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Cloning in Linux SCSI drivers

* Linux SCSI driver subsystem:
— A large set of components that do roughly the same thing
— Cloning is known to occur
— 16 years of history, slowing down now
— 549 files, 96 “conceptual” drivers, 319K SLOC
— 75% of conceptual drivers consist of one or two files

Q: Does the presence of cloning tell us
anything about the higher level design?

[Wang, Godfrey SCAM-11]



Linux SCSI driver cloning

Q: Does cloning predict compatible
bus type dependencies?

File level > wd33c9c.c
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Linux SCSI driver cloning

Matching bus type dependencies:
1. Extract dependency info from config files
2. Convert each logical expression into DNF
3. Run matcher

(ISA && SCSI) || | ISA&&SCSI | SCSI&&
(PCI && SCSI) && PC X86_32

ISA && SCSI Match Partial-match  Mismatch



Predictive power of cloning
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[ Clone analysis beats domain knowledge! }




Software clone detection

* Lots of progress in clone detection / analysis over the
last 15 years!

— Many, many techniques
— Lots of empirical studies

* No longer just “search and destroy”, instead we ask:

— Why are clones born? How do they evolve? When do they
die? etc.

e ... but where do we go from here?






Software entity provenance

* For a given function, class, file, library, binary, bug
report, feature, test suite, ... we want to investigate
its origin, evolution, and the supporting evidence

— Who are you, really?

— Where did you come from?

— Are there any more like you at home?
— Does your mother know you’re here?



Example provenance problems

* How was feature XXX discussed in the mailing list?
— Where was it implemented in the codebase?
— How much change has it undergone?

* How much cloning is there in my system? Why?
— How should | manage the duplication over time?
— Does the cloning imply high-level design similarity?
— Does the cloned code violate the GPL?

— Does the latest release contain at least 25% “new code”?



Example provenance problems

* Which version of library httpclient. jaris
included in this Java application?

* Has anyone worked on a similar problem before?

— Is this bug report a duplicate?
— How “similar” is this much smaller test suite to the original?

— What APIs might be useful for this maintenance task?
[Mylyn]

... and what is the evidence?



Investigating software entity
provenance

Two big tasks:

1. Scoping and identifying the entity
— What’s a feature? How big is a clone? What’s a maintenance task?
— What does “same” or “similar” mean?

2. Extracting and analyzing the evidence
— Many kinds of evidence, analyses
— Ground truth? Master repository?
— Synthesis and analysis techniques must scale!



Provenance: Mining software
repositories (MSR)

e Why?
— Lots of artifact kinds (source code, binaries, bug reports, test suites,
mailing list, documentation, requirements specs, ...)

— Often they are not well linked

— Can we analyze different artifact kinds within a unified context to answer
questions about development?

 Many techniques
— Source fact extraction, meta-data extraction, clone detection, grep, ...

— Al, LSI, LDA, data mining, ...
— Ad hoc specializations + combinations



MSR: Software process extraction
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MSR: Software process extraction
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R: Developer email topic mining
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[Hindle, Ernst, Godfrey, Mylopolous MSR-11]



Software entity provenance:
The challenge

e Given recent advances in the field of Mining
Software Repositories (MSR) ...

— ... can we develop techniques that take advantage of a
myriad of inter-related artifact kinds to establish the
provenance of a given software entity?

— ... and can we minimize the amount of heavy analysis that
we need to do?



KISS

Keep

It
Simple
Stupid*

*Coined by Kelly Johnson, Lead engineer at Lockheed Skunk Works
[My dad worked under him briefly in the 1960s.]



Who are you?

Alphonse Bertillon(1853-1914)
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SIGNALEMENT ANTHROPOMETRIQUE

1. Taille. — 3. Envergurc. — 3, Buste. --
4. Longueur de la téte. 5, Largeur de la tite. — 6. Oceille droite. —
7. Pied gauche. — 8. Médius gauche, — 9. Coudée gauche,

Forensic Bertillonage

metrics

Height
Stretch: Length of body from left

shoulder to right middle finger
when arm is raised

Bust: Length of torso from head
to seat, taken when seated

Length of head: Crown to
forehead

Width of head: Temple to temple
Length of right ear

Length of left foot

Length of left middle finger

Length of left cubit: Elbow to tip
of middle finger

Width of cheeks



Software Bertillonage

* It’s not fingerprinting or DNA analysis!
— There may be not enough info / too much noise to make positive ID
— You may be looking for a cousin or ancestor

* A good software Bertillonage metric should:
— be computationally inexpensive
— be applicable to the desired level of granularity / prog. language
— catch most of the bad guys (recall)
— significantly reduce the search space (precision)



Software Bertillonage
meta-techniques

1. Count based size, LOC, fan-in/out, McCabe

2. Set based contained string literals, method names

3. Relationship based libraries included/used, calls/called-by,
defines/uses, extends/implements,
throws

4. Sequence based method invocation chains, token-based

clone detection
5. Graph based AST and PDG clone detection



KISS: Matching library usage
fingerprints

Uniqueness of 1dd signatures of
/usr/bin executables in Ubuntu 9.04
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KISS: Matching anchored sighatures

Q: Which version of library httpclient. jaris
included in this Java application?

Our KISS approach:

— Consider only class / method signatures
* May not have source, compiler options may differ, ...

— Build master repos of signature hashes from Maven2
* Which has gaps, duplication, errors,
— Compare sig hashes of target appl. against master repos

* There will be false positives when API does not evolve

* ... so the effectiveness of narrowing search space depends on how
much APls evolve

[Davis, German, Godfrey, Hindle, MSR-11]



Maven 2
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Summary

Who are you?

— Determining software entity provenance is a growing and important
problem

KISS / software Bertillonage:

— Quick & dirty techniques applied widely, then expensive techniques
applied narrowly

Identifying version IDs of included Java libraries is an example
of the software entity provenance problem

— And anchored signature matching is an example of KISS / software
Bertillonage



Chapter 28
is awesomell

Making Software

What Really Works, and Why We Believe it

Edited by
O REILLY’ Andy Oram & Greg Wilson
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20t |[EEE Intl. Conference on Program Comprehension
http://icpcl2.sosy-lab.org/

— To be held June 11—13, 2012, Passau, Germany
* Right after ICSE in Zurich, a special bus is being arranged
— Abstracts due Feb 10, 2012, full papers due Feb 17, 2012
— Dedicated tracks for:
* Industrial papers, tools, posters, plus a PhD student symposium

— Program co-chairs:
* Arie van Deursen, Delft Technical University
* Mike Godfrey, University of Waterloo
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