
Automatic Classification of Large Changes
into Maintenance Categories

Abram Hindle
University of Waterloo

Waterloo, Ontario
Canada

ahindle@cs.uwaterloo.ca

Daniel M. German
University of Victoria

Victoria, British Columbia
Canada

dmg@uvic.ca

Michael W. Godfrey
University of Waterloo

Waterloo, Ontario
Canada

migod@cs.uwaterloo.ca

Richard C. Holt
University of Waterloo

Waterloo, Ontario
Canada

holt@cs.uwaterloo.ca

Abstract

Large software systems undergo significant evolution
during their lifespan, yet often individual changes are
not well documented. In this work, we seek to automat-
ically classify large changes into various categories of
maintenance tasks — corrective, adaptive, perfective,
feature addition, and non-functional improvement —
using machine learning techniques. In a previous pa-
per, we found that many commits could be classified
easily and reliably based solely on the manual analy-
sis of the commit metadata and commit messages (i.e.,
without reference to the source code). Our extension
is the automation of classification by training Machine
Learners on features extracted from the commit meta-
data, such as the word distribution of a commit mes-
sage, commit author, and modules modified. We vali-
dated the results of the learners via 10-fold cross val-
idation, which achieved accuracies consistently above
50%, indicating good to fair results. We found that
the identity of the author of a commit provided much
information about the maintenance class of a commit,
almost as much as the words of the commit message.
This implies that for most large commits, the Source
Control System (SCS) commit messages plus the com-
mit author identity is enough information to accurately
and automatically categorize the nature of the mainte-
nance task.

1 Introduction

Large commits are those in which a large number of
files, say thirty or more, are modified and submitted to
the Source Control System (SCS) at the same time. We
demonstrated that large commits provide a valuable
window into the software development practices of a
software project [3]. For example, their analysis can
highlight a variety of identifiable behaviours, including
the way in which developers use the version control
system (branching and merging), the incorporation of
large amounts of code (such as libraries) into the code,
and continual code reformatting.

While any large change might superficially seem to
be significant due to its “size”, however defined, it is
important to recognize that not all large changes are
created equal. For example, a commit that updates
the stated year of the copyright for a system within the
boilerplate comments might touch a very large number
of files, but such a commit has no semantic impact
on the system. Similarly, a change that performs a
simple renaming of an oft-used identifier is less risky
than a smaller but invasive refactoring of the program’s
design.

To aide further analysis, it is necessary to identify
the type of change that a large commit corresponds to.
For example, a developer who is interested in tracking
how the code’s design has evolved will probably want to
ignore changes to whitespace, comments or licensing.
This is particularly important for “basket-oriented”
analysis of changes (for a survey of such methods see

1



[5]), where the inclusion of two entities, such as files,
methods, or functions, in the same commit is expected
to be significant. The relationship between two files
that were changed during a change in whitespace, per-
haps while reformatting of the source code, is prob-
ably negligible when compared to the relationship of
two files changed during refactoring. Classifying large
changes is useful to select or to ignore certain large
changes during the analysis and exploration of such
changes.

A major challenge, however, is how to automati-
cally classify such large commits. The simplest solution
would be for developers to manually tag commits with
metadata that indicates the type of commit performed.
While this is feasible in an organization that dictates
software development practices, it does not provide a
solution to the large corpus of commits already per-
formed.

Another solution is to manually classify previous
large commits. For a given project this may be fea-
sible. Large commits correspond usually to the top 1%
of commits with the most files changed. However, a
manual approach may not scale well for some systems;
consequently, we decided to investigate automatic clas-
sification of large changes.

When a programmer commits a change, they may
disclose the intention of a change in the commit mes-
sage. Often these commit messages explain what the
programmer did and what the intended purpose of the
change was. If it is a large change one might expect a
programmer to document the change well.

We show in this paper that large source control sys-
tem (SCS) commit messages often contain enough in-
formation to determine the type of change occurring in
the commit. This observation seems invariant across
different projects that we studied, although to a differ-
ent extent per each project.

Classifying commits using only their metadata is at-
tractive because it does not require retrieving and then
analyzing the source code of the commit. Retrieving
only the meta-data of the commit is significantly less
expensive, and allows for efficient browsing and anal-
ysis of the commits and their constituent revisions.
These techniques would be useful to anyone who needs
to quickly categorize or filter out irrelevant revisions.

