
What’s Hot and What’s Not:

Windowed Developer Topic Analysis

Abram Hindle, Michael W. Godfrey and Richard C. Holt

University of Waterloo

Waterloo, Ontario

Canada

{ahindle,migod,holt}@uwaterloo.ca

Abstract

As development on a software project progresses, devel-

opers shift their focus between different topics and tasks

many times. Managers and newcomer developers often

seek ways of understanding what tasks have recently been

worked on and how much effort has gone into each; for

example, a manager might wonder what unexpected tasks

occupied their team’s attention during a period when they

were supposed to have been implementing new features.

Tools such as Latent Dirichlet Allocation (LDA) and Latent

Semantic Indexing (LSI) can be used to extract a set of inde-

pendent topics from a corpus of commit-log comments. Pre-

vious work in the area has created a single set of topics by

analyzing comments from the entire lifetime of the project.

In this paper, we propose windowing the topic analysis to

give a more nuanced view of the system’s evolution. By us-

ing a defined time-window of, for example, one month, we

can track which topics come and go over time, and which

ones recur. We propose visualizations of this model that al-

lows us to explore the evolving stream of topics of develop-

ment occurring over time. We demonstrate that windowed

topic analysis offers advantages over topic analysis applied

to a project’s lifetime because many topics are quite local.

1. Introduction

Software managers know that — during any given de-

velopment cycle — there is usually a difference between

the set of tasks that developers are supposed to be working

on and the tasks they are actually working on. To better un-

derstand the realities of development, it would be helpful to

be able to answer questions such as: What topics dominated

the previous release cycle? Given the requirements agreed

to at the start of the iteration how much work did our de-

velopers spend on them? What other tasks did they work

on? Which topics seem to recur over and over between re-

leases? How long do different topics persist? Are there

latent cause-effect relationships between different topics?

Topic analysis uses tools such as Latent Dirichlet Allo-

cation (LDA) and Latent Semantic Indexing (LSI) to ex-

tract independent word distributions (topics) from docu-

ments (commit log comments) [11, 12, 13, 10]. Ideally

these extracted topics correlate with actual development

topics that the developers discussed during the development

of the software project. Topic analysis often allows for a

single document, such as a commit message, to be related

to multiple topics. Documents represented as a mixture of

topics maps well to commits to source code, which often

have more than one purpose. A topic represents both a word

distribution and a group of commit log comments that are

related to each other by their content. In this case a topic is a

set of tokens extracted from commit messages found within

a projects source control system (SCS).

Previous work on topic analysis has been applied to the

entire history of a project [9, 13, 12] to produce a single

set of topics. In this paper we explore the idea of time-

windowed topic analysis; that is, we pick a period of, say,

one month and perform topic analysis within each window.

In addition to being able to study just which topics were

actually worked on and when, we can also analyze the his-

torical timeline of topics for patterns and trends. For ex-

ample, we might wish to categorize each topic as being lo-

cal to a single time window, spanning multiple consecutive

windows, or recurring periodically. Alternatively, we might

explore evolutionary patterns, such as if topics often recur

together, if one particular topic usually precedes another,

if unplanned topics outnumber planned topics, if particular

topics recur near the end of development iterations, etc.

As part of this work, we wish to explore approaches to

automatically generating visualizations of the topic trends

and development timelines, so that managers may be able

to more easily grasp the topic-related activities of the devel-

opers. Figure 1 gives an example. Those topics that recur,



or occur over a larger period are plotted continuously. In our

example we have titled each topic with a word chosen from

its word distribution. Given a visualization, such as Figure

1, topic analysis can aid in partitioning a project’s time-line

into periods of developer focus. By breaking apart an iter-

ation into sets of topics and trends (topics that recur), we

may be able to recognize the underlying software develop-

ment process and maintenance tasks from these commits.

In this paper we explore how topics shift over time in the

source control system (SCS) of a project, using several open

source database systems as examples. We analyze commit

log comments in each time window and we extract the top-

ics of that time window. We expect that topics will change

over time and the similarities and differences in these top-

ics will indicate developer focus and changes in developer

focus as it changes over time. We will show that most top-

ics are locally relevant, i.e., relevant to a single window of

time. Our windowing approach supports both local (single

window) analysis and global (entire history) analysis.

