
Studying Professional Software Designers
and their Use of Abstraction

Joanne M. Atlee and Michael W. Godfrey
David R. Cheriton School of Computer Science

University of Waterloo
Waterloo, ON CANADA

{jmatlee, migod}@uwaterloo.ca

Abstract—In this paper, we study how three pairs of pro-
fessional software developers use abstraction in the course of
a two-hour design exercise. We devise a scheme for classifying
abstractions according domain (e.g., problem domain vs. user-
interface domain vs. computer-science domain), which enables us
to better compare the developers’ different uses of abstraction.
We also examine how focusing on a particular domain (e.g.,
how the real-world really operates, or the formal definitions of
computer-science concepts) sometimes hinders the developers’
ability or willingness to abstract from those concepts.

I. INTRODUCTION

Is abstraction the key to computing? This is the title of Jeff
Kramer’s position paper in Communications of the ACM, in
which he asks “Why is it that some software engineers and
computer scientists are able to produce clear, elegant designs
and programs, while others cannot?” [2].

An abstraction is a model or representation that omits some
details so that it can focus on other details. The definition is
intentionally vague about which details are left out of a model
because different abstractions, built for different purposes,
omit different kinds of details. For example, the architectural
blueprints for a building comprise multiple plans, each one
focusing on the design details that are pertinent to a particular
professional: floor plans depict the skeletal structure of the
building, the locations of walls and support beams, and the
configurations of rooms; electrical plans map out the electrical
circuits, locations of outlets, and the amperage of circuit
breakers; plumbing plans similarly show the layout the water
pipes and locations of faucets and sinks; heating and cooling
plans show the layout of air ducts and locations of vents and
heating and cooling units; and so on.

The use of abstraction is promoted as a fundamental design
principle in software engineering [5]. Abstraction is critical in
requirements specifications and software designs to produce
early design artifacts that do not over-constrain or bias subse-
quent software design or development. Information hiding [4]
uses abstraction to support software maintenance: each module
encapsulates a separate design decision that could be changed
in the future, and interface specifications describe the module
in terms of its externally visible properties, avoiding reference
to the module’s internal design details. Abstract data types [3]
and object-oriented programming support programmer-defined

abstractions (separating out details of data representation and
implementation of operations) via programming methodology
and programming-language constructs, respectively. Libraries
and frameworks allow programmers to extend pre-built func-
tionality and design infrastructure to create customized solu-
tions out of abstract building blocks. Aspect-orientation [1] is
an attempt to encapsulate and abstract distinct concerns that
cross-cut an application. And so on.

As participants of an NSF-sponsored International Work-
shop on Studying Professional Software Developers, we ex-
plore the use of abstraction by professional software develop-
ers. The goal of the workshop was to “collect a foundational
set of observations and insights into software design” drawing
on “the analysis of a common data set” by researchers from
“a variety of research disciplines.” [6]. The common data set
consists of videos and transcripts of three pairs of professional
software developers as they work on a common design exer-
cise. The developers were given a two-page problem statement,
including broad requirements, for a program that simulates
traffic: cars flow through a user-specified network of roads
and intersections, whose traffic throughput is controlled by
user-specified traffic lights. Each developer team had two
hours to produce a conceptual design of the simulation tool,
including user interface and basic code structure. Their designs
were to be sufficiently complete to be handed over to an
implementation team.

In this paper, we present our analysis of these videos and
transcripts, focusing on the developers’ use of abstraction.
We itemize and categorize the abstractions that the developers
employ in their discussions and their models. The classifica-
tion distinguishes between abstractions that are known (e.g.,
mentioned in the problem description) from those that the
developers devised themselves. It also categorizes abstractions
according to domain: the real-world domain of driving, the
domain of traffic simulation, the domain of user-interface
abstractions, and the domain of software design. We then
comment on how the use of certain types of abstraction seems
to affect the developers’ insights into the design problem. Of
particular note is how the developers’ real-world knowledge
of driving (e.g., right-of-way rules and driving conventions)
would sometimes hinder their ability or willingness to abstract.
We also discuss the distinction between abstraction and sim-
plification — two means of managing complexity in software

systems — and note the various ways that the developers
simplified the problem they were solving.

Our analyses are far from conclusive, as we studied only
three pairs of developers, who worked for up to two hours on
a problem that clearly requires more time than that to produce
an adequate design. However, despite these shortcomings, we
are able to make some interesting observations about the
developers’ approach to the design problem.

Throughout the paper, we refer to the developer teams by
the names given to the video recordings of their respective
design exercises: Adobe, Amberpoint, and Anonymous.