2 Previous Work

This work extends our work on Large Commits clas-
sification [3] and the classification work of Robles et
al. [2]. We rely on the data produced by our Large
Commits study to execute this study.

These works derive from Swanson’s Maintenance
Classification [7], that provided a taxonomy for mainte-

Categories of
Change

Issues addressed.

Corrective Processing failure
Performance failure
Implementation failure

Adaptive Change in data environment
Change in processing environ-
ment

Perfective Processing inefficiency
Performance enhancement
Maintainability

Feature Addi-
tion

New requirements

Non functional Legal
Source Control System manage-
ment
Code clean-up

Table 1. Our categorization of maintenance
tasks; it extends Swanson’s categoriza-
tion [7] to include feature addition and non-
functional changes as separate categories.
We refer to this as the Extended Swanson
Categories of Changes.

nance changes (see Table 1), the study of small changes
by Purushothan et al. [6], and later work by Alali et
al. [1]. Purushothan et al. extended the Swanson Main-
tenance Classification to include code inspection, then
they classified many small changes by hand and sum-
marized the distribution of classified revisions. Alali et
al. further studied the properties of commits of all sizes
but did not classify the commits. Our previous work
classified large commits by their maintenance type; we
discovered that many large commits are integration
and feature addition commits, which were often ignored
as noise in other studies. We made multiple categoriza-
tion schemes similar to Swanson (see Table 2 for the
Large Changes categorization). Robles et al. had a
similar idea and extended the Swanson categorization
hierarchically.

3 Methodology

Our methodology can be summarized as follows.
We selected a set of large, long-lived open source
projects; for each of them we manually classified 1%
of their largest commits, the commits with the most
files changed. We used these manually classified com-
mits to determine if machine learning was useful to
automatically classify them. The details are described
in this section.

2



Categories of Large
Commits

Description

Feature Addition New requirements
Maintenance Maintenance activities.
Module Management Changes related to the way the files are named and organized into modules.
Legal Any change related to the license or authorship of the system.
Non-functional source-
code changes

Changes to the source code that did not affect the functionality of the
software, such as reformatting the code, removal of white-space, token re-
naming, classic refactoring, code cleanup (such as removing or adding block
delimiters without affecting the functionality)

SCS Management Changes required as a result of the manner the Source Control System is
used by the software project, such as branching, importing, tagging, etc.

Meta-Program Changes performed to files required by the software, that are not source
code, such as data files, documentation, and Makefiles.

Table 2. Categories of Large Commits: they better reflect the types of large commits we observed
than those by Swanson.

3.1 Projects

The projects that we selected for this study were
widely used, mature, large open source projects that
spanned different application domains (and were rep-
resentative of each of them). These projects are sum-
marized in Table 3. The projects are also implemented
in a variety of programming languages: C, C++, Java
and PHP. Some projects were company sponsored, such
as MySQL and Evolution.

3.2 Creating the training set

For each project we extracted their commit history
from their corresponding version control repositories
(CVS or Bitkeeper). We ranked each commit by num-
ber of files changed in a commit and selected the top
1% of these commits. We manually classified about
2000 commits into the Extended Swanson Classifica-
tion (described in Table 1), Large Changes classifica-
tion (see Table 2), and detailed large commits classifi-
cation. This process is described in detail in [3].

We took this annotated dataset and wrote trans-
formers to generate the datasets we wanted to use for
automatic classification. We produced datasets such
as the Word Distribution dataset and the Author, File
Types and Modules dataset.

3.3 Features used for classification

We used the following features for the datasets used
to train the classifiers. Each feature was extracted for
each project.

Word Distribution By word distribution we mean
the frequency of words in the commit message.

We wanted to know if Bayesian type learners were
useful for automatic classification. Bayesian learn-
ers are used in email spam filters to discriminate
between SPAM (undesirable) and HAM (desir-
able) type messages. These learners determine
the probability of a word distribution of a mes-
sage (the word counts) occurring in both the Ham
and SPAM datasets. Per each large commit we
counted the number of occurrences of each word
and the number of files that changed in that com-
mit. We kept only tokens consisting of letters and
numbers, and no other stop words were removed.

Author The identity of the commit’s author. We sus-
pected that some authors were more likely to cre-
ate certain types of large commits than others.

