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Abstract

Assigning bug reports to individual developers is typi-
cally a manual, time-consuming, and tedious task. In this
paper, we present a framework for automated assignment
of bug-fixing tasks. Our approach employs preference elic-
itation to learn the developers’ predilections in fixing bugs
within a given system. This approach infers knowledge
about a developer’s expertise by analyzing the history of
bugs previously resolved by the developer. We apply a vec-
tor space model to recommend experts for resolving bugs.
When a new bug report arrives, the system automatically
assigns it to the appropriate developer considering his or
her expertise, current workload, and preferences. We ad-
dress the task allocation problem by proposing a set of
heuristics that support accurate assignment of bug reports
to the developers. Finally, we discuss the practical chal-
lenges in developing and validating the proposed model.

1 Introduction

A software development project usually maintains a bug
repository that stores and tracks submission and fixes of the
bugs. A bug repository is essentially a database that con-
tains problem reports for a software project. When a new
report is submitted to the repository, it needs to be assigned
to an appropriate developer for its resolution.

Large development projects incur a sizable number of
bug reports every day [28]. For example, in the Eclipse
open source project there are on average 29 reports submit-
ted each day [2]. Assignment of bugs is typically a manual,
time-consuming and tedious task. The person in charge of
assigning bugs, who, in most cases, is the team lead of the
project, spends an hour or more a day on deciding which de-
veloper is most suitable for the task at hand. When making
such a decision, the team lead should consider not only the
expertise of the developer [3, 22] but also his preferences in
fixing bugs, his current workload, as well as the priority and

the difficulty of the bug. In the Eclipse project, 24% of bugs
are currently re-assigned to other developers before they are
resolved [2]. Automating the process of task allocation to
the most suitable developers can improve the accuracy of
the task assignment.

The problem of automated assignments of bugs has been
addressed in the area of software engineering and data min-
ing [1, 2]. Our work was mainly motivated by the work of
Anvik et al. [2] who proposed a semi-automated approach
for the bug assignment using machine learning techniques.
They empirically evaluated their model on two software
projects and were able to correctly assign appropriate devel-
opers with the tasks with a precision of 57% and 64% for
each project. Although their results were not very promis-
ing, we believe that the problem of automated bug assign-
ment deserves another look. We believe that employing ef-
ficient preference elicitation methods will allow us to build
a reliable theoretical framework for solving automated bug
assignment problem.

Currently, preference elicitation is one of the hot topics
in the area of artificial intelligence (AI). Preference elic-
itation is concerned with acquiring the user’s preferences
(e.g., interests, tastes, goals) and using them to make deci-
sions on behalf of the user (e.g., recommending what news
to read or which digital camera to buy, helping the user to
plan a family vacation). Although, preference elicitation is
rigorously discussed among the AI research community and
the deployment of preference elicitation methods has been
demonstrated to bring benefits to various AI areas [6, 11], in
the field of software engineering it remains mostly a topic
for future exploration. Therefore, our goal is to explore how
preference elicitation techniques can be applied to the field
of software engineering and what challenges may arise do-
ing so.

In this paper, we present a framework for automated as-
signment of bug fixing tasks. The proposed framework is
able to infer a developer’s level of expertise by tracking the
history of the bugs previously resolved by this developer.
Our approach also employs explicit preference elicitation



methods [11, 25] to determine the developer’s preferences
on fixing certain types of bugs. Assigning “favorite” bugs to
developers can increase their self-motivation. When given
a preferred task to complete, a developer would spend less
time procrastinating since he would be familiar with the task
at hand. Therefore, each developer is more productive when
fixing preferred bugs. Our framework addresses the weak-
nesses of the previous attempts to automate the bug assign-
ment and provides a possible solution to the task allocation
problem, a problem of determining the right developer for
the right task. We combine knowledge about the expertise
and preferences of the developers together with the infor-
mation on their current workloads and the properties of the
bug (priority and difficulty) under one unified framework
and then we perform automated assignment of bugs.

The paper makes two contributions:

1. we describe how preference elicitation methods can be
employed to learn the developer’s preferences and ex-
pertise in fixing bugs, and

2. we present a theoretic framework for automated as-
signment of bug fixing tasks.