Our contributions include:

• We introduce windowed topic analysis, and demon-

strate its utility compared to global topic analysis.

• We present a number of visualizations of topics and

their trends over time to aid communication and anal-

ysis of these topics and trends.

• We provide an exploratory case study using these tech-

niques on several open source database systems.

2. Background

We now define some terms that we will use in the rest

of the paper: A message is a block of text written by a de-

veloper. In this paper, messages will be the CVS and Bit-

Keeper commit log comments made when the user commits

changes to files in a repository. A word distribution is the

summary of a message by word count. Each word distribu-

tion will be over the words in all messages. However, most

words will not appear in each message. A word distribution

is effectively a word count divided by the message size. A

topic is a word distribution, i.e., a set of words that form a

word distribution that is unique and independent within the

set of documents in our total corpus. One could think of

a topic as a distribution of the centroid of a group of mes-

sages. In this paper we often summarize topics by the top

10 most frequent words of their word distribution. A trend

is one or more similar topics that recur over time. Trends

are particularly important, as they indicate long-lived and

recurring topics that may provide key insights into the de-

velopment of the project.

In terms of clustering and finding topic distributions, La-

tent Dirichlet Allocation (LDA) [2] competes with Latent

Semantic Indexing (LSI) [11, 12], probabilistic Latent Se-

mantic Indexing (pLSI) [2] and semantic clustering [7, 8].

These tools are used for document modelling, document

clustering and collaborative filtering. LDA attempts to en-

code documents as a mixture model, a combination of top-

ics. LDA has been used in software engineering litera-

ture [13, 10] to extract topics from documents such as meth-

ods, bug reports, source code and files.

LDA, LSI and semantic clustering extract topic clusters

from the documents that are independent from one another.

The clusters are not named by the process, and consist of

words whose relationship is often obvious to someone fa-

miliar with the corpus. For our purposes, we could swap

LDA for LSI or semantic clustering and likely produce sim-

ilar results. Our data is posed as documents with word dis-

tributions (word counts per documents) and LDA extracts

distinct topics (clusters of words) from the documents.

2.1. LDA, LSI and Semantic Clustering

In order to infer or associate the expertise of an author

with topics extracted from SCS, Linstead et al. proposed an

author-source-code model using LDA [10]. This model as-

sociates authors and topics via their associated documents.

Lukins et al. [13] use LDA to help bug localization by

querying for documents that are related to a bug’s topic.

They used LDA to build a topic model and then searched

for similar documents by querying with sample documents.

LSI is related to LDA and has been used to identify top-

ics in software artifacts for formal concept analysis and con-

cept location [11, 12]. Concept analysis aims to automati-

cally extract concepts from source code or documents that

are related to the source code. Concept location concerns

how high-level concepts, such as bugs, relate to low level

entities such as source code. Semantic Clustering has also

been used for similar purposes [7, 8] as it is similar to LSI.

Grant et al. [5] and have used an alternative technique,

called Independent Component Analysis [3] to separate

topic signals from software code.

Our technique differs from the previous approaches to

topic analysis because we apply LDA locally to month-

long windows of commit log comments, whereas other ap-

proaches apply LDA once to the entire project. Windowed

topic analysis allows us to examine the time-based window-

ing of topics over its development history.

Imagine that we are analyzing one month of develop-

ment in a project where there were three major tasks: bug

fixing, adding a new GUI, and documentation updates relat-

ing to the system and the GUI. To use LDA we would get

the word distributions of each commit message, and have

the LDA tool extract a set of topics from the data. Ide-

ally, the LDA analysis would return four topics, correspond-

ing to bug fixing, GUI implementation, documentation, and



“other”. Each topic essentially corresponds to a word dis-

tribution. For example, the bug fixing topic might include

words such as bug, fix, failure, and ticket, while the GUI

topic might include widget, panel, window, and menu, and

the documentation topic might include section, figure, and

chapter. The last topic would include words that were not

commonly found in bug reports, GUI fixing, or documenta-

tion commits; that is, the LDA analysis would put into this

last category the words that were independent of the other

topics it found.