Module and File Types Is the kind of commit af-
fected by the module, that is the directory where
the commit primarily occurred? These features
were counts of files changed per directory, thus
given a system each directory would become a fea-
ture of file counts per that directory. Along with a
count of files changed per directory, we also count
the files by their kind of usage: source code, test-
ing, build/configuration management, documenta-
tion and other (STBDO [4]). These counts are
represented by five respective features that are the
counts of changed files for each type.

For each project, we created datasets from each of
these features and their combinations (for example, one
dataset was created for the word distribution and au-
thors; another for all the features). We also created
a dataset with the words distributions in the commit

3



Software Project Description
Boost A comprehensive C++ library.
Egroupware A PHP office productivity CMS project that integrates various external PHP ap-

plications into one coherent unit.
Enlightenment A Window Manager and a desktop environment for X11.
Evolution An email client similar to Microsoft Outlook.
Firebird Relational DBMS gifted to the OSS community by Borland.
MySQL (v5.0) A popular relational DBMS (MySQL uses a different version control repository for

each of its versions).
PostgreSQL Another popular relational DBMS
Samba Provides Windows network file-system and printer support for Unix.
Spring Framework A Java-based enterprise framework much like enterprise Java beans.

Table 3. Software projects used in this study.

messages for the union of all commits for all projects.
Authors and modules were too specific to each project
to be useful when considering all the commits. This
would permit us to determine if the automatic classifi-
cation was applicable to all the projects, or if it worked
better for some than for others.

3.4 Machine Learning Algorithms

Each of these datasets was fed into multiple machine
learning algorithms. We wanted to know which algo-
rithms performed better across the different projects,
or if different algorithms were better for different
projects). We used the various machine learners from
the Weka Machine Learning framework [8]. We use 10-
fold cross validation to train a model on 90% of the
data and then test the other 10% against this created
model. Thus for each learner it created 10 different
models and executed 10 different test runs. In total,
we used seven Machine Learners:

• J48 is a popular tree-based machine learner (C4.5).
It makes a probabilistic decision tree, that is used
to classify entities.

• NaiveBayes is a Bayesian learner similar to those
used in email spam classification.

• SMO is a support vector machine. Support Vector
Machines increase the dimensionality of data until
the data points are differentiable in some dimen-
sion.

• KStar is a nearest neighbor algorithm that uses a
distance metric like the Mahalanobis distance.

• IBk is a single-nearest-neighbor algorithm, it clas-
sifies entities taking the class of the closest associ-
ated vectors in the training set via distance met-
rics.

• JRip is an inference and rules-based learner (RIP-
PER) that tries to come up with propositional
rules which can be used to classify elements.

• ZeroR is a learner used to test the results of the
other learners. ZeroR chooses the most common
category all the time. ZeroR learners are used to
compare the results of the other learners to deter-
mine if a learners output is useful or not, especially
in the presence of one large dominating category.

4 Results

The datasets were run against each of the machine
learners. We used five metrics to evaluate each learner:
% Correct is what percentage of commits were properly
classified, which is both the recall and the accuracy; %
Correct ZeroR was the accuracy of the ZeroR classi-
fier against the same dataset — it is expected that a
learner that is classifying data well should always do
better than ZeroR; ∆ ZeroR is the difference between
the %Correct and %Correct Zero accuracies; F-1 is
the F-Measure, a value between 0 and 1 produced by
a combination of precision (instances were not misclas-
sified) and recall (total correctly classified instances);
and ROC, which is the area under the Receiver Oper-
ating Characteristic (ROC) curve–this value is similar
to the F-Measure and it is based on the plotting of
true positives versus false positives, yet the end value
closely mimics letter grades in the sense of the quality
of classification, e.g., 0.7, a B grade, is considered fair
to good.

Table 4 shows the results of the best learner using
the dataset Words distributions per project. As it can
be observed, no single classifier is best; nonetheless,
usually the results were better than the ZeroR classi-
fier which indicates that some useful classification was
being done by the learner. Table 5 shows that the

4



results are less accurate for the Authors and Modules
dataset, but still better than ZeroR.

The Word Distribution dataset appears to be bet-
ter at producing successful classifiers than the second
Authors and modules dataset.

4.1 Learning from Decision Trees and
Rules

The learners provided valuable output about their
models and their classifications. Some of them helped
by highlighting the most useful information they use
to do the classification. In particular, the output of
tree- and rules-based learners provides some interesting
insights.

The J48 tree learner produced decision trees based
on the training data. The trees created for the word
distribution datasets are composed of decisions that de-
pend on the existence of specific words, such as cleanup
or initial. Specific authors and directories were also
commonly used by decision in these trees.

