Squinting at the data

Investigating software entity provenance
using KISS techniques

Mike Godfrey

Software Architecture Group (SWAG)
UWaterloo [visiting CWI until July 2012]

University of

Waterloo

Joint work with

Julius Davies (UVictoria, now UBC)

Daniel German (UVictoria)

Abram Hindle (UWaterloo, UC-Davis, now UAlberta)
Neil Ernst (UToronto, now UBC)

Wei Wang (UWaterloo)

Cloning in Linux SCSI drivers

* Linux SCSI driver subsystem:
— A large set of components that do roughly the same thing
— Cloning is known to occur
— 16 years of history, slowing down now
— 549 files, 96 “conceptual” drivers, 319K SLOC
— 75% of conceptual drivers consist of one or two files

Q: Does the presence of cloning tell us
anything about the higher level design?

[Wang, Godfrey SCAM-11]

Linux SCSI driver cloning

Q: Does cloning predict compatible
bus type dependencies?

File level > wd33c9c.c

Conceptual IN 2000 Amiga A
driver level driver 2091 driver

ISA && SCSI PCIl && SCSI

Linux SCSI driver cloning

Matching bus type dependencies:
1. Extract dependency info from config files
2. Convert each logical expression into DNF
3. Run matcher

(ISA && SCSI) || | ISA&&SCSI | SCSI&&
(PCI && SCSI) && PC X86_32

ISA && SCSI Match Partial-match Mismatch

Predictive power of cloning

100% [—
80%

60%
Match
40%

20% MW Partial Match

0% B Mismatch
Clone-Based Vendor-Based Randomized

Model Model Model

[Clone analysis beats domain knowledge! }

Software clone detection

* Lots of progress in clone detection / analysis over the
last 15 years!

— Many, many techniques
— Lots of empirical studies

* No longer just “search and destroy”, instead we ask:

— Why are clones born? How do they evolve? When do they
die? etc.

e ... but where do we go from here?

Software entity provenance

* For a given function, class, file, library, binary, bug
report, feature, test suite, ... we want to investigate
its origin, evolution, and the supporting evidence

— Who are you, really?

— Where did you come from?

— Are there any more like you at home?
— Does your mother know you’re here?

Example provenance problems

* How was feature XXX discussed in the mailing list?
— Where was it implemented in the codebase?
— How much change has it undergone?

* How much cloning is there in my system? Why?
— How should | manage the duplication over time?
— Does the cloning imply high-level design similarity?
— Does the cloned code violate the GPL?

— Does the latest release contain at least 25% “new code”?

Example provenance problems

* Which version of library httpclient. jaris
included in this Java application?

* Has anyone worked on a similar problem before?

— Is this bug report a duplicate?
— How “similar” is this much smaller test suite to the original?

— What APIs might be useful for this maintenance task?
[Mylyn]

... and what is the evidence?

Investigating software entity
provenance

Two big tasks:

1. Scoping and identifying the entity
— What’s a feature? How big is a clone? What’s a maintenance task?
— What does “same” or “similar” mean?

2. Extracting and analyzing the evidence
— Many kinds of evidence, analyses
— Ground truth? Master repository?
— Synthesis and analysis techniques must scale!

Provenance: Mining software
repositories (MSR)

e Why?
— Lots of artifact kinds (source code, binaries, bug reports, test suites,
mailing list, documentation, requirements specs, ...)

— Often they are not well linked

— Can we analyze different artifact kinds within a unified context to answer
questions about development?

 Many techniques
— Source fact extraction, meta-data extraction, clone detection, grep, ...

— Al, LSI, LDA, data mining, ...
— Ad hoc specializations + combinations

MSR: Software process extraction

Phases
Disciplines

Inception || Elaboration || Construction|| Transition

Business Modeling [——

Requirements g g S~
Analysis & Design

Implementation — : m =
Test - == == ?‘M

CM and SCS
Project Mangemen
Environment - -

Initial [Elab_][Elab_][Const] Const][Const][Trans

MSR: Software process extraction

FreeBSD _ S

o5a8 - 1 UP Testing = Quarterly {3 months) i
2000 1 1
1500 1 .
1 18080 | 1 -]
2000 I ~ "
1gea [I I I P Business - Il:luar‘l;er‘lg '3 nonths} b 568 - 1 ’e"s‘t"l n g'
1608 - 1 8 =y A
[] T
1‘2'33 L] 1994 1996 1998 2000 5 2002 2084 2086 2008
1008 - 1 1
gt A - Y . 1 14eee T . . T . r . ,
% _dBlusineSsiMieldellimig vt el 4 o
208 [= 1 1eeee [1 E
1994 1996 1998 2000 1 o2pe2 2084 2006 2008 gaee - 1 1
1 66000 | 1 1
2568 . . A . . . 4008 - | :
UP llequirenents - Quarterly {3 nonths) 2008 - A\ - /w 'e\ .O.\ mle n q
2008 - b %] =t Al e [oLELELIA L) LA
1508 - | 1994 1996 1998 2000 y§ 2002 2004 2006 2008
1
1008 - 1
o A ﬁ A 30008 T T T - T — T ;
sea L R e u I r /‘e/?ﬂbe n t S 5008 |- gUP CH & SCS - Quarterly (3 nonths} l
] AN LA LRI IO INE R o00ee | 1 1
1994 1996 1998 2000 : 2un2 2004 2086 2008 15000 |- |
1 10008 Iy & |
1800 C ﬁ - C
16808 I I I ' P Hrllall;lsis - Il:luar‘l:er‘ll;l "¢3 months} i 5808 0 m I I l/bs‘ S‘
1408 - 1 8 d
1288 -] 1994 1996 1998 2008 § 2002 2084 Zu86 2008
1008 - " 1
ooa | | 1 400 .
608 | -]
a88 - 1 < \ . g C\ \ 1 358 | I I I up P;‘ojecI, Hanlagenent - Il:luar‘ter‘lgl(a nonths}
208 1 h\Y £ 1 300
a 1 L4 250
1994 1996 1998 2000 2002 20084 2006 2008 208
: 150
10080 : T T T T T T r 100
9888 UP Inflementation - Quarterly {3 nonths) E 50
8088 - 1 g 8
gggg: 1] 1994 1996 1998 2000 | 2002 2004 2006 2008
“aod £ " : :
N 3 1 30008
] Implemeittation = FrorqEvironnent - Qartarly 1 onche
1008 -
8 20008 1
1994 1996 1998 2000 : 2092 2004 2006 2008 15688
100800
5000

