
A Bug You Like: A Framework for Automated Assignment of Bugs

Olga Baysal Michael W. Godfrey Robin Cohen
School of Computer Science

University of Waterloo
Waterloo, ON, Canada

{obaysal, migod, rcohen}@uwaterloo.ca

Abstract

Assigning bug reports to individual developers is typi-
cally a manual, time-consuming, and tedious task. In this
paper, we present a framework for automated assignment
of bug-fixing tasks. Our approach employs preference elici-
tation to learn developer predilections in fixing bugs within
a given system. This approach infers knowledge about a
developer’s expertise by analyzing the history of bugs pre-
viously resolved by the developer. We apply a vector space
model to recommend experts for resolving bugs. When a
new bug report arrives, the system automatically assigns it
to the appropriate developer considering his or her exper-
tise, current workload, and preferences. We address the task
allocation problem by proposing a set of heuristics that sup-
port accurate assignment of bug reports to the developers.

1 Introduction

Large development projects incur a sizable number of
bug reports every day [7]. For example, in the Eclipse open
source project there are on average 29 reports submitted
each day [2]. Assignment of bugs is typically a manual,
time-consuming, and tedious task. The person in charge of
assigning bugs, who, in most cases, is the team lead of the
project, spends an hour or more a day deciding which devel-
oper is most suitable for the task at hand [2]. When making
such a decision, the team lead should consider not only the
expertise of the developer [3, 6] but also his preferences in
fixing bugs, his current workload, as well as the priority and
the difficulty of the bug.

Currently, preference elicitation is one of the hot topics
in the area of artificial intelligence (AI). Preference elicita-
tion is concerned with acquiring the user’s preferences (e.g.,
interests, tastes, goals) and using them to make decisions on
behalf of the user (e.g., recommending what news to read or

which digital camera to buy, helping the user to plan a fam-
ily vacation).

In this paper, we present a framework for automated as-
signment of bug fixing tasks. The proposed framework
is able to infer a developer’s level of expertise by track-
ing the history of the bugs previously resolved by this de-
veloper. Our approach also employs preference elicitation
methods [5] to determine the developer’s preferences for
fixing certain types of bugs. Assigning “favorite” bugs to
developers can increase their self-motivation. When given
a preferred task to complete, a developer would spend less
time procrastinating since he would be familiar with the task
at hand. Therefore, each developer is more productive when
fixing preferred bugs.

2 Related Work

The problem of automated assignment of bugs has been
previously addressed by the data mining research commu-
nity [1, 2, 4]. Canfora and Cerulo [4] used an information
retrieval approach to automate the bug assignment process.
They used textual descriptions of fixed change requests
stored in both bug tracking and source code change reposi-
tories to index developers and source files as documents in
an information retrieval system. They reported recall lev-
els of 20% for Mozilla projects. The work of Mockus and
Herbsleb [6] also addressed the problem of recommending
experts for certain parts of the system. However, they used
source code change data from a version control repository
to determine appropriate experts to work on given elements
of software projects. Unlike this previous work, in our ap-
proach we determine developer expertise based on their his-
tory of past bug-solving tasks extracted from the bug repos-
itory data.

Anvik et al. [2] proposed an approach to automate bug
assignment using machine learning techniques. They rec-
ommended potential resolvers for the bug by mining bug
reports that the developers have been previously assigned
to and resolved for the system. Their approach is semi-



automated because the triager, the team lead for example,
uses the recommended list to select a potential developer
who can fix the bug and makes the final decision on assign-
ing this bug to the appropriate developer considering the
team’s current workloads and schedules. They empirically
evaluated their model on two software projects and were
able to correctly assign appropriate developers to the tasks,
with a precision of 57% and 64% for each project.

Our proposed framework not only makes recommenda-
tions on who is capable of fixing the bug, it considers the
preferences of the developers, their workloads, and sched-
ules, the properties of the report such as difficulty and pri-
ority when allocating problem reports to team members.