The remainder of the paper is organized as follows. Sec-
tion 2.1 provides the background information on the bug
repository and what data is stored in the bug report. Sec-
tion 2.2 describes previous efforts to automate the process
of bug assignment. Section 2.3 presents the analysis of
the related work on preference elicitation and recommender
systems. Section 3 presents the framework for automated
assignment of bugs and describes each component and tech-
nique used. Section 4 discusses the challenges that we face
in developing and validating the proposed framework, while
Section 5 provides possible directions to address in the fu-
ture. And finally, Section 6 concludes the paper by summa-
rizing its contributions.

2 Related Work

To understand the process of bug assignment and how
our approach can work, we need to explore what a typical
bug report is and what information it stores.

2.1 The Anatomy of a Bug Report

Figure 1 shows an example of a bug report for the Eclipse
project retrieved from the Bugzilla bug repository [16]. A
bug report is essentially a textual document that consists of
several pre-defined fields, plus free-form text, and optional
attachments.

Some values of the pre-defined fields, such as report ID
number, date when the report is created and the name of

Figure 1. A sample bug report of the Eclipse
project.

the reporter who submitted the bug, are present. Other val-
ues, such as the component, operating system, priority and
severity are assigned by the submitter and may be subse-
quently changed.

The free-form text includes the title of the report, a full
description of the bug and optional comments. The full de-
scription typically explains the problem and its effect on
the system concisely, while comments include discussions
about possible solutions on how the bug can be fixed.

A bug submitter may also provide attachments to the re-
port, including non-textual information such as an image or
a binary file. A bug repository tracks the activity of each
bug report. A single developer is usually assigned for fix-
ing the bug; however, other developers may also contribute
their ideas on how to solve the bug and lead to the resolution
of the report.

2.2 Automating Bug Assignment

The problem of automated assignment of bugs has been
previously addressed by the data mining research commu-
nity [1, 2, 7]. Canfora and Cerulo [7] used an informa-
tion retrieval approach to automate bug assignment process.
They used textual descriptions of fixed change requests
stored in both bug tracking and source code change reposi-
tories to index developers and source files as documents in
an information retrieval system. They reported recall lev-



els of 20% for Mozilla projects. The work of Mockus and
Herbsleb [22] also addressed the problem of recommending
experts in certain parts of the system. However, they used
source code change data from a version control repository
to determine experts for given elements of software project.
Unlike this previous work, in our approach we determine
expertise of the developer based on the history of past bug
solving tasks extracted from the bug repository data.

Anvik et al. [2] proposed an approach to automate bug
assignment using machine learning techniques. They rec-
ommended potential resolvers for the bug by mining bug
reports that the developers have been previously assigned
to and resolved for the system. Their approach is semi-
automated because the triager, the team lead for example,
uses the recommended list to select a potential developer
who can fix the bug and makes the final decision on assign-
ing this bug to the appropriate developer considering the
team’s current workloads and schedules. They empirically
evaluated their model on two open source software systems,
Firefox and Eclipse. They were able to correctly assign ap-
propriate developers with the bug fixing tasks with a pre-
cision of 57% and 64% for each project respectively. We
believe that employing both the efficient preference elicita-
tion and task allocation methods will allow us to overcome
limitations of the existing models and build a reliable the-
oretical framework for solving automated bug assignment
problem.

Thus, existing research provides at best only a semi-
automated solution for the bug assignment by recommend-
ing potential developers who are able to solve the task.
While the developer’s workloads and schedules were han-
dled manually, the developer’s preferences were not consid-
ered at all. Our proposed framework not only makes recom-
mendations on who is capable of fixing the bug, it consid-
ers the preferences of the developers, their workloads and
schedules, the properties of the report such as difficulty and
priority when allocating problem reports to the team mem-
bers.

2.3 Preference Elicitation

Recent AI research has focused on the role of prefer-
ence elicitation in making optimal decisions in a variety of
situations [5, 10, 13, 15, 26]. Preference elicitation deals
with eliciting information from the user on his or her prefer-
ences, interests, goals, etc. and using collected information
for later reasoning or decision making [25].

The main goal of an automated bug assignment system
is to make an optimal decision on who should be fixing the
bug at hand. Thus, the system must be aware of the devel-
oper’s preferences as the optimal solution will differ from
one developer to another. Our proposed framework would
act on behalf of every developer, yet focus on the main goal

of the team, i.e., the accurate and effective resolution of
software defects.