LDA is an unsupervised technique. The user provides

a corpus of documents and specifies various parameters,

and then LDA automatically generates a set of likely top-

ics based on word frequencies. It is then up to the user to

decide if the topics are meaningful by looking at the most

frequent words in each and deciding what each discovered

topic should be named.

In addition to finding the topics, LDA can also asso-

ciate the documents (i.e., commit messages) in its corpus

to one or more of the topics it discovers. For example, a

commit of a simple bug fix would probably contain a word

such as ticket, and thus heavily associate with the bug fix

topic. A commit that concerned user documentation of the

GUI would likely be associated with both the documenta-

tion and GUI topics if it shared words from both topics.

And a commit that did not concern bugs, GUIs, or docu-

mentation would likely be related to the “other” topic.

3. Preliminary Case Study

In our first exploratory pass we wanted to see if LDA

could provide interesting topics extracted from a real sys-

tem. We took the repository of MySQL 3.23, extracted the

commits, grouped them by 30 day non-overlapping win-

dows, and then applied LDA to each of these windows. We

asked LDA to make 20 topics per window and we then ex-

amined the top 10 most frequent words in that topic. We

chose one month because it was smaller than the time be-

tween minor releases but large enough for there to be many

commits to analyze. We chose 20 topics because past exper-

imentation showed that fewer topics might aggregate mul-

tiple unique topics while any more topics seemed to dilute

the results and create indistinct topics. We chose the top 10

words because we wanted to be able to distinguish topics

even if some common words dominated the topics.

We found there were common words across topic clus-

ters, such as diffs, annotate and history. Words like these

could be treated as stop words, since they occur across many

of the topics and since they relate to the mechanisms of ver-

sion control rather than the semantic content of the commit.

There were topics which appeared only during some tran-

sitional period and never again, such as RENAME and Bit-

Keeper. BitKeeper which appears when MySQL switched

2000 Jul chmod

2000 Sep fixes benchmark logging Win32

2000 Nov fixes insert multi value

2001 Jan fixes Innobase Cleanups auto-union

2001 Mar bugfix logging TEMPORARY

2001 Jul TABLES update Allow LOCK

2001 Aug TABLES row version

2001 Sep update checksum merge

Table 1. Sampled topics from MySQL 3.23,

some with continuous topics. These tokens

were pulled from the top 10 most common

words found in LDA extracted topics. Each

token is a summary of one LDA generated

topic from MySQL 3.23 commit comments.

to BitKeeper for their SCS. For each topic we tried to find

a word to describe its purpose. To our surprise we found

that even with only a little familiarity with the code base

that naming the topic was straightforward. To find the pur-

pose of a commit we looked at the most frequent words in

the word distribution of the topic and tried to summarize the

topic, then we looked into the commits related to that topic

to investigate if we were correct; since the commit messages

and the word distribution share the same words the purpose

extracted from the top 10 words was usually accurate.

A sampling of the notable topic words is displayed in

Table 1, we chose topics that we felt confident we could

name. To name each topic we selected a term that seemed

to best summarize that topic. After extracting these topics,

we attempted to track the evolution of topics by visualizing

the topics and joining similar topics into trends. Figure 1

displays a manually created plot of the extracted topics in

Table 1.

4. Methodology

Our methodology is to first extract the commit log com-

ments from a project’s SCS repository. We filter out stop

words and produce word distributions from these messages.

These distributions are bucketed into windows, and then

each window is subject to topic analysis and then we an-

alyze and visualize the results. Figure 2 depicts the general

process for processing and analyzing the commit messages.

4.1. Extraction of Repositories and Docu-
ments

We mirrored the repositories and their revisions

using software such as rsync [14], CVSsuck [1],

softChange [4], and bt2csv [6]. softChange pro-

vided a general schema for storing revisions and grouped



chmod

Win32

benchmark

Fix

logging Typo

insert_mult i_value

innobase

Cleanup

auto-union TEMPORARY

logging

upda te

al low

Tables

LOCK

row

version

upda te

Checksum

Merge

20 0 0

Jul

2 0 0 0

Sep

2000

Nov

2001

Ma r

2 0 0 1

Jan

2001

Jul

2 0 0 1

Aug

2001

Sep

Figure 1. Example of topics extracted from MySQL 3.23. The horizontal axis is time by month exam-

ined. The vertical axis is used to stack topics that occur at the same time. Longer topics are topics

which recur in adjacent windows. Colors are arbitrary.