3 A Framework for Automated Assignment
of Bugs

Our framework consists of three components.

1. Expertise recommendation

When a new bug report arrives, the system creates a
ranked list of the developers who have the most appro-
priate expertise to resolve the bug in question. This
ranking is done by mining the bug repository to infer
expertise profiles of the individual developers, based
on the bug reports that they have resolved in the past.
We employ the vector space model to infer informa-
tion about the developer’s expertise from the history of
previously fixed bugs.

2. Preference elicitation

Developers submit their preferences in fixing bugs by
providing feedback for every bug they fix. The feed-
back represents a developer’s rating of the bug, for ex-
ample, if a developer did not struggle with fixing the
bug, he would provide a positive feedback on this bug
by labeling it “preferred”. The feedback is stored in
the bug report itself and can be retrieved for reasoning
at any time.

3. Task allocation

Knowing preferences and expertise levels of all the
developers, the system then considers their schedules,
the priority, and the difficulty of the report when mak-
ing a decision on who should be assigned to this re-
port. We suggest strategies, which are based on a set
of heuristics for addressing task assignment problem.
We consider three basic heuristics for task assignment
problem: workload, expertise, and preference. These
heuristics provide the system with a guideline to assign
reports to the most appropriate developer.

4 Conclusions and Future Work

In this paper, we presented a theoretic framework for au-
tomated bug assignment considering developer preferences,
expertise, and workloads. Our work provides a novel model
but lacks experimental evaluation due to the number of chal-
lenges in developing and validating the proposed model.
The immediate future step is to include empirical valida-
tion of the proposed framework to provide better insights
on the impact of preference elicitation in personalizing bug
assignment process.

One of the main challenges to address in the future is
strategic developers. In time, developers could learn how
the system assigns bug fixing tasks and try to manipulate
task assignment. Thus, we should ensure that the assign-
ment of bugs is a fair and manipulation-free process. A pos-
sible solution to prevent any misuse of the system would be
to consider only most recent bug fixing experience. Another
problem to tackle is to design an effective incentive mecha-
nism to support truth-telling strategy and fairness of the task
allocation. We can define a set of rewards to be given to the
developers for their hard work, efficiency, productivity, and
creativity.

References

[1] J. Anvik. Automating bug report assignment. In ICSE ’06:
Proceedings of the 28th international conference on Software
engineering, pages 937–940, New York, NY, USA, 2006.
ACM.

[2] J. Anvik, L. Hiew, and G. C. Murphy. Who should fix this
bug? In ICSE ’06: Proceedings of the 28th international con-
ference on Software engineering, pages 361–370, New York,
NY, USA, 2006. ACM.

[3] J. Anvik and G. C. Murphy. Determining implementation ex-
pertise from bug reports. In MSR ’07: Proceedings of the
Fourth International Workshop on Mining Software Reposito-
ries, page 2, Washington, DC, USA, 2007. IEEE Computer
Society.

[4] G. Canfora and L. Cerulo. How software repositories can
help in resolving a new change request. In Proceedings of
the Workshop on Empirical Studies in Reverse Engineering,
2005.

[5] L. Chen and P. Pu. Survey of preference elicitation meth-
ods. Technical report, Swiss Federal Institute of Technology
in Lausanne (EPFL), 2004.

[6] A. Mockus and J. D. Herbsleb. Expertise browser: a quantita-
tive approach to identifying expertise. In ICSE ’02: Proceed-
ings of the 24th International Conference on Software Engi-
neering, pages 503–512, New York, NY, USA, 2002. ACM.

[7] C. Weiss, R. Premraj, T. Zimmermann, and A. Zeller. How
long will it take to fix this bug? In MSR ’07: Proceedings
of the Fourth International Workshop on Mining Software
Repositories, page 1, Washington, DC, USA, 2007. IEEE
Computer Society.