Preference elicitation methods are currently used in
many personalized recommender systems. A recommender
system filters information items according to the user’s in-
terests. For example, news recommender systems provide
recommendations on most interesting and relevant news ar-
ticles to the users according to their interests and prefer-
ences. AI research literature provides various solutions on
news recommender systems [4, 8, 12, 14, 19, 20, 23, 29].
Some recommender systems build profiles for each user that
contain his or her preferences in the news content, and can
recommend relevant articles according to their textual sim-
ilarity to the users’ profiles; this is know as content-based
filtering [4, 12, 23, 29]. Other systems use ratings from
early readers of an article to predict later readers’ ratings;
this is known as collaborating filtering [14, 19]. Hybrid rec-
ommendation models combine content-based and collabo-
rative filtering strategies under a single framework, solving
limitations of either approach [8, 20].

As new bug reports are submitted, each one is assigned
to a single developer. Other developers can submit their
comments for any bug to be resolved and discuss the pos-
sible resolution of the bug. However, there is typically no
collaboration between developers on the actual implemen-
tation of the solution: once a bug report is assigned to a
developer, it is then up to that developer alone to resolve
it. Therefore, our problem is similar to the content-based
news recommender system. A typical content-based news
recommender system [4, 9, 29] periodically gathers news
articles through RSS feeds, passing them through an index-
ing module and builds an index from the title, description
and content of the article. The indexing module creates
and stores TF-IDF term vectors of the articles by using vec-
tor space model, where TF-IDF (term frequency - inverse
document frequency) weight represents the importance of a
word, also called a term, in the collection of news articles.
A vector space model (VSM) is a model used in informa-
tion retrieval to represent documents as vectors in order to
rank them. Each dimension corresponds to a single term.
When recommending relevant documents such as news ar-
ticles, the vector representing a user profile is compared to
the vectors representing news items. All news articles are
ranked according to their similarity to the user profile. In
recommender system, the user profile is extracted from the
user’s news reading history.

Since bug reports are essentially textual documents, we
could also represent them as vectors. Thus, we employ the
techniques, both the TF-IDF weighting scheme and VSM,
used in the context-based news recommender systems when
determining the expertise of the developers in fixing certain
bugs. By mining the bug tracking repository we can learn
what bug reports each developer has previously resolved



and decide whether he is an expert in fixing the given bug
report.

Although a number of bug assignment models have been
developed, they failed to account the developers’ interests
and preferences in fixing bug reports. For example, Al-
ice likes to resolve documentation-related bugs, and Bob
prefers to work on security bugs (e.g., authentication er-
rors). When Alice and Bob are given their favorite tasks to
complete, it is very likely they will do a better job in fixing
bugs. Motivating developer performance can make devel-
opers more efficient and effective. As a result, the overall
productivity of the team will likely be increased.

In order to elicit preferences from the developers, i.e.,
the information on what bug reports they like to work on,
we employ explicit preference elicitation methods. Explicit
elicitation asks the user to provide a specific value for each
of his preferences [18]. Related work offers several tech-
niques on how to learn user preferences. NewsWeeder [20]
system asks users to rate each article with a value from 0
to 5 in order to get access to the next relevant news item.
The system uses the collected rating information to learn the
user’s interests. Maes [21] suggested that computer agents
should work in collaboration with the user. She stated that
the agent becomes more efficient as it learns the user’s pref-
erences, interests and habits. In order to train an agent,
the user can provide positive or negative feedback on the
recommended news articles. Following recommendations
from Lang [20] and Maes [21], we elicit preferences from
the developers by asking them to rate each bug report they
solve. These ratings provide us with the accurate feedback
on the developer’s preferences.

3 A Framework for Automated Assignment
of Bugs

Our approach uses preference elicitation methods to
learn what type of bugs developers prefer to solve, as well
as techniques to automatically infer their expertise levels.
Our framework consists of three components.

1. Expertise recommendation

When a new bug report arrives, the system creates a
ranked list of the developers who have the most appro-
priate expertise to resolve the bug in question. This
ranking is done by mining the bug repository to infer
expertise profiles of the individual developers, based
on the bug reports that they have resolved in the past.

2. Preference elicitation

Developers submit their preferences in fixing bugs by
providing feedback for every bug they fix. The feed-
back represents a developer’s rating of the bug, for ex-
ample, if a developer did not struggle with fixing the

bug, he would provide a positive feedback on this bug
by labeling it as “preferred”. The feedback is stored in
the bug report itself and can be retrieved for reasoning
any time.

3. Task allocation
Knowing preferences and expertise levels of all the de-
velopers, the system then considers their schedules, the
priority, and the difficulty of the report when making a
decision on who should be assigned with this report.