CVS revisions into commits. CVSsuck and rsync mirrored

CVS repositories while bt2csv mirrored web accessible Bit-

Keeper repositories.

The documents we are analyzing are the commit log

comments, i.e., the comments that are added when revisions

to the project are committed. For each commit log comment

we produce word distributions by counting the occurrence

of each word in the message, removing stop words and then

normalizing the distribution by the size of the message, in

tokens. After all messages are processed the distributions

are extended to include all words from all of the distribu-

tions.

4.2. Windowed Sets

Given all messages, we group the messages into win-

dows. We could use overlapping windows, but in this paper

we use non-overlapping windows of a set time unit because

it simplifies analysis. Overlapping windows would increase

the likelihood of trends, but for this study we lacked the

space and were more concerned if topics ever repeated,

overlapping might skew that result. Windowing by time al-

lows for many levels of granularity. We used one month as

the length of our time windows. While we could use differ-

ent window lengths for this study we think that a month is a

sizable unit of development, which is large enough to show

shifts in focus, but coarse enough not to show too much

detail. Choosing a month as the window provided us with

enough documents to analyze.

4.3. Apply Topic Analysis to each Window

Once we have our data windowed, we apply our Topic

Analysis tool to each window and extract the top N top-

ics. We decided to use a threshold of N = 20 topics based

on our previous experience with LDA; we found that us-

ing more than 20 makes the boundaries between topics less

distinct.

Our Topic Analysis tool is based around a third-party

implementation of LDA. While we could have used LSI

or similar techniques as the engine, our preliminary stud-

ies found LDA to provide more promising results for topic

analysis. We note that this step is a slow one, as executing

even one instance of LDA involves significant computation,

and we perform LDA once per window. Figure 2 shows how

LDA is applied to a set of messages, and how the topics are

extracted and related to the messages.

4.4. Topic Similarity

Once we have our topics extracted for each window, we

analyze them and look for topics that recur across windows.

We then cluster these topics into trends by comparing them

to each other using topic similarity.

Our input for topic similarity is the top 10 most common

words of each topic. Each topic is compared to each other

topic in the system, given a certain threshold of similarity,

such as 8 out of top 10 matching words. 10 words were cho-

sen because often people care about top 10 comparisons and

it allowed for some common words to exist yet not produce

too many trends. We then apply the transitive closure on

similar topics to our set of topic similarities; this is similar

to modelling topics as nodes and similarity as arcs, then fill

flooding along the similarity arcs until we have partitioned

the topics into clusters of similar topics. Figure 3 illustrates

clustering of topics by topic similarity. These clusters of

topics are called trends. Trends indicate that a topic has

occurred over more than one period during development.

This approach does have a weakness, in that nodes that

are a few neighbors away in similarity might not share any



Figure 2. How commits are analyzed and aggregated into topics and trends: commits are first ex-

tracted, then abstracted into word counts or word distributions which are then given to a topic analy-
sis tool like LDA. LDA finds independent word distributions (topics) that these documents are related
to (the numbers indicate similarity between documents and topics).

Figure 3. Topic similarity demonstrated by

clustering topics by the transitive closure

(connectedness) of topic similarity. Nodes

are topics and arcs imply some notion of

similarity, e.g., topics share 8 out of top 10

words.

similar words. We use this measure because we want to be

able to color or highlight topics that are related to each other

and track them throughout time.

Once we have determined our similarity clusters we are

ready to analyze and to plot the topics.

4.5. Visualization

Visualization is an integral part of our topic analysis

which allows us to quickly explore the topics and trends of a

project. Visualizing the results allows us to explore the data

from different points of view to address different questions:

How are the topics spread over time? How many indepen-

dent topics per period were there? What were the repeating

trends? Did the trends dominate, or did local topics dom-

inate? How contiguous were the trends? To address these

questions we will describe and employ multiple visualiza-

tions.