II. METHODOLOGY

On our initial viewing of the videos, it seemed to us that
there was a clear distinction in how well and how quickly the
developers worked through the design exercise. In particular,
the Amberpoint team seemed to make further and faster
progress towards a final design than the other teams. While
we considered a number of reasons why this would be (e.g.,
their emphasis on requirements, their use of user-oriented
design [7], the relationship and interactions between the two
developers), we decided to focus on their use of abstraction.
The question that we explore is: Is there any correlation
between the teams’ use of abstraction and their performance
on the exercise?

We analyzed the videos and transcripts in multiple iter-
ations. First, as a calibration exercise, we both studied the
Amberpoint video and transcripts in detail on our own, looking
for any abstractions and concepts that the developers used
in their design exercise. We then met to compare notes and
develop a merged set of identified abstractions. Next, on our
own we each performed a similar systematic study of one
of the other two videos and transcripts. We met again to
discuss our collective results, and try to find commonalities
within them. Thereafter, we continued to consult the videos
and transcripts, both in their entirety and in ad-hoc queries,
as we clustered the abstractions into domains and constructed
our final classification.

Despite our best efforts to be thorough and systematic, we
cannot claim that our results are authoritative. This is partly
because the identification and classification of abstractions is
highly subjective, and partly because the analysis was both
manual and tedious, and thus likely to be error-prone. Despite
this, we believe that the coarse-grained commonalities and
differences in the classes of abstractions (e.g., the numbers of
abstractions listed in the different tables, or listed in different
columns of the same table) tell an interesting story. Not only
did the development teams conceive different abstractions, but
they spent differing amounts of time discussing the problem
with respect to different domains of abstraction.

There has been no attempt to judge the quality of the
teams’ final designs or to correlate the teams’ respective use
of abstractions with the quality of their designs. Rather, we
have focused on how the use of abstraction relates to each
team’s ability to make progress during the design exercise.

III. CLASSIFICATION OF SOFTWARE ABSTRACTIONS

In this section, we itemize and classify the concepts and
abstractions that each team spent time discussing. We have
attempted to recognize when teams use the same concept or
abstraction, even when they use different vocabulary. Analysis
of each team’s use of the various abstractions is deferred until
the next section.

We have used several orthogonal categorizations of the
concepts we encountered in our analyses. First, we distinguish
between evident concepts that the developers were “given” in
the program statement versus the concepts that the developers
conceived of or whose existence they inferred themselves.

Second, we distinguish between the four levels of abstrac-
tion domains, from the real world to implementation concepts.
We note that the problem specification is unusual, in our
experience, in that there are actually two problem domains
to consider: (1) The real-world problem domain of city
driving, and (2) a secondary, or simulation problem domain,
of traffic simulation. We also identified two more domains
that the designers spent time discussing: (3) user interface
(UI) concepts and (4) software engineering (SE) / computer
science (CS) concepts.

We also use a third level of categorization of concepts within
two scenarios, which we describe below.

A. Evident Concepts

Table I lists the evident concepts that we extracted from the
problem statement. We note that all three teams mentioned
almost all of these during their sessions, so we list them only
to provide context for the discussion of developer-conceived
concepts.

B. Developer-Conceived Concepts

Developer-conceived concepts represent entities and ab-
stractions that the developers came up with on their own, based
on their knowledge of the problem domain(s), software-design
abstractions, computer-science abstractions, and user-interface
technology. Tables II, III, IV, and V present the developer-
conceived concepts that we identified from the videos, and
our classifications of these concepts according to the four
abstraction domains listed in the introduction to this section.
In each table, a row represents a distinct concept; each
concept is listed under every development team (column) that
uses that concept/abstraction. To visualize commonalities and
variabilities, the tables are separated horizontally into sections,
with the top section listing abstractions used by all three
teams, the middle section listing abstractions used by two of
the three teams, and the bottom section listing abstractions
that were used by only one team. Some concepts are listed
in multiple tables because they have manifestations within
multiple abstraction domains. For example, a queue of cars
waiting at a traffic light is a real-world concept that needs
also to be simulated by the program. As another example, the
simulation domain includes the concept of being able to start
and stop the simulation, and the UI domain includes widgets
that realize this control over the simulation.

TABLE I
EVIDENT CONCEPTS GIVEN IN THE PROBLEM STATEMENT.