We next describe each component in detail.

3.1 Expertise Recommendation

Why do we need to know the developer’s expertise? We
assume that developers prefer to handle bug reports in their
area of expertise. Looking at the bug solving experience of
the developer we can learn his or her “implicit” preferences
in fixing bugs. Our system recommends the best candidates
for fixing each bug by observing developers’ previous work
in resolving bug reports. We employ the vector space model
to infer information about the developer’s expertise from the
history of the previously fixed bugs.

For each bug report we first build a profile using its ti-
tle (the one-line summary), the full textual description and
comments. Like other term-based recommender systems,
we first extract keywords from the textual content of the
summary, description and comments in order to represent
each report as a term vector. We remove non-alphabetic
tokens and stop words—words that do not carry any mean-
ing, such as articles, prepositions, etc. The term vector is
then built from the remaining words by assigning weights
to each of the word. We apply a standard TF-IDF weighting
scheme to assign high weights to the most important words
in the report and low weights to less informative ones.

term tf · idf weight∗

archive 14
complaint 30
error 5
fix 14
tutorial 74
url 42

Table 1. A partial weighted term vector for
the bug report depicted in Figure 1; tf · idf
weights are arbitrary due to the unknown
document frequency, the number of the doc-
uments the term occurs in.

The developer’s profile is then represented as a weighted
term vector extracted from the developer’s history of previ-
ously resolved problems. Table 1 represents the term vector



extracted from the sample bug report shown in Figure 1.
We make recommendations of the best experts by compar-
ing two term vectors, representing the developer’s profile
and the profile of the new incoming report being assigned.
Similarity scores between two vectors are calculated us-
ing cosine coefficients ranging from 0 to 1. Thus, the sys-
tem makes recommendation of the developers’ expertise by
ranking developers according to the similarity of their pro-
file with the profile of the new bug report. The higher the
ranking of the developer in the recommendation list is, the
higher value of the expertise is assigned to the developer.

3.2 Preference Elicitation

As mentioned earlier in Section 2.3, we let developers
express their preferences by rating bugs they fix. These
ratings provide accurate feedback on the developer’s pref-
erences. We provide developers with the additional pre-
defined field in the report, as illustrated in Figure 2, to leave
their feedback on each bug they have fixed. Each report now
includes a new field “Rating”, where developers can sub-
mit their ratings on the report by labeling it as “Preferred”,
“Neutral” or “Non-preferred”. These ratings are used to ac-
quire developer’s preferences in solving future problems.

Figure 2. Eliciting developer’s preferences
through bug ratings.

After the developer provides ratings, we elicit his prefer-
ences by creating a whitelist that contains all of the bugs that
the developer likes to resolve. The whitelist is a vector that
contains all the terms from the profiles of the “preferred”
reports. When task assignment process considers the de-
veloper’s preferences, this whitelist is compared against the
newly submitted report vector. If the similarity score be-
tween two vectors is high, the developer would be happy to
be assigned with this report as it satisfies his preferences,
and if the score is low, i.e., the report does not match the
developer’s preferences and therefore, the developer would
be less pleased with its assignment.

3.3 Task Allocation

When allocating a bug fixing task to the most appropriate
developer, we need to consider both the developer-specific
and bug-specific factors. The developer-specific factors in-
clude his preferences, level of expertise, current workload
and availability. In Sections 3.1 and 3.2, we have already
discussed how we can determine the developer’s expertise
and learn his preferences, respectively. In order to find out
whether the developer is on vacation, business trip and/or
how busy he is, we need a scheduler tool to retrieve nec-
essary information. We assume that the development team
supports either in-house or off-the-shelf task scheduler, so
that we are able to infer the developer’s workload informa-
tion including the number of tasks he is currently working
on, his travel commitments, vacation days, etc.

The bug-specific attributes indicate its priority (how soon
it needs to be fixed) and difficulty (how long it takes to re-
solve it). The priority of the bug varies from critical (re-
quires immediate attention and resolution), major (a main
blocker), normal, minor (can be postponed for later) to triv-
ial (no urgent resolution required).