The decision trees output by the J48 learner con-
tain one word in each of its nodes; we tabulated such
words and used their frequency to create text clouds.
Figure 1 depicts the text cloud of words used in the
union of all projects, while Figure 2 corresponds to
the text clouds for each project. Words related to im-
plementation changes were the most frequent, such as
“add”, “added”, “new”. Other frequent words relate
to refactoring, bug fixing, documentation, cleanup and
configuration management changes.

We believe this suggests that simple word match
classifiers can automate the previously manual task of
classification.

The JRip classifier is a rules-based classifier that
infers a small set of rules used to classify instances.
With the word-based dataset, JRip produced rulesets
which contained both expected rules and sometimes
unexpected rules. The unexpected rules were often the
most interesting.

For the large-changes classification, if the commit
message contained words such as “license” or “copy-
right”, the commit message would be classified as a
Legal change. If the commit message contained words
such as (or related to) “fixes”, “docs” and “merging” it
was classified as Maintenance. If the commit message
contained words such as “initial” or “head” it was clas-
sified as Feature Addition. “Translations”, “cleanup”,
“cleaning”, “polishing” and “whitespace” were words
associated with Non-functional changes.

One interesting result was that for PostgreSQL, the
classifier properly classified commit messages that con-
tained the word “pgindent” (the name of its code in-
denter) as Non-Functional.

Figure 1. Text Cloud of tokens used by the
J48 learner to classify commits. The size
of the text indicates how many instances of
the word occurred in trees produced for the
union of all the projects’ commits.

For the dataset of Authors, File Types and Di-
rectories, we found that author features were most
frequently part of rules. For instance in Fire-
bird “robocop” was associated with Non-functional
changes and “skywalker” was associated with Module-
Management, in Boost, “hkaiser” was associated with
SCS-Management. The counts of file types such
as “Source”, “Test”, “Build”, “Documentation” and
“Other” we used in some decision rules. Often changes
with low counts of “Other” files were believed to be
Non-functional changes, but those with many “Other”
files were considered Module-Management changes.

For the Extended Swanson classification on the
Word Distribution based dataset, we witnessed that
Non Functional changes were associated with words
such as “header”, “license”, “update”, “copyright”.
Corrective changes had words such as bug, fixes and
merge, while Adaptive had words such as Java-doc,
zoneinfo, translation, build and docs. Perfective was
a large category and it contained many refactoring
and cleanup related words such as: “package”, “reor-
ganized”, “nuke”, “major”, “refactoring”, “cleanup”,
“removed”, “moved”, “pgindent” and “directory”.

Feature Addition was a large category that was of-
ten used as the default choice by the classifiers when no
other rules matched. For the other projects, it was as-
sociated with the words: “initial”, “spirit”, “version”,
“checkin”, “merged”, “create”, “revision” and “types”.

5



For the Author and Module dataset we noticed a
few authors associated with Perfective changes. Only
two authors were associated with Non-functional and
Feature Addition changes, both were part of the Boost
project, and none with Adaptive changes. This might
suggest that some authors serve a support role of
cleanup, or simply spend many of their commits clean-
ing up the source code.

4.2 Authors

On the Author and Modules dataset we applied at-
tribute selection to try to find the attributes that mat-
tered the most for classifying and discriminating be-
tween different types of commits. The Author attribute
ranked the best for almost all of the projects. Combin-
ing the textual features and the author features might
result in better learners.

Using the Word Distribution and Authors dataset,
and Authors and Modules the results often improved
slightly for most categorizations (1 to 3% improvement
in accuracy). This suggests that authors and word dis-
tributions might be correlated. Some authors might
be using similar language in their commit messages or
the have specific roles that make them more likely to
perform certain types of commits.

4.3 Accuracy

Table 4 indicates that for Swanson classifiction the
projects of PostgreSQL, Evolution, Egroupware, En-
lightenment, and Spring Framework had good accura-
cies (% Correct) above 60%, and usually good to fair
ROC values of above 0.7. Evolution, Spring Framework
and Firebird had the most significant improvements in
accuracy compared with the ZeroR classifier applied
to the same projects. These higher accuracies held for
the large commits and detailed commits classifications
as well, but were not as prominent. The lower accu-
racy in comparison to the Swanson ones, was prob-
ably because the other two classifications were more
fine grained which can add more margin for error.