REAL-WORLD (CITY DRIVING) DOMAIN
time
traffic signals / colours
traffic signal timing
intersection
car
road
lane
waiting time
road length
sensors / sensor input / sensor behaviour
left-hand turn
left-hand turn signal
crash
direction of travel

(TRAFFIC) SIMULATION DOMAIN
traffic flow / patterns / density and their specification
traffic signal timing schemes
changing / setting signal timing
traffic simulator
controlling traffic flow

USER INTERFACE DOMAIN
visual map / map creation
traffic flow visualization
traffic density visualization
traffic signal visualization
layout of roads
intersection design
control of traffic signal behaviour / user interaction
visually represent traffic (model individual cars or not)

SOFTWARE ENGINEERING / COMPUTER SCIENCE DOMAIN
library functions (queuing theory, random number generator, statistical
packages)

TABLE II
DEVELOPER-CONCEIVED – REAL-WORLD (CITY DRIVING) DOMAIN CONCEPTS.

ADOBE AMBERPOINT ANONYMOUS
direction of traffic direction of traffic direction of traffic
speed speed speed
distance distance distance
of lanes per road # of lanes per road # of lanes per road
road length block length block length
queue of cars waiting at light traffic backup traffic backup

block-level speed limit block-level speed limit
intersection approach intersection approach

right-of-way rules
unprotected left turns (when no oncoming traffic or as light turns red)

right on red
cars speed up when light is yellow

C. Real-World (City Driving) Domain Concepts

Table II lists the real-world concepts that each of the devel-
oper teams used in their discussions or their models. What is
most notable about these lists is their degree of similarity. We
hypothesize that this is because the developers have a shared
understanding of what the real world of city driving is like,
at least with respect to the major concepts: roads, lanes, road
length, intersections, car speeds, traffic lights, and traffic build-
up.

D. (Traffic) Simulation Concepts

Table III lists a number of concepts and abstractions belong-
ing to the domain of traffic simulation. Many of the concepts
pertain to the actual simulation of traffic flow, such as the
network of roads, the progression of cars along roads and
through intersections, and the queueing of cars at traffic lights.
A number of other concepts reflect the many ways that a user
can configure and control a simulation, including specifying
traffic densities at entry points to the simulation, specifying
traffic patterns at each light (e.g., percentage of cars that turn

left at an intersection), and controlling the simulation speed
(e.g., real-time or fast-forward). A third category of concepts
is concerned with possible outputs of the simulation, including
various analytics, the locations or causes of traffic congestion,
or some indication of the “success” of the simulation. Each
of the concepts in Table III is labelled as either pertaining to
traffic simulation (s), specifying ways to control or configure
a simulation (c), or being possible outputs (usually analytics)
of the simulation (a).

The greatest degree of commonality is among the teams’
use of simulation abstractions. Like real-world concepts, sim-
ulation abstractions reflect the teams’ knowledge of traffic
flows, street geography, traffic lights, and backups. Thus, we
hypothesize that the teams’ use of similar concepts reflects
their shared understanding of the domain of traffic simulation.
In contrast, the control, configuration, and analytics concepts
are all related to unstated, ambiguous, or imprecise require-
ments of the program: to what degree should the user be
able to control the simulation, and what information exactly
should the program output? The three teams diverge in their

TABLE III
DEVELOPER-CONCEIVED — (TRAFFIC) SIMULATION CONCEPTS.

ADOBE AMBERPOINT ANONYMOUS
(s) network of roads (s) network of roads (s) network of roads
(s) car speed (individual speeds) (s) car speed (common speed) (s) car speed
(s) flow of cars from one block to another (s) flow of cars from one block to another (s) flow of cars from one block to another
(s) rate of cars through intersection (s) rate of cars through intersection (s) rate of cars through intersection
(s) queue of cars waiting at light (s) queue of cars waiting at light (s) queue of cars waiting at light
(s) simulation clock (s) simulation clock (s) simulation clock
(c) rates of input traffic (c) rates of traffic input (c) rates of traffic input
(c) block length = road capacity (c) block length (c) block length = block capacity
(c) cars enter / leave city (c) cars enter / leave city (c) cars enter / leave city
(c) traffic pattern per block (c) traffic pattern per block (per time of day) (c) traffic pattern per block
(c) simulation mode (edit, run, pause) (c) simulation mode (edit, run, pause) (c) simulation mode (run, pause)
(c) simulation speed (c) simulation speed
(s) cars progress down roads (s) cars progress down roads
(a) average wait time per intersection (a) average wait time per approach to intersection
(a) average wait time per car (a) average wait time per car
(c) start / stop simulation (c) start / stop simulation

(c) # of cars in simulation (c) # of cars in simulation
(s) ”on-ramps”, ”off-ramps” for simulation

(c) editing mode
(c) change settings dynamically, during simulation
(c) save: map, sim parameters, traffic config, sim result
(c) car types, car destinations
(c) program leads user towards optimal light-timing settings?
(a) # cars driving the speed limit, moving, waiting
(a) min/max # cars waiting at any time
(a) avg # cars waiting at each intersection
(a) max, avg waiting time, throughput
(a) simulation ”result”
(a) identify source of bottlenecks?