To be able to assign the task to the person currently avail-
able, we need to know the effort or difficulty required to fix
the bug. The focus of the paper is not to provide a new ef-
fort estimation approach, but rather to consider the cost of
the bug fixing tasks when delegating them to the developers.
Existing research on predicting the time and effort for a soft-
ware problem offers several promising solutions [28, 31].
Most recent approach was proposed by Weiss et al. [28].
They suggested a model that automatically predicts the fix-
ing effort (i.e., the person hours needed to fix the bug) by
considering only the title and the description of the bug re-
port. They used Lucene framework, a text similarity mea-
suring engine, to search similar, earlier reports and use their
average time as a prediction. We make use of their approach
to estimate the effort needed to solve the bug report. We can
retrieve the title and the description from the report to build
a term vector which later can be used to find similar reports
by mining the data in the bug repository. By looking at the
time frame the relevant reports had been fixed for, we can
make predictions on the estimated time the newly arrived
report will require for its resolution.

Having this information, we then suggest strategies,
which are based on a set of heuristics for addressing task
assignment problem. These heuristics provide the system
with a guideline to assign reports to the most appropriate
developer. The key strategy that our approach suggests is to
decide on the priority of considering different factors such
as preferences, expertise and workload.

In a business environment, the ultimate goal is to resolve
software problems as soon as they are reported and to min-
imize the cost of software bugs. Thus, automated bug as-



signment must assign bugs to the developers who can re-
solve problems fast and efficiently. Satisfying the time con-
straint is very important. Thus, the practical solution for a
software development team is to give up some of the ideal
properties such as the developer’s preferences in certain sit-
uations. We need the system to not only automate the task
assignment process but also to provide optimal and fair task
allocations.

We consider situations where a set of bug reports, R =
{R1, . . . , Rn}, should be assigned as soon as possible.
There is a set of developers D = {D1, . . . , Dm}, who are
able to perform these tasks. Expertise of the developer Ei

defines the capabilities of the developer to fix a task Ri ∈R.
For each report Ri, we know the developer’s preference Pi

∈ [0,1]. The availability of the developer is defined as Ai,
where Ai ∈ [0,1]. The complexity of the task is manifested
by the difficulty di and priority pi, where di, pi ∈ [0,1].

We provide heuristics to be used by the system when se-
lecting the most appropriate developer for the given task.
We consider three basic heuristics for task assignment prob-
lem.

Workload heuristic: The first heuristic aims at maximiz-
ing the overall effectiveness of the team. It suggests that in
order to allocate tasks to the developers, the system needs
to know their current workloads and availability. For each
unallocated report Ri ∈ R, there may be zero or more de-
velopers who are interested in fixing it or familiar with the
problem. Thus, such a problem report is assigned to the
developer with highest availability Ai. The team’s policy
dictates that once the developer is assigned with the task, he
or she must resolve it.

This heuristic allows the system to assign the task to the
least busy developer. There should be no situation where
some developers are overloaded with work items, while oth-
ers have little or no work. This heuristic represents com-
mon sense. Selecting developers who are occupied with
less work is a reasonable decision. Our model ensures that
all developers are engaged in a bug fixing activity.

Consider a scenario, where there are four developers in
the team: Alice, Bob, Carol and Ted. Each developer is
currently working on a number of tasks. The system needs
to assign a newly arrived report Ri to an appropriate devel-
oper. All developers are experts on solving certain prob-
lems. In this example, Ted is really interested in working
on this task Ri, however he is already assigned with four
tasks. Both Alice and Bob have high familiarity with the
report, while Carol is less familiar with Ri. However, both
Alice and Bob have extremely busy schedules, while Carol
has currently only two tasks to solve. Thus, Ri should be
assigned to Carol as she has the lowest workload. The main
goal of the system is to have bugs reports resolved as soon
as possible and at minimal cost. If we wait for the expert
to become available, the resolution of the bug will be post-

poned for later which will result in high cost of the bug.
Thus, this heuristic suggests it is less expensive to assign
reports to the developers with higher availability values.

Expert heuristic: The second heuristic intends to min-
imize the cost of the bug resolving task, by utilizing the
expertise of the developer. In our model developers do not
compete with each other over the same tasks. However, if a
developer is familiar with the task Ri, i.e., he has success-
fully resolved a similar task in the past, such a developer is
considered an expert. Therefore, tasks similar to the prob-
lem report Ri will be assigned to the expert who is currently
available. The main strategy here is that each report is allo-
cated to the developer who can actually resolve it.