The classifiers did not work well for MySQL. We sus-
pect this is because many of the large MySQL changes
were merges and integrations, their comments were of-
ten about version control related issues, that might
have been automatically generated.

The only significant failure in classifying was for
Samba and our Large Classification categorization on
the word distribution dataset. ZeroR beat JRip and
NaiveBayes by 4% accuracy. As expected, the recall
for ZeroR was quite poor (as seen in F − 1 measure
in Table 4). This result was not repeated in the Au-
thors and Modules dataset, shown in Table 5, where
J48 edged out ZeroR by 2%.

The Author and Module dataset usually did worse
than the Word Distribution dataset, which suggests
that the author of a commit and the modified mod-
ules provides almost the same, or as much information
as the word distribution. Enlightenment was a notable
case where the Author Module dataset worked out bet-
ter than the Word Distribution dataset. Table 5 sum-
marizes the best results from the Authors and Modules
dataset.

When we combined the datasets of Word Distribu-
tions, Authors and modules, we found that usually,
for most categorizations except the Swanson classifi-
cation that the Authors/Modules/Word Distribution
dataset had the best accuracy, but often its ROC and
F-Measure scores were lower implying that there was
some loss of precision. The information gained from
adding the module features to the word distribution is
low, as shown by the Word Distribution and Author
dataset versus the Word Distribution, Module and Au-
thor dataset.

Finally, we averaged the results of all the datasets
by weighting the number of commits for each project
in such a way that each project contributed equally
to the average. This result is shown in Table 6. We
were surprised that usually most datasets provide very
similar results. This suggests, while universal classifiers
are useful, they are not as effective as those that are
trained with a dataset from the project in question.

4.4 Discussion

What makes a good training set? Usually larger
training sets produce better the results. One obser-
vation we made was for those projects where we used
fewer annotations per change (only one annotation per
change), and we summarized the change succinctly,
those projects usually had greater classification accu-
racy. The better accuracy is probably because the
classes would overlap less.

What are the properties of a project with high classi-
fication accuracy? Projects that use consistent termi-
nology for describing certain kinds of SCS operations,
and for describing changes made to a system will have
a higher accuracy. Our study has shown that only a
few unique words indicate the likely class. Short com-
mit messages and inconsistent terminology would make
classification more difficult.

The terminology used in the commit messages seems
to provide as much information as the identity of the
commit author provides. Since the author creates the
commit message, perhaps the machine learners are
learning the commit message style or the language of
an author’s role, rather than a project-wide lexicon or
idiom.

6



Table 4. Best Learner Per Project for Word Distributions
Category Project Learner % Correct % Corr. ZeroR ∆ ZeroR F-1 ROC
Ext. Swanson Boost J48 51.84 37.12 14.72 0.51 0.71

EGroupware JRip 66.18 64.18 2.00 0.54 0.53
Enlightenment SMO 60.00 53.81 6.19 0.56 0.71
Evolution SMO 67.00 44.00 23.00 0.64 0.73
Firebird J48 50.06 34.49 15.57 0.49 0.73
MySQL 5.0 JRip 35.04 29.91 5.13 0.26 0.55
PostgreSQL NaiveBayes 70.10 55.67 14.43 0.69 0.82
Samba NaiveBayes 44.26 43.03 1.23 0.37 0.66
Spring Framework SMO 62.76 43.54 19.22 0.61 0.76
Union of all projects J48 51.13 38.85 12.28 0.50 0.74

Large Commits Boost JRip 43.13 33.07 10.06 0.38 0.65
EGroupware JRip 43.82 40.18 3.64 0.31 0.52
Enlightenment J48 44.05 39.76 4.29 0.36 0.56
Evolution IBk 54.00 39.00 15.00 0.45 0.65
Firebird J48 36.40 25.94 10.45 0.33 0.66
MySQL 5.0 JRip 31.20 31.20 0.00 0.15 0.47
PostgreSQL SMO 68.04 52.58 15.46 0.64 0.76
Samba ZeroR 42.74 42.74 0.00 0.26 0.48
Spring Framework JRip 40.72 38.02 2.69 0.29 0.55
Union of all projects J48 38.97 24.42 14.54 0.38 0.69