(s) connection points (roads)

Key: (s) simulate traffic, (c) control/configure the simulation, (a) analytics

understandings or opinions about these requirements details.

E. User Interface Concepts

Table IV lists the various user-interface concepts, widgets,
and visualizations that the developer teams discussed or mod-
elled. Some of the concepts are concerned with user input and
are intended to ease the task of setting up and configuring
a simulation. These include drag-and-drop palettes for map
creation, pop-up dashboards or sliders for setting traffic-light
timings, and default configuration settings. Other table entries
describe ways of visualizing results of the simulation, such as
highlighting problematic intersections, visualizing the states
of the traffic lights (i.e., whether signals are red vs. green),
and displaying summaries of analytics. The provided problem
statement left the design of the user interface entirely to the
developer teams, so there is far greater variability in the teams’
conceived UI concepts than in their conceived simulation
concepts.

The dearth of UI concepts under the Anonymous heading
is striking. However, we defer the discussion of each team’s
use of abstractions until the next section.

F. Software Engineering and Computer Science Concepts

Perhaps the starkest contrast in the teams’ performances is
with respect to their use of computer-science and software-
engineering abstractions, which are listed in Table V. These
include standard computer-science abstractions, such as net-
works of nodes and edges, state machines, and queues;

software-architecture styles, such as model-view-controller
and discrete-event simulation; and object-oriented design pat-
terns.

More generally, the degree of variability in the teams’ use
of abstractions increases as we progress from real-world ab-
stractions to simulation abstractions to user-interface concepts
to computer-science abstractions. We hypothesize that this is
because computer-science abstractions were used to reason
about design and implementation details: in which case it
would not be so surprising that there is less commonality
among the teams’ designs than among their understandings
of requirements.

Also noteworthy, the abstractions employed by the Adobe
team are predominantly computer-science abstractions (e.g.,
networks, queues, directed graphs), whereas the abstractions
employed by the Anonymous team are predominantly object-
oriented concepts (e.g., objects, methods, method calls, del-
egation). We discuss this contrast in more detail in the next
section.

IV. DEVELOPERS’ USE OF ABSTRACTION

In this section, we look at how the individual teams ap-
proached the design problem. In each case, the deverlopers’
overall strategy seemed to greatly affect what abstractions they
identified.

A. Amberpoint
The Amberpoint developer team focused intently on the

user experience and how students would interact with the

TABLE IV
DEVELOPER-CONCEIVED — USER INTERFACE CONCEPTS.

ADOBE AMBERPOINT ANONYMOUS
(i) drag-and-drop palette (i) drag-and-drop palette (i) drag-and-drop palette
(i) per intersection settiings: timing, sensor, protected left (i) per intersection settiings: timing, sensor, protected left (i) drill down for inputs
(i) roads align with grid (i) roads align with grid
(i) intersections derived from road placement (i) intersections derived from road placement
(i) road length derived from spatial placement of roads (i) road length derived from spatial placement of roads
(i) editor for sensor logic (i) editor to configure sensor
(v) visualize traffic as moving dots (along slots in road) (v) visualize traffic as moving dots
(v) full roads blink red (v) roads bolder if they have waiting traffic
(v) display analytics per car, intersection, road (v) display analytics per car, approach, road
(v) dashboard summary of analytics (v) dashboard summary of analytics

(i) road labels / names (i) road labels / names
(i) start, play, pause, reset buttons
(i) slider for simulation speed (real-time, fast-forward)
(i) slider for rate of input traffic
(i) speed of individual cars adjustable
(v) highlight specific car, watch it progress
(v) scroll bars if map too big for window

(i) table of roads, entries are int
(i) dashboard for setting intersection parameters
(i) N/S and E/W roads have same settings by default
(i) derive timings for one approach from another’s
(i) default settings for light timings, left turn, sensors, etc.
(i) user-specified global defaults for intersection parameters
(i) ability to clone settings
(i) static vs. dynamic UI fields
(i)(v) timeline of light timings
(v) visualize states of traffic lights
(v) hide/pop-up intersection details during sim
(v) road analytics an aggregation of intersection analytics
(v) aggregate analytics for whole grid
(v) rank/sort intersections by wait times

Key: (i) inputs to simulation, (v) visualization of simulation output

TABLE V
DEVELOPER-CONCEIVED — SOFTWARE ENGINEERING AND COMPUTER SCIENCE CONCEPTS.

