs-2.2.3.jar

Table 5: An example of multiple matches with sim-
ilarity=1. The perfect match, asm-attrs-2.2.3.jar, is
present.

For some of the jars the resulting candidate set was small
(2 or 3 candidates) such that a little manual work would
likely produce the correct version from the corpus. But in
other cases over 30 candidates were returned; in these cases
additional bertillonage metrics would be advantageous.

8.1.3 Single match, similarity between 0 and 1
For 12 of the 84 binary jars (14.3%), our method found

matches, but none had perfect 1.0 similarity. The three cate-
gories of non-perfect similarity matches are listed in Table 2.

8.1.4 No information
One of the 84 jars was not present in our corpus, and so

no information could be found. We verified that the jar was
an open source library by locating its project website (in

sourceforge.net), but for reasons unknown to us the Maven2
repository has never republished this particular library.

To answer RQ1, the archive signature similarity
index is highly useful for finding original binary archives.
We found correct-product or perfect binary matches
for 81 of the 84 binary jars in our sample set (96.4%).

8.2 RQ2: How useful is the archive signature
similarity index at finding the original sources
for a given binary archive?

Similarity Type Correct
index of match Perfect product Incorrect

1 Single 13 2
Multiple 6 1
Subtotal 19 3 0

> 0 & < 1 Single 21 18 1
Multiple 4 2
Subtotal 25 20 1

0 No match 16

Total 34 23 17

Table 6: Using a binary-to-source bertillonage tech-
nique to determine the provenance of 84 open source
binary archives in a proprietary e-commerce appli-
cation.

Our results for binary-to-source matching were similar in
character to RQ1’s binary-to-binary results, as shown in Ta-
ble 6, although generally inferior across the board.

1. Similarity=1 occurred for only 22 cases (26.2%) as op-
posed to 71 cases (84.5%) for RQ1.

2. Binary-to-source matching found half as many perfect
matches (34 compared to 68), and 75% more of the
less desirable correct-product matches (23 compared
to 13).

3. In addition, 16 jars could not be matched with any
sources. This compares with only 1 jar finding no bi-
nary matches for RQ1.

We suspect two factors are contributing to the inferior
performance. First, our corpus contains only 4 million java

8

source files compared to almost 27 million compiled class
files. This results in many fewer source archives available
for matching. For example, batik-util-1.6.jar matched no
source archives, and yet for RQ1 the same jar file matched 15
distinct binary archives, ranging from similarity 1.000 down
to 0.006, with zip timestamps between December, 2001 and
June, 2008.

Second, binary-to-binary matching made use of identical
programming logic both in the construction of the index and
the construction of the similarity query. Source-to-binary
matching required a separate logic in the construction of the
index. While we intended that our source indexing would re-
sult in identical signatures, we observed this was not always
the case.

To answer RQ2, the archive signature similarity
index is useful the majority of the time at finding
original source archives. We found correct-product
or perfect source matches for 57 of the 84 binary
jars in our sample set (67.9%).

8.3 RQ3: How reliable is the version informa-
tion stored in a jar file’s name?

We observed 9 cases, listed in Table 7, where the ver-
sion information stored in the jar name was either miss-
ing or incorrect. Through manual analysis we verified the
correct name, by downloading various versions from the li-
brary’s original project website, and performing binary com-
parisons.

Observed jar name Correct jar name

Incorrect in application
jta.jar jta-1.0.1B.jar
jtidy.jar jtidy-4aug2000r7-dev.jar
soap.jar soap-2.1.jar
stax-ex.jar stax-ex-1.2.jar
streambuffer.jar streambuffer-0.5.jar
xml-resolver-2.6.2.jar xml-resolver-1.1.jar
xsdlib.jar xsdlib-20040524.jar

Incorrect in corpus
jnet-3.2.1.jar jnet-1.0.3-03.jar
sjsxp-1.0.jar sjsxp-1.0-04.jar

Table 7: Incorrect version information in jar names.

To answer RQ3, the version information stored
in the jar name was sometimes unreliable. In the
sample set of 84 jars only 77 were correct (91.7%), a
suprisingly low result considering the importance of
this information. We also observed incorrect version
information in our corpus.