1994 1996 1998 2000 = 2002 2004 2006 2008

[Hindle et al. 2010]

R: Developer email topic mining

T
Wi

1

£
4

s penysers
et IR

s oe1r3sses

erste A

E s P el Gt

.Y
-l .

e I 1) a I
| A | B |
i o o

e

Unique Topics

o

[Hindle, Ernst, Godfrey, Mylopolous MSR-11]

Software entity provenance:
The challenge

e Given recent advances in the field of Mining
Software Repositories (MSR) ...

— ... can we develop techniques that take advantage of a
myriad of inter-related artifact kinds to establish the
provenance of a given software entity?

— ... and can we minimize the amount of heavy analysis that
we need to do?

KISS

Keep

It
Simple
Stupid*

*Coined by Kelly Johnson, Lead engineer at Lockheed Skunk Works
[My dad worked under him briefly in the 1960s.]

Who are you?

Alphonse Bertillon(1853-1914)

RELEVE

bu

SIGNALEMENT ANTHROPOMETRIQUE

1. Taille. — 3. Envergurc. — 3, Buste. --
4. Longueur de la téte. 5, Largeur de la tite. — 6. Oceille droite. —
7. Pied gauche. — 8. Médius gauche, — 9. Coudée gauche,

Forensic Bertillonage

metrics

Height
Stretch: Length of body from left

shoulder to right middle finger
when arm is raised

Bust: Length of torso from head
to seat, taken when seated

Length of head: Crown to
forehead

Width of head: Temple to temple
Length of right ear

Length of left foot

Length of left middle finger

Length of left cubit: Elbow to tip
of middle finger

Width of cheeks

Software Bertillonage

* It’s not fingerprinting or DNA analysis!
— There may be not enough info / too much noise to make positive ID
— You may be looking for a cousin or ancestor

* A good software Bertillonage metric should:
— be computationally inexpensive
— be applicable to the desired level of granularity / prog. language
— catch most of the bad guys (recall)
— significantly reduce the search space (precision)

Software Bertillonage
meta-techniques

1. Count based size, LOC, fan-in/out, McCabe

2. Set based contained string literals, method names

3. Relationship based libraries included/used, calls/called-by,
defines/uses, extends/implements,
throws

4. Sequence based method invocation chains, token-based

clone detection
5. Graph based AST and PDG clone detection

KISS: Matching library usage
fingerprints

Uniqueness of 1dd signatures of
/usr/bin executables in Ubuntu 9.04

o}

o

. /

_ [F+inc“€3a

| | | | | | l unpublished]

0 100 200 300 400 500 600

KISS: Matching anchored sighatures

Q: Which version of library httpclient. jaris
included in this Java application?

Our KISS approach:

— Consider only class / method signatures
* May not have source, compiler options may differ, ...

— Build master repos of signature hashes from Maven2
* Which has gaps, duplication, errors,
— Compare sig hashes of target appl. against master repos

* There will be false positives when API does not evolve

* ... so the effectiveness of narrowing search space depends on how
much APls evolve

[Davis, German, Godfrey, Hindle, MSR-11]

Maven 2

s

)

!

L\
=
£

SRR
o

J,. ,/:.

o S B\

~

¢
b,

"

»
>

R

!
<

.

-

Summary

Who are you?

— Determining software entity provenance is a growing and important
problem

KISS / software Bertillonage:

— Quick & dirty techniques applied widely, then expensive techniques
applied narrowly

Identifying version IDs of included Java libraries is an example
of the software entity provenance problem

— And anchored signature matching is an example of KISS / software
Bertillonage

Chapter 28
is awesomell

Making Software

What Really Works, and Why We Believe it

Edited by
O REILLY’ Andy Oram & Greg Wilson

® Andreas Brand|

20t |[EEE Intl. Conference on Program Comprehension
http://icpcl2.sosy-lab.org/

— To be held June 11—13, 2012, Passau, Germany
* Right after ICSE in Zurich, a special bus is being arranged
— Abstracts due Feb 10, 2012, full papers due Feb 17, 2012
— Dedicated tracks for:
* Industrial papers, tools, posters, plus a PhD student symposium

— Program co-chairs:
* Arie van Deursen, Delft Technical University
* Mike Godfrey, University of Waterloo

Squinting at the data

Investigating software entity provenance
using KISS techniques

Mike Godfrey

Software Architecture Group (SWAG),
UWaterloo [visiting CWI until July 2011]

Iniversity of

Wéterloo