ADOBE AMBERPOINT ANONYMOUS
model-view-controller architecture model-view-controller architecture
queue (of waiting cars) bounded queues (of waiting cars)
event-driven (clock ticks) event-driven (clock ticks)
user stories use cases
network of nodes and edges
digraph (plus constraints on edges to reflect “direction”)
graph traversal
controller (traffic cop)
state machine of controller
distributed controller
dequeuing logic
visitor pattern
code: main()

OO design: objects, attributes, methods
object interface (API)
“a big container for everything” (map)
master/meta controller object
delegation
state machine per intersection
persistence of data / DB
loop / simulation loop
polling
push vs pull model
sensor-driven
multi-thread
drawing package

Fig. 1. Final design of the Amberpoint team.

simulation tool:

1) the different modes of operation
2) the information needed to set up a simulation
3) the easiest ways of entering user-provided information
4) the information/analytics that the system should output
5) the most effective ways to visualize that information
6) the level of support the system should provide (if any)

in setting acceptable traffic-signal timings

As such, the team seemed engaged in more of a requirements
exercise than a design exercise. In particular, questions 1, 2,
4, and 6 are, inherently, questions about requirements: what
is the purpose of the program, what degrees of configurability
are supported, and to what degree does the program help the
user to configure an “acceptable” simulation? As a result of
their focus on requirements and on the user experience, the
Amberpoint team conceived many more simulation concepts
and user-interface concepts than the other teams. These extra
concepts are listed in Tables III and IV, and are depicted in
Figure 1.

The extra simulation concepts concern the system’s inputs
and outputs rather than the traffic simulation itself. For ex-
ample, the developers spent a considerable amount of time

discussing the different ways that a student would use the
tool: creating and editing the street map, configuring the
traffic patterns and traffic signals, running the simulation and
tuning it dynamically, and saving the “results.” They debated
whether traffic patterns should be expressed in terms of global
destinations (i.e., each car exits the map at particular point)
versus local destinations (i.e., each car travels straight through
the next intersection or turns right or left). They considered a
number of different analytics that the program might output,
and deliberated whether the program should try to be helpful
or should simply simulate whatever the user inputs. They were
particularly perplexed about what constituted “success”: how
would the program or the user determine that the traffic-signal
timings were acceptable? The developers recognized that a
number of these issues were open questions: requirements
details to be clarified by the client rather than design decisions
to be made by them. They collected a number of questions for
the client, and were the only team to do so.

The extra user-interface concepts were mostly aimed at sim-
plifying the task of setting up a simulation. The Amberpoint
developers were particularly concerned about the amount of
work needed to initiate even a simple simulation: creating

a map, specifying the traffic inputs (i.e., event distributions)
at every entry point on the map, specifying the traffic-signal
settings (timings, protected left-turn, sensor) for each intersec-
tion approach, and configuring the traffic pattern of cars for
each intersection approach. The traffic-signal settings alone
would involve decisions about 24 signals, for a simulation
model of 6 intersections. The Amberpoint developers worried
that the configuration of a simulation would be a “big-ass
dialogue”, and they contemplated ways of reducing the user
effort, through the use of default settings, derived settings, and
cloning of settings.

The other extra user-interface concepts concern the visu-
alization of the extra analytics that the Amberpoint team
identified, such as summarizing analytics in a dashboard,
enabling the user to drill-down to more simulation details on
demand, visualizing the status of the traffic-signal lights, and
dynamically ranking intersections according to wait time.

Interestingly, according to our analysis, the Amberpoint
team did not spend any time on design-level concepts and
abstractions, as indicated in Table V. As a result, their final
design, shown in Figure 1, is more a conceptual design — an
entity-relationship diagram with no assignment of responsibil-
ity to entities — than a software design, as asked for in the
problem statement. That said, the construction of the diagram
was spared some of the snags experienced by the other
teams, who wondered, for example, whether roads should own
intersections or vice versa. Moreover, the Amberpoint final
design is much more comprehensive with respect to the user-
interface and use cases than the other teams’ designs.