9. DISCUSSION
In our study we observed several interesting facts regard-

ing the Maven 2 central repository:

• The Maven 2 repository contains significantly more bi-
nary archives than source code. Maven 2 contained 6
times more binaries than source code. It will be inter-
esting to understand the reasons why this is the case.

• Similarly, Maven 2 contains some binaries but no cor-
responding source code.

• In some cases, some versions of specific packages are
not present in Maven 2.

• Some versioned binaries in the Maven repository are
incorrectly labelled. We do not know the reason, but
this could pose a potential problem for Maven’s goal
of dependency management.

10. THREATS TO VALIDITY
This section discusses the main threats to validity that

can affect the study we performed.
In particular, threats to construct validity may concern

imprecision in the measurements we performed. Our logic
for detecting java and class files in the Maven 2 repository
relied on accurate detection of .java and .class files, as well
as .jar, .zip, .tar.gz, .tar.bz2, and .tgz archives. No other
search patterns were employed, and thus some archives may
have been missed. This threat is diminished thanks to the
very large amount of data we managed to extract from just
those seven search patterns.

Our subsequent logic for extracting the class signatures
could be faulty, in particular our java source parser. We are
less concerned about faults in our bytecode analysis, since
the bcel-5.2.jar tool we used is 4 years old, very popular, and
very well tested. Bearing in mind that our java source parser
is potentially a problem, we believe our results nonetheless
resemble exactly the shape one would expect for a class-
signature-index approach, with matches resembling a bell
curve that drops off as version-numbers diverge from the
exact match. In addition, queries involving only bytecode
(e.g. queries for bytecode using bytecode) resulted in a sim-
ilar bell curve, alleviating concerns over our source parser.

Threats to internal validity arise primarily from our tech-
nique for verifying a correct match: we visually check the
version number in the names of jars and zip files. RQ1 in
particular makes the threat clear: are version numbers in jar
files at all reliable? According to current tradition in soft-
ware development the ultimate authority on version is the
tag in the version control system (VCS). We did not try to
address this weakness empirically by comparing tagged VCS
code against published jars and zips, and such a study would
be highly valued here. Instead we hypothesized that devel-
opers and software engineers involved in the creation and/or
packaging of open source libraries for the Maven 2 reposi-
tory strive to publish correct version information, since the
Maven 2 dependency management system (as well as others)
relies on such for its operation.

Threats to external validity concern the generalization of
our results. The small sample size for RQ3, 35 jars, of which
11 were invalid (contained no bytecode), is a serious threat
to our study. We hope to alleviate this in future work,
and our sample of 250 random jars in RQ2 is a first step
in this direction. Another threat to our external validity
comes from Maven’s own composition: is Maven’s reposi-
tory a good sample of open source software in the java eco-
system? Given its critical position in industry with respect
to java dependency resolution (even unrelated dependency
resolvers such as Ivy use the Maven 2 repository), we believe
it is representative. We have one complaint about its com-
position: it contains too many alpha, beta, milestone, and
release-candidate artifacts that are likely of little interest to
integrators. In future studies we may consider filtering these
out. We control some of the over-reprentation by enforcing a

9

unique index in our database for each java/class file. In this
way many popular jars such as ow2-util-scan-impl-1.0.18.jar
appear only once in our database, despite 113 occurences
scattered throughout the Maven 2 repository.

11. CONCLUSION
To conclude, we have introduced the notion of software

Bertillonage to refer to a method that uses software metrics
in order to narrow the search space when one is looking for
a match of a software entity within a corpus. As an exam-
ple of software Bertillonage, we built a method to identify
the source code of binary Java archives, and successfully
demonstrated with an empirical study in which we searched
for the correct product and version of a set of Java binary
archives that compose an proprietary e-commerce applica-
tion against a corpus created from Maven 2, a repository of
tens of thousands of binary and source Java archives.

Among our results we found that the name of a binary jar
will likely point to the project from where it comes from, but
that version numbers are sometimes incorrect (both in the
Maven 2 and in the subject of our study). We also discov-
ered that Maven 2 contains many more binaries than sources
(and in some cases, entire projects have sources absent from
Maven 2).