In our next scenario, Alice and Carol, both equally avail-
able, have different expertise levels in fixing task Ri, where
Alice is the main expert on this bug. For Carol, task Ri is
one of tasks she would really like to work on. If the report
has a high priority p, i.e., needs to be resolved immediately,
and high difficulty d, Alice will be assigned with this report
because being the expert she will spend less time than Carol
in completing the task. Even if the report has a low priority
and a high difficulty or a high priority and a low difficulty,
Alice will still be more efficient than Carol in fixing the
bug Ri. Therefore, this heuristic focuses on employing the
expertise of the developers in providing fast and accurate
solutions.

Preference heuristic: This heuristic is defined to max-
imize the overall team productivity. Knowing the prefer-
ences of the developers, the system allocates them with
their preferred tasks. Developers working on “desirable”
problems are typically more motivated and thus, produce
faster and more creative solutions. We understand that it
is difficult and sometimes impossible to elicit full prefer-
ences from the developers. Developers may choose not to
provide their preferences, yet by that they choose to avoid
potential gains from the preference elicitation. In this situa-
tion when the preferences are missing in the bug reports, we
consider these reports as “non-preferred”. This assumption
originates from the social studies on the analysis of online
product ratings and reviews [24]. Their main finding in-
dicates that online shoppers provide more positive feedback
on their shopping experience than negative one, and positive
feedback overweighs negative feedback 8 to 1. We believe
that developers are more likely to give positive feedback on
the tasks than negative one. Thus, if developers choose not
to provide their preferences, then their Pi will be set to 0.

We believe that developers motivated by solving their
“favorite” tasks are more efficient. However, it is not fea-
sible to assign only preferred tasks to the developers. As
mentioned earlier, our goal is to have all tasks be assigned
and resolved in time. Thus, the developers should be desig-
nated with both preferred and non-preferred tasks. In fact,
since the developers are employed by the company, the ma-



jority of them have the necessary qualifications to resolve
any given bug report. In our framework, we consider pref-
erences of the developer in the situation where the developer
is already assigned with some tasks, i.e., his availability is
low, or the developer is familiar with the task, i.e. he has a
high expertise value.

We can illustrate this heuristic in the example, where
both Alice and Bob are the experts on the report Ri and have
similar workloads. The system then considers their prefer-
ences on the task Ri. If their preferences are similar, the
system randomly assigns the task Ri to one of them. A more
interesting example is where Alice, being familiar with the
bug, does not prefer to deal with it, while Ted wants to solve
this bug without having sufficient experience in fixing sim-
ilar bugs in the past. How the system should handle this?
Assuming that both Alice and Ted are currently available,
the system will look at the properties of the report Ri. If the
report is crucial and requires immediate attention, it would
be given to Alice since her expertise yields faster resolution.
On the other hand, if the report does not need urgent resolu-
tion, it will be delegated to Ted. He might not have enough
expertise in fixing this bug but his motivation can make him
more efficient than Alice who might delay the work on this
“unwanted” task. Thus, this heuristic promotes preference
elicitation when allocating tasks to the developers.

Another aspect to consider is how to facilitate and en-
hance the skills of the developers. We need to employ a
mechanism to allocate easier tasks to new team members
until they become familiar with the system and its archi-
tecture. Our system will gradually increase the difficulty
of the tasks assigned to the committers in order to develop
their expertise. It is rational and strategic to train developers
by delegating more difficult tasks to resolve and reinforcing
them to learn various parts of the system. This mechanism
provides the development team with several experts in each
module of the system. A common problem that the com-
panies working with obsolete software systems face, is the
“brain drain” problem when the leave of the main experts
(e.g., developers of the system’s kernel) can compromise
the whole development and production of the software sys-
tem.

4 Discussion

Our work provides a novel model for automated bug as-
signment. However, it lacks experimental evaluation due to
the number of challenges in developing and validating the
proposed model. In order to validate our heuristic-based
approach, we could develop a simulated environment of the
framework and test the efficiency and accuracy of the au-
tomated bug assignment. The setting of the simulated ex-
periment could consider several parameters, including the
number of developers, the number of tasks to be assigned,

the task properties (priority and cost) and the developer’s
expertise, preferences and availability. We could also eval-
uate each of the heuristics and find the optimal solution for
task assignment problem. Unlike other research areas such
as AI or distributed systems where development and valida-
tion through a simulated environment is widely acceptable,
the software engineering research community often seeks
an experimental validation including industrial-sized case
studies, dynamic or static analysis, etc. [30].