B. Adobe

The pair of developers from Adobe approached the design
problem from the perspective of useful computer science
abstractions. Although they spoke in terms of wanting to
identify useful “data structures”, their actual focus was on
standard computer science concepts (e.g., networks, nodes, and
edges; bounded queues, and rules for enqueuing and dequeu-
ing; state-machine controller; diagraphs and graph traversal)
and software-engineering design patterns (e.g., model-view-
controller design pattern, visitor pattern). The vast majority of
their discussions were in terms of these abstractions.

One positive consequence of this perspective is that, by
trying to work out the “dequeuing logic” — that is, the rules
for when a car moves from one block to another — the Adobe
team developed a better understanding than the other teams of
the intricacies of traffic flows and backups. These complexities
are essential to the design problem. The Amberpoint team did
not discuss these details because they focused mostly on the
requirements of the system; they got only as far as recognizing
that the simulation would have to deal with congestion and
with traffic not being able to flow. The Anonymous team
recognized that the design rules for simulating traffic flow
would be complicated, but they never explored what the rules
would look like.

On the downside, because the Adobe team focused on de-
sign concepts and object-oriented design, the developers never

considered the separation of the system from its environment.
More specifically, they do not separate the system phenomena
being simulated (e.g., the flow of traffic, the sequencing of
the traffic lights) from the environment phenomena being
simulated (e.g., the creation of new cars, the destinations of
cars). Instead “there’s a master intelligence that needs to be
looking at the whole state of the world”, where their notion of
the “world” encompasses all aspects of the simulation. This is
a major source of the complexity of their controller. Once the
developers realize that their controller is responsible for all
aspects of the simulation, as well as updating the analytics,
they look for ways of distributing control. They settle on
employing the Visitor design pattern, but this is an unusual
application of that pattern, and may be a convoluted solution
to their problem.

C. Anonymous

The Anonymous team was, to our minds, the most surpris-
ing of the three. They spent only an hour on the exercise —
compared to two hours for the other teams — and seemed
pleased with their results in the subseqeunt debriefing inter-
view, yet they appeared to miss large sections of the problem
space in their discussions. More concretely, we observed that
the Anonymous team spent significant time discussing the
real-world domain of city driving and how that might be
implemented as a simulation, but spent relatively little time
discussing user interactions or simulation analytics.

In the first few minutes of the discussions, the Anony-
mous team sketched out what they saw as being the main
problem space, unfolding the problem into a user interface
— which they mostly did not discuss — and the underlying
engine for simulating city traffic. In the following 20 or so
minutes, they examined the real-world domain in some detail,
considering fundamental modelling questions such as “What
is an intersection?”, “Does traffic==cars?”, and “Should we
model individual lanes?”. A lot of their efforts were spent on
abstraction: deciding which real-world details were important
to include in their model, and which could be safely ignored.

In the second half of the session, the Anonymous team
began to address how these real-world domain concepts might
be implemented in a software simulation. In their design,
they saw the “map” as the central unifying concept: the
underlying “model” in a Model-View-Controller architecture.
Concretely, they described it as a container of interconnected
objects: cars, roads, intersections, traffic signals, etc. They
next addressed simulation-domain concepts such as adding
cars into the system, modelling time, tracking cars’ progress
through the system, and implementing roads as a collection of
interconnected queue data structures. And then they discussed
the logic of traffic signals, signal timing, co-ordination of cars
as they pass through an intersection, and (briefly) the presence
of road sensors.

Having finished a fairly thorough investigation into the real-
world domain and how to model it in a software simulation,
they concluded with a few quick remarks about the user in-
terface: that it should support building maps by drag-and-drop

TABLE VI
SIMPLIFICATIONS MADE BY DEVELOPMENT TEAMS

Simplification Developmemt Team
all roads are straight (no curves) Adobe, Amberpoint
no car enters/exits the simulation from an interior block Adobe, Amberpoint
the speed limit is the same on all streets Amberpoint
a fixed number of cars in the simulation Amberpoint
protected left-turn cars have their own lane Adobe
all traffic input (i.e., new cars, directions) is random Adobe
all roads have three queues: left-turn, straight, right-turn Anonymous
all roads have two lanes: left-turn and other Adobe
all roads have single lane Amberpoint
all cars have the same length Anonymous

of components, and that it should be possible to “drill down”
on individual components to define configuration settings.

Overall, we felt that the Anonymous team made good
progress on modelling the real-world domain concepts, and
how they could be implemented in a simulation but did not
seriously address either the user interactions or the simulation
analytics. The underlying simulation engine seemed to be the
only piece of the problem that they considered to be worthy
of serious discussions. Presumably, they felt that the user
interface was either straightforward enough not to warrant
explicit discussion or was simply outside of the scope of the
problem. Indeed, at the end of the session, one of the team
suggests that they were now ready to start coding, with one
engineer on the model and another doing the user interface.
Presumably, the user-interface engineer would somehow know
what needed to be done.