We believe that until accurate software methods are de-
veloped to match exactly one binary to its source, software
Bertillonage can be a useful method to reduce the search
space, the way its human counterpart was effective until fin-
gerprinting was developed.

12. REFERENCES
[1] “Payment Card Industry (PCI) Data Security

Standard, Version 1.2.1,”
https://www.pcisecuritystandards.org/security
standards/pci dss download.html, July 2009.

[2] J. A. Siegel, P. J. Saukko, and G. C. Knupfer,
Encyclopedia of Forensic Sciences. Academic Press,
2000.

[3] M. M. Houck and J. A. Siegel, Fundamentals of
Forensic Science. Academic Press, 2006.

[4] M. Godfrey and L. Zou, “Using origin analysis to
detect merging and splitting of source code entities,”
IEEE Transactions on Software Engineering, vol. 31,
no. 2, pp. 166–181, Feb. 2005.

[5] J. Krinke, “A study of consistent and inconsistent
changes to code clones,” in WCRE ’07: Proceedings of
the 14th Working Conference on Reverse Engineering.
Washington, DC, USA: IEEE Computer Society, 2007,
pp. 170–178.

[6] ——, “Is cloned code more stable than non-cloned
code?” in SCAM 08: Proceedings of the Working
Conference on Source Code Analysis and
Manipulation, 2008, pp. 57–66.

[7] A. Lozano, “A methodology to assess the impact of
source code flaws in changeability and its application
to clones,” in ICSM 08: Proceedings of the
International Conference of Software Maintenance.
Washington, DC, USA: IEEE Computer Society, 2008,
pp. 424–427.

[8] A. Lozano, M. Wermelinger, and B. Nuseibeh,
“Evaluating the harmfulness of cloning: A change
based experiment,” in MSR ’07: Proceedings of the

Fourth International Workshop on Mining Software
Repositories. Washington, DC, USA: IEEE
Computer Society, 2007, p. 18.

[9] S. Thummalapenta, L. Cerulo, L. Aversano, and
M. Di Penta, “How clones are maintained: an
empirical study,” Emp. Soft. Engineering, 2009 (to
appear).

[10] C. Kapser and M. W. Godfrey, “”cloning considered
harmful” considered harmful: patterns of cloning in
software,” Empirical Software Engineering, vol. 13,
no. 6, pp. 645–692, 2008.

[11] M. Kim, V. Sazawal, D. Notkin, and G. Murphy, “An
empirical study of code clone genealogies,”
ESEC/FSE, vol. 30, no. 5, pp. 187–196, 2005.

[12] T. Kamiya, S. Kusumoto, and K. Inoue, “Ccfinder: A
multilinguistic token-based code clone detection
system for large scale source code,” IEEE Trans.
Software Eng., vol. 28, no. 7, pp. 654–670, 2002.

[13] S. Livieri, Y. Higo, M. Matsushita, and K. Inoue,
“Very-large scale code clone analysis and visualization
of open source programs using distributed ccfinder:
D-ccfinder,” in ICSE. IEEE Computer Society, 2007,
pp. 106–115.

[14] D. M. Germán, M. Di Penta, Y.-G. Guéhéneuc, and
G. Antoniol, “Code siblings: Technical and legal
implications of copying code between applications,” in
MSR, M. W. Godfrey and J. Whitehead, Eds. IEE,
2009, pp. 81–90.

[15] R. Holmes, R. J. Walker, and G. C. Murphy,
“Approximate structural context matching: An
approach to recommend relevant examples,” IEEE
Trans. Software Eng., vol. 32, no. 12, pp. 952–970,
2006.

[16] M. Di Penta, D. M. Germán, and G. Antoniol,
“Identifying licensing of jar archives using a
code-search approach,” in Proceedings of the 7th Intl.
Working Conference on Mining Software Repositories
(MSR-2010), 2010, pp. 151–160.

[17] A. Hemel, “The GPL Compliance Engineering Guide
version 3.5,” http://www.loohuis-consulting.nl/
downloads/compliance-manual.pdf.

10