We have devised several techniques for visualizing these

topics and trends. For all of these techniques if we find

trends that have continuous segments, then we plot those

segments as joined horizontally across time. One technique

is the compact-trend-view, shown in Figure 4 and Figure 5,

that displays trends as they occur on the time-based x-axis

(placement along the y-axis is arbitrary). Another technique

is the trend-time-line, shown in Figure 6, where each trend

gets its own distinct y-value, while the x-axis is time; these

topics are then each plotted on their own line across time

as they occur. Our final technique is the trend-histogram,

shown in Figure 7 where we plot each trend on its own

line but stack up the segments of the trend, much like a his-

togram. Each topic has its top 10 words listed in descending

order of frequency from top to bottom, this text is embed-

ded inside the topic’s box, which at this resolution requires

the reader to zoom in electronically. A trend has all of its

topic text embedded side by side within the same trend box.

The compact-trend-view (Figure 4) attempts to show all

topics and trends at once across time in a compact view that

could fit on one page. The compact-trend-view (Figure 4)



Figure 4. Compact-trend-view shows topics per month for MaxDB 7.500. The x-axis is time in months,

the y-axis is used to stack topics occurring at the same time. Trends that are continuous are plotted
as continuous blocks. Trends with more than one topic are colored the same unique color, while
topics that do not reoccur are colored grey. The top 10 words in the topics are joined and embedded
in box representing the topics. No stop words were removed. The gap in the middle is a period
where no development took place (see Section 5.3).



Figure 5. A zoomed-in slice of compact-

trend-view of topics per month of MaxDB

7.500. The topic text is visible in each topic

box. Trends are plotted across time continu-

ously.

tries to sink the larger trends to the bottom. Once the larger

trends are stacked we fill in the gaps with the smaller trends

in the same window, and then stack the smaller trends on

top. Although there is a chance that gaps will be left due

to non-optimal stacking, in practice there are many small

trends (90% of all trends contain 1 topic) that fill in these

gaps quickly. Different instances of the same trend share

the same color; apart from that, the color of a trend is ran-

domly chosen while topics that do not reoccur are colored

grey. Color similarity is not meaningful. The compact-

trend-view makes repeating continuous trends easy to pick

out, although discontinuous trends are harder to spot, and

provides a general summary of the topics within a project.

The trend-time-line (Figure 6) attempts to show a sum-

mary of trends separated from single topics. This view

shows how a trend persists across time, which aids time-

wise analysis of trends. The trend-time-line displays repeat-

ing trends more clearly by dedicating a horizontal line for

trend segments belonging to one trend. Therefore if a trend

contains discontinuous segments then the segments appear

on the same line. However, the least common trends need

to be pruned away or the view will be very long. Thus the

trend-time-line view is used to analyze trends across time.

The trend-histogram (Figure 7) attempts to show a count

of how often a trend reoccurs and how many topics are re-

lated to a trend. It is meant to show the distribution of trends

by their size in topics and time-span. The trend-histogram

superficially resembles the trend-time-line. However, in this

view the trends are plotted together by stacking to the left

of their row, thus time information is lost. The trends are

ordered by the number of topics in the trend. The trend-

histogram shows the count of instances of a trend and thus

indicates which trends occur the most. Due to the large

number of topics (approximately N topics multiplied by M
periods), given the allotted space, it is often best to crop

off the trends with only one topic (90% to 99% of the to-

tal topics), otherwise the tail is long. The trend-histogram

Figure 6. Trend-time-line: Trends plotted per

month of MaxDB 7.500. Time in months are

plotted along the x-axis, each row on the y-

axis is associated with a trend ranked by size

in descending order.

summarizes the distribution of trends ordered by size.

All of these visualization combine to enable an analysis

of trends and topics. Some views like the compact-trend-

view enable an analysis of local topics while the trend-

histogram and trend-time-line focus more on trends. We

used these visualizations to analyze the database systems

that we discuss in the following results section.

5. Results

We applied our methodology to multiple database sys-

tems that we extracted. To analyze these extracted reposito-

ries we used: Hiraldo-Grok, an OCaml-based variant of the

Grok query language; Gnuplot, a graph plotting package;

lda-c, a LDA package implemented by Blei et al. [2]; and

our trend plotter, implemented in Haskell.

We applied our tools and visualizations to the reposito-

ries of three open source database systems: PostgreSQL,

MaxDB, and Firebird. The total number of commits ana-

lyzed was over 66, 000.