V. ABSTRACTIONS VS. SIMPLIFICATIONS

Another method commonly used to tackle complexity is to
simplify the problem, either by decomposing it into subprob-
lems that are easier to address individually or by reducing
the extent of the problem. We focus on the latter definition
because, like abstraction, it involves omitting information from
the model.

Consider the different simplifying assumptions that the three
development teams made regarding the number of lanes on
a road. The issue that they were grappling with is: whether
cars turning left at an intersection should have their own lane,
so that they do not hold up traffic if they cannot proceed;
and if so, where the separate left-turn lane should begin. The
Amberpoint team assumed that there are no separate left-turn
lanes, and that all cars advancing towards the same approach
to an intersection are aligned in a single queue. The Adobe
team assumed that every intersection has a left-turn lane,
and that the left-turn lane extends the length of the block
(so that there is no issue with left-turning cars sitting in
the other lane waiting to get into a full left-turn lane). The
Anonymous team abstracted away from lanes, and decided
to maintain separate queues for cars wanting to turn left, turn
right, or travel straight through each intersection — effectively
simulating the case where there are always three lanes of
traffic. The three different assumptions would result in very
different simulations, with correspondingly different points

of congestion. Other simplifying assumptions that the teams
made, listed in Table VI, would similarly have observable
effects on the simulation.

Are some of the assumptions more acceptable than others?
It depends on whether the client cares about the differences
in the simulations. Recall that the “program is not meant to
be an exact, scientific simulation, but aims to simply illustrate
the basic effect that traffic signal timing has on traffic.”1

An intrinsic characteristic of abstraction is that the resulting
model preserves the details and properties of interest. A
great example of property-preserving abstraction is program
slicing [8], in which one creates a projection of a program and
its state space by considering only a subset of its variables
and the program statements that affect the values of those
variables. Analyses on the variables of a program slice are
as accurate as analyses on the same variables with respect to
the entire program. Another example is pseudocode, which
is a language-agnostic representation of a program’s algo-
rithm. Analyzing the asymptotic complexity of an algorithm
expressed in pseudocode produces the same result as analyzing
an implementation of the algorithm.

In contrast, a simplification can be a more extreme omission
of information: such as deferring features, reducing variability,
excluding difficult cases, or making simplifying assumptions
about the context in which the system will execute. There
is no expectation that the simplification is equivalent to the
original. Rather, the expectation is that the simplification will
be a “good enough” approximation of the original. Thus, the
difference between abstraction and simplification centres on
the properties that are to be retained in the reduced model:
an abstraction preserves the properties of interest, and a
simplification need not. Returning to our example about lanes
in roads, whether the teams’ different simplifying assumptions
are simplifications or abstractions depends on whether the
client’s notion of a protected left includes separating left-
turning traffic out from other traffic.

This distinction between abstraction and simplification re-
flects a recurring problem in software development. Given a
design task, a project team makes simplifying assumptions

1The problem statement is otherwise silent on the question of whether roads
have lanes, so the document cannot be used to judge whether any or all of
the teams’ assumptions are valid.

TABLE VII
MISSED OPPORTUNITIES TO ABSTRACT, BY DEVELOPMENT TEAM

Missed Opportunities to Abstract Developmemt Team
unprotected left turns Adobe
unprotected left-turning cars go when light turns yellow/red Adobe
right-of-way rules, when multiple cars enter intersection or block Adobe
cars have distinct speeds Adobe
distinct types of cars Amberpoint
overlapping red lights to avoid collision Amberpoint
right turn on red Amberpoint
traffic patterns that vary by time-of-day Amberpoint
cars speed up when light turns yellow Anonymous

under the guise of abstractions. But the developers may not be
in the best position of judging which simplifying assumptions
are truly abstractions. If a simplifying assumption leads to
an observable effect in the eventual program, then whether
the effect is acceptable should be determined by all of the
program’s stakeholders.

VI. REAL-WORLD KNOWLEDGE AN OBSTACLE TO
EFFECTIVE ABSTRACTION

Despite the fact that all three teams actively sought out
simplifying assumptions, there were a number of instances
where teams got caught up in the details of the problem and
did not take the opportunity to abstract away those details.
Table VII lists the details that were never simplified.