While assessing a technique using a simulated environ-
ment may be common in some research areas, there are also
several risks associated with it. First, simulation requires
building a model of a real system and a real dataset, and it
may be hard to build realistic models practically. A model
that achieves good results in simulation might not work in
a practical setting. Another limitation of using simulation
is that the results may be highly tuned to a particular im-
plementation, the better the optimization of the prototype’s
code the better the performance it will deliver.

Conducting a case study on a real data would require an
“almost from-scratch” implementation of the prototype of
the bug tracking system. In addition, the case study will
require recruitment of a software development team to ap-
ply automated assignment of bugs using the expertise levels,
preferences and workloads of the developers. Such a case
study would be very valuable to support our work, yet at
the moment is in not feasible due to the high cost of the ef-
fort required to perform it. A possible first step to validate
the proposed model would be to use evaluation through sur-
vey. First we could conduct a survey with the developers
asking for the feedback on their previous bug fixing expe-
rience, their satisfaction with the bug assignments and bug
resolutions, whether they were successful and confident in
handling bugs in the past, etc. We could also elicit informa-
tion on whether considering their preferences in fixing bugs
would be helpful in distributing tasks within the team. The
analysis of the collected data would provide the initial es-
timates of the usefulness of the proposed model. Later we
could implement a prototype of the framework and test it
within a software team working on the maintenance activi-
ties.

5 Future Work

The main challenge to address in the future is strategic
developers. In time, developers could learn how the system
assigns bug fixing tasks and try to manipulate task assign-
ment. Thus, we should ensure that the assignment of bugs
is a fair and manipulation-free process. A possible solution
to prevent any misuse of the system would be to consider
only most recent bug fixing experience. For example, only
n randomly taken past reports can be considered to deter-
mine a developer’s expertise. Also it is in the best interests



of the developers to provide truthful information on their
bug preferences. If a developer limits bug reports to a cer-
tain type of bugs or a certain module of the system, it is less
likely that he will get this type of bug all the time and thus,
in most cases he will be assigned with the least preferred
bugs to resolve.

Motivating developers to rate bug reports truthfully is the
key issue. If developers do not submit their ratings to the re-
ports, they might be assigned with the tasks that are undesir-
able. In fact, developers are encouraged to take advantage
of the preference elicitation and to benefit from the deci-
sions the system makes on their behalf. If developers try
to manipulate the system, for example by preferring only
easy tasks, the chances that they will be assigned with the
same task every time are low. However, our future research
will focus on designing an effective incentive mechanism to
support truth-telling strategy and fairness of the task allo-
cation. We can define a set of rewards to be given to the
developers for their hard work, efficiency, productivity and
creativity. For example, for resolving a very difficult bug,
the developer might be assigned with less workload for the
next day or two.

Another challenging strategy to tackle in the future is
the trustworthiness of the developers in accomplishing tasks
in time [17, 27]. For example, there are two developers,
Alice and Bob, where Bob has a higher expertise level than
Alice for completing the task Ri. According to the current
expertise heuristic, the task Ri should be assigned to Bob.
However, if Bob is not good at meeting deadlines and delays
bug resolutions, a better decision would be to assign the task
to Alice, who might not be the best expert but is reliable in
solving tasks on time. Thus, the notion of trustworthiness
can be introduce to our framework to address the problem
of delivering accurate solutions at the expected time.

6 Conclusions

In this paper, we presented the prototype of the intelli-
gent system that automates bug assignment. When a new
bug report arrives, the system automatically assigns it to the
developer who is familiar with this bug and eager to solve
it and thus, most suitable to accomplish the task efficiently
and in a timely manner. The proposed framework can help
software companies in managing bugs during the software
development and software testing processes. It also allows
the team lead to save several hours a day that were previ-
ously spent on manual assignment of bug reports.

We have argued how preference eliciation techniques can
be used in the area of software engineering and how devel-
opment teams can benefit from eliciting information about
their developers. However, answering questions on what
and how to elicit preferences from the users in a specific
domain can become quite challenging. We believe that elic-

iting preferences from the developers is beneficial for the
team performance. However, further research, including the
empirical validation of the proposed approach can provide
better insights on the impact of preference elicitation in per-
sonalizing bug assignment process. Therefore, we would
like to call for further research in adopting preference elic-
itation methods to the software applications and develop-
ment projects. We hope that our work can inspire the rest
of the research community to build better systems to facil-
itate more efficient and intelligent assignment of mainte-
nance tasks.
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