5.1. PostgreSQL

We examined PostgreSQL’s history from 1996 to 2004,

which includes over 20, 000 commits. We did not find many

trends with two or more topics, using a similarity of 7/10.

7/10 was chosen because it preserve independent topics but

seemed to be a threshold value where more serious trends

started to appear.

Those trends that we did find were not very large, lasting

only 3 months at most. The first and second largest trends

directly referenced two external developers: Dal Zotto, Dan



Figure 7. The top part of a trend-histogram of

MaxDB 7.500, ordered by topic occurrence.

X-axis determines the number of continuous

months of a trend. Trends are ranked by the

number of topics that a trend contains in de-

scending order.

McGuirk. The fifth largest trend related to work by Post-

greSQL developer D’Arcy. Other topics of the larger trends

were changes to the “to do” list, and time string formating

topics relating to time-zones.

If we kept the stop words, we found that the large

trend consisted mostly of stop words and non-stop words

such as patch, fix, update. By decreasing the similarity

constraint to 1/2, the largest most common trend, which

stretched across the entire development, contained these

same words (patch, fix, update). The second largest trend

mentions Dal Zotto, while the third largest trend mentions

the [PATCHES] mailing-list and the names of some patch

contributors. Other repeating topics refer to portability with

Win32, Central Europe Time (CEST) from email head-

ers, issues with ALTER TABLE, and CVS branch merging

(CVS does not record merges explicitly).

5.2. Firebird

We tracked Firebird from August 2000 to January 2006,

we extracted comments from 38, 000 commits. We found

that with a similarity of 7/10 Firebird had far more con-

tinuous and recurring trends than PostgreSQL. The first

large trend was discontinuous across time but explicitly ref-

erences one author carlosga05 and words like added,

fixed, and updated.

The second largest trend was during the month of March

2001. It was related to incremental building and the porting

of developer Konstantin’s Solaris port of the Firebird build

files. The third largest trend was about JDBC, which is how

Firebird and Java communicate. Other trends included top-

ics regarding AIX PPC compilation, updating the build pro-

cess, internationalization and UTF8, Darwin build support

and bug fixing.

Topics that were not trends but appeared to be interest-

ing were mostly external bug fixes submitted to the project.

In these cases, the developers would express gratitude in

their commit log comments, such as “Thanks, Bill Lam”.

Other easily discernible topics included tokens and phrases

such as: compiler workarounds, nightly updates, packets

and MSVC++.

5.3. MaxDB 7.500

The plots we produced of MaxDB 7.500 were unlike

those of the other systems, as there was a period where

no development occurred and thus there were no topics or

trends whatsoever (see the gap in Figure 4). Using a topic

similarity of 7/10 we evaluated MaxDB 7.500. MaxDB

7.500’s first period was from June 2004 to January 2005,

and its second period was from June 2005 to June 2006.

There were a total of 8, 600 commits analyzed.

The largest common trend has references to build system

files like SYSDD.punix and MONITOR.punix. This

trend is partially displayed at the top of the zoomed in

compact-trend-view (Figure 5) and at the top of the trend-

histogram (Figure 7). Other tokens mentioned are Sutcheck

v1.09 (the prefix SUT stands for Storable Unit Type),

Sutcheck is a tool that would also automate check-ins us-

ing a Perforce SCS tool, which was exporting check-ins to

CVS.

The second largest common trend seems to be a side ef-

fect of an automated check-in that is annotated as “implicit

check-in” (see the bottom of Figure 5). These were check-

ins that were produced when importing changes from an

external Perforce repository.

The third most common trend, seen on Figure 6, seemed

to include tokens related to operating system support, such

as Linux and Windows, as well as architecture support,

AMD64 and Opteron. The word problem was common

among all of these trends. This trend seemed related to

the smaller fourth largest trend that had tokens AMD64 and

Windows. This example shows that topics can overlap but

still not match via our similarity measure.

Bug tracker URLs dominated unique topics during some

months. For instance in the last month of MaxDB 7.500

development every topic contained one unique Bug tracker

URL. This pattern did not occur in the previous month.