In many of these cases, the details reflect the developers’
attempts to realistically simulate traffic flows. For example, in
addition to left-hand turns protected by left-turn-only signals,
the Adobe team discusses accommodating unprotected left-
turns as well, in which cars can turn left as long as there is no
on-coming traffic. The Amberpoint team discusses allowing
right-hand turns when the signal is red. Abstracting away
these behaviours would be comparable to the simplifying
assumptions discussed in the previous section: their inclusion
or exclusion affects the accuracy of the simulation, and only
the client can judge whether the extra degree of fidelity is
important — whether exclusion would be an abstraction or an
over-simplification.

Other details reflect real-world driving habits and conven-
tions, such as drivers who speed up when a traffic signal turns
yellow, or drivers who turn left at the end of a yellow signal
after the last oncoming car crosses the intersection. While it is
true that simulating these details would result in an extra car
(or two) making it through the intersection each signal cycle,
these specifics seem less relevant and would have less affect on
the simulation than the many simplifying abstractions that the
teams did make. The most extreme case was the Amberpoint
team’s preoccupation with the timings of red signals: ensuring
that, when a traffic signal changes, there would be a period of
time when the signal in all directions would be red, to avoid
collisions. This overlapping of red signals is a trick that is
employed in real-world traffic signals to counteract drivers
who cannot be trusted, or who misjudge, and do not stop
before a signal turns red. A great feature of simulated drivers

is that they can be programmed to always obey the traffic
lights, so there is no need for any overlap in red signals at an
intersection.

We hypothesize that the developers may have missed these
opportunities for abstraction and simplification because they
are experts in the real-world domain of this design problem
— that is, experts on city driving. There are times during the
design exercise when it seems that this expertise gets in the
way of their ability or willingness to abstract. At these times,
their efforts are centred is on emulating specific attributes of
real-world behaviour, at the possible expense of the main goals
of the design problem. Would the developers have been more
open to simplifying some of these behaviours if they had been
weaker experts on real-world driving and stronger experts on
simulation?

There may also have been one or two instances in which
developers became fixated on an inappropriate computer-
science abstraction. The best example of this is when the
Adobe team wanted to model a map as a directional graph,
but then imposed a number of constraints in order to make
the abstraction work: zero or two edges between each pair of
nodes (representing zero or one road between intersections);
if there are two edges, their directions must be opposites (to
reflect two-way traffic) and their weights (road capacities)
must agree. These instances may not represent obstacles to
abstraction, but rather confirm the principle that designers
should consider multiple abstractions and designs in order to
identify an appropriate one. In this specific case, bidirectional
edges would have eliminated some of the above constraints.

VII. CONCLUSIONS

This paper has presented some observations about the use
of abstraction by professional software developers in the
course of a two-hour design exercise. In particular, we have
itemized and classified the concepts and abstractions that they
employed, and have explored correlations between the teams’
design approaches and the resulting lists of concepts and
abstractions. We have also commented on the simplifying
assumptions that the teams made (and did not make).

We did not attempt to correlate the teams’ use of abstraction
with the quality of their designs, but rather focused on the
correlation between abstraction and progress made on the
design task. If other workshop attendees have looked at design

quality, then we can explore the former correlation as well.

REFERENCES

[1] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Videira Lopes, J.-
M.Loingtier, and J. Irwin. Aspect-oriented programming. In Proceedings
of the 11th European Conference on Object-Oriented Programming,
pages 220–242, 1997.

[2] J. Kramer. Is Abstraction the Key to Computing? Communications of the
ACM, 50(4):37–42, April 2007.

[3] Barbara Liskov and Stephen Zilles. Programming with abstract data types.
In Proceedings of the ACM SIGPLAN Symposium on Very High Level
Langauges, pages 50–59, 1974.

[4] D.L. Parnas. On the criteria to be used in decomposing systems into
modules. Communications of the ACM, 15(12):1053–1058, 1972.

[5] S. L. Pfleeger and J. M. Atlee. Software Engineering: Theory and
Practice. Prentice Hall, 4ed edition, 2009.

[6] A. van der Hoek, M. Petre, and A. Baker. NSF-sponsored interna-
tional workshop on studying professional software designers. ”[Online
document], December 2009, Available: http://www.ics.uci.edu/design-
workshop/index.html”.

[7] R.W. Veryzer and B.B. de Mozota. The impact of user-oriented design on
new product development: an examination of fundamental relationships.
Journal of Product Innovation Management, 22(2):128–143, 2005.

[8] M. Weiser. Program slicing. In Proceedings of the 5th International
Conference on Software Engineering (ICSE), pages 439–449, 1981.