We investigated the revisions and we found that develop-

ers were referencing the bug tracker more during the last

month. If the topics of one month were about unique bug

tickets being addressed, the global topic analysis would

probably miss this, yet these bug tickets were the focus of

development for that month.



The query optimizer was a topic that recurred during

MaxDB’s development. In our plots, topics that mention

optimizer occur four times, yet in the global-trend-view

(Figure 8, explained in Section 5.4) it is not in any of the

topics. A query optimizer is an important component of a

DBMS, but as we have shown it does not appear as a topic

on its own. We tried to remove words to see if we could

get an optimizer topic. After removing stop words and then

two of the most common words, the global analysis finally

found a topic with optimizer in its top 10 words. Our anal-

ysis shows that optimizer was important but it had been ob-

scured by the global topic analysis, which used the entire

history of messages, but would have been noticed using the

more local topic analysis such as our windowed topic anal-

ysis, which used a smaller window of messages.

We noticed that commits that mentioned PHP occurred

two thirds less frequently than commits that mentioned Perl,

but Perl-related topics appeared in the global static topics

for MaxDB while PHP-related topics did not. Our local

topic analysis mentioned PHP in 5 different topics, yet only

mentioned Perl in four different topics and one global topic.

Perhaps this is because there was a cluster of Perl men-

tions during one month while the PHP mentions were more

spread out.

Just about every topic included the words Perforce and

Changelist, so we added them to the stop words list. As a

result, longer trends were shortened and sometimes the total

number of topics found per month were reduced. Evaluat-

ing different similarity thresholds showed that by removing

common words one reduces the general similarity of topics.

That said, the larger topics were still clearly apparent. Thus

if more relevant stop words are added one should tune the

topic similarity parameters to handle these changes.

5.4. Compare with topics over the entire
development

Previous work on topic analysis that employed LSI and

LDA typically extracted a specified number of topics from

the entire development history of a project and then tracked

their relationships to documents over time, we call this

global topic analysis.

We carried out global topic analysis on MaxDB 7.500

and compared this against our windowed topic analysis. To

produce Figure 8, we extracted 20 topics and plotted the

number of messages per month that were related to that

topic. One topic would often dominate the results, as shown

in the third row of Figure 8, while the other topics did not

appear as often.

This approach seems reasonable if most of the extracted

topics are of broad interest during most of the development

process. However, it may be that some topics are of strong

interest but only briefly; in such a case, a windowed topic

analysis gives a much stronger indication of the fleeting im-

portance of such topics, and can help to put such a topic into

its proper context.

If we approach the difference of global topic analysis

and windowed topic analysis via common tokens we can

see that common tokens tend to dominate both results. For

MaxDB 7.500, our local topic approach netted us topics that

contained these relatively important and common words,

which did not occur in the topics produced by global topic

analysis: UNICODE, DEC/OSF1, ODBC, crash, SQLCLI,

SYSDD.cpnix, backup, select, make, memory, view, and fi-

nally debug. ODBC is an important topic token, because

it often determines how databases communicate with soft-

ware. None of these tokens were part of the global topic

analysis topics, but they were part of 566 commits (6% of

the entire system) to MaxDB 7.500. These tokens were part

of 87 out of 520 (26 months, 20 topics per month) of our

locally generated topics.

Even with our liberal topic similarity metrics that pro-

duced both long and short trends, we showed that there are

only a few trends in a repository that recur. Since so few

trends recur and so many trends appear only once this sug-

gests that global topic analysis might be ignoring locally

unique topics.

The utility of global topic analysis is questionable if the

value of information decreases as it becomes older. Perhaps

older trends will dominate the topic analysis. Windowed

localized topic analysis shows what are the unique topics,

yet seems to give a more nuanced view of the timeliness of

the important topics.

6. Validity Threats

In this study we are explicitly trusting that the program-

mers annotate their changes with relevant information. We

rely on the descriptions they provide. If the language of

check-in comments was automated we would be analyzing

only that.

We compared topics using the top 10 tokens, this ap-

proach could be throwing data away and might not be as

useful as determining the actual distance between two word

topic distributions.

Our choice of the number of topics and adding and re-

moving stop words produced different results. Our choice

of stop words could be biased, and could affect the results.

The number of commits per month is inconsistent as

some months have many changes while other months have

almost none.

7. Conclusions

We proposed and demonstrated the application of win-

dowed topic analysis, that is, topic analysis applied to com-

mit messages during periods of development. This ap-



Figure 8. MaxDB 7.500 topics analyzed with

global topic analysis, 20 topics (each row)

and their document counts plotted over the

entire development history of MaxDB 7.500

(26 months). The shade of the topic indi-

cates the number of documents matching

that topic in that month relative to the number

of documents (white is most, black is least).

proach differs from previous work that applied topic analy-

sis globally to the entire history of a project without regard

to time. We showed that many topics that exist locally are

relevant and interesting yet would often not be detected via

global topic analysis. We identify recurring topics with a

topic similarity measure that looks for topics which recur

and mutate repeatedly throughout the development of the

software project.

Windowed topic analysis demonstrated its ability to hi-

light local topics and identify global trends. This was shown

in our case study of MaxDB 7.500. Global topic analy-

sis missed important topics such as ODBC while windowed

topic analysis identified them.

We presented several visualization techniques that fo-

cused on different aspects of the data: temporality of trends,

trend size, and a compact-trend-view. The compact-trend-

view shows more information than the views that global

analysis could show, and it indicates how focused a period

is by the total number of topics. As well, it shows top-

ics by similarity so one can track trends across time. Our

trend-histogram highlights and measures the size of trends

while our trend-time-line view shows how a topic reoccurs

over time. These visualizations help us understand the com-

mon topics that developers focus on during development.

If implemented interactively, a user could easily zoom in

and query for a summary of a topic or trend. In summary,

our work on windowed topic analysis shows the potential

for automatically determining key topics and trends across

software development projects .

7.1. Future Work

We wish to extend this study by further exploring pa-

rameter choices and their effects in terms of window over-

lap size and number of topics. Another avenue of future

work is automatic topic labelling. Given a word distribution

we should be able to automatically select a word or term

that describes that distribution. Potential external sources

of topic names include software engineering taxonomies,

ontologies and standards.

Acknowledgements: We would like to thank Tudor Girba and

Neil Ernst for their feedback and ideas.

References

[1] T. Akira. Cvssuck - inefficient CVS repository grabber.

http://cvs.m17n.org/ akr/cvssuck/.
[2] D. M. Blei, A. Y. Ng, and M. I. Jordan. Latent dirichlet

allocation. J. Mach. Learn. Res., 3:993–1022, 2003.
[3] K. Delac, M. Grgic, and S. Grgic. Independent comparative

study of PCA, ICA, and LDA on the FERET data set. IJIST,

15(5):252–260, 2006.
[4] D. M. German, A. Hindle, and N. Jordan. Visualizing the

evolution of software using softchange. In SEKE, 2004.
[5] S. Grant, J. R. Cordy, and D. Skillicorn. Automated concept

location using independent component analysis. In WCRE,

2008.
[6] A. Hindle, M. Godfrey, and R. Holt. Release Pattern Dis-

covery via Partitioning: Methodology and Case Study. In

MSR, 2007.
[7] A. Ko, B. Myers, and D. H. Chau. A linguistic analysis of

how people describe software problems. 2006.
[8] A. Kuhn, S. Ducasse, and T. Girba. Enriching reverse engi-

neering with semantic clustering. 2005.
[9] E. Linstead, P. Rigor, S. Bajracharya, C. Lopes, and P. Baldi.

Mining concepts from code with probabilistic topic models.

In ASE ’07. ACM, 2007.
[10] E. Linstead, P. Rigor, S. Bajracharya, C. Lopes, and P. Baldi.

Mining eclipse developer contributions via author-topic

models. 2007.
[11] A. Marcus, A. Sergeyev, V. Rajlich, and J. Maletic. An in-

formation retrieval approach to concept location in source

code. 2004.
[12] D. Poshyvanyk and A. Marcus. Combining formal concept

analysis with information retrieval for concept location in

source code. 2007.
[13] L. H. E. Stacy K. Lukins, Nicholas A. Kraft. Source code

retrieval for bug localization using latent dirichlet allocation.

In WCRE, 2008.
[14] A. Tridgell, P. Mackerras, and W. Davison. Rsync.

http://www.samba.org/rsync/.