Detailed Boost J48 27.82 17.44 10.38 0.25 0.67
EGroupware JRip 24.91 19.61 5.30 0.14 0.57
Enlightenment JRip 21.41 18.00 3.42 0.11 0.51
Evolution SMO 51.00 24.00 27.00 0.46 0.63
Firebird NaiveBayes 18.95 11.35 7.60 0.16 0.68
MySQL 5.0 JRip 17.81 17.81 0.00 0.05 0.44
PostgreSQL SMO 61.62 48.48 13.13 0.54 0.60
Samba NaiveBayes 34.43 31.53 2.90 0.31 0.68
Spring Framework JRip 15.22 14.13 1.09 0.06 0.53
Union of all projects J48 23.42 10.71 12.71 0.22 0.71

7



Table 5. Best Learner Per Project for Authors and Modules
Category Project Learner % Correct % Corr. ZeroR ∆ ZeroR F-1 ROC
Ext. Swanson Boost J48 41.85 37.22 4.63 0.40 0.64

EGroupware JRip 64.79 64.07 0.73 0.52 0.51
Enlightenment J48 66.51 53.68 12.83 0.63 0.74
Evolution SMO 67.01 42.27 24.74 0.66 0.78
Firebird J48 48.07 34.45 13.62 0.47 0.72
MySQL 5.0 JRip 34.48 30.17 4.31 0.23 0.52
PostgreSQL J48 62.50 55.00 7.50 0.60 0.66
Samba JRip 45.81 42.94 2.86 0.42 0.64
Spring Framework SMO 55.09 43.41 11.68 0.53 0.65

Large Commits Boost JRip 36.84 33.17 3.67 0.24 0.55
EGroupware J48 40.29 40.11 0.18 0.29 0.52
Enlightenment J48 52.49 39.67 12.83 0.43 0.68
Evolution SMO 57.73 37.11 20.62 0.56 0.75
Firebird J48 32.45 25.91 6.54 0.31 0.66
MySQL 5.0 JRip 30.60 30.60 0.00 0.14 0.47
PostgreSQL NaiveBayes 62.50 51.25 11.25 0.61 0.74
Samba J48 44.69 42.65 2.04 0.36 0.61
Spring Framework JRip 39.40 37.91 1.49 0.24 0.52

Detailed Boost JRip 19.37 17.57 1.80 0.08 0.52
EGroupware JRip 20.63 19.58 1.06 0.08 0.51
Enlightenment JRip 27.27 17.95 9.32 0.16 0.56
Evolution J48 47.42 21.65 25.77 0.46 0.73
Firebird J48 13.79 11.33 2.45 0.12 0.67
MySQL 5.0 JRip 17.96 17.96 0.00 0.06 0.44
PostgreSQL SMO 60.98 47.56 13.41 0.56 0.67
Samba SMO 31.47 31.47 0.00 0.30 0.72
Spring Framework JRip 14.09 14.09 0.00 0.04 0.48

8



Table 6. Best Average Learner for each dataset. As expected, the more information, the better. How-
ever, the Frequency of Words and the Authors appear to be the most significant contributors.

Dataset Category Learner % Correct % Corr. ZeroR ∆ ZeroR F-1 ROC
Frequency of Words Ext. Swanson SMO 52.07 44.46 7.61 0.50 0.68
(Words) Large Commits JRip 41.37 36.69 4.68 0.32 0.57

Detailed JRip 25.71 21.31 4.40 0.17 0.56
Authors and Modules Ext. Swanson J48 50.84 44.80 6.04 0.47 0.63

Large Commits JRip 41.24 37.60 3.64 0.31 0.57
Detailed JRip 25.01 22.13 2.88 0.15 0.54

Authors and Words Ext. Swanson SMO 53.27 44.80 8.47 0.51 0.70
Large Commits JRip 42.61 37.60 5.01 0.33 0.58
Detailed JRip 27.06 22.13 4.93 0.18 0.56

Authors, Words Ext. Swanson JRip 53.51 44.80 8.70 0.47 0.62
and Modules Large Commits JRip 43.20 37.60 5.60 0.34 0.60

Detailed JRip 27.38 22.13 5.25 0.19 0.57
Words and Modules Ext. Swanson J48 52.59 44.80 7.79 0.50 0.66

Large Commit J48 43.29 37.60 5.69 0.39 0.63
Detailed JRip 27.71 22.13 5.58 0.18 0.57

Author Ext. Swanson SMO 51.27 44.80 6.47 0.45 0.63
Large Commit J48 41.82 37.60 4.22 0.34 0.60
Detailed SMO 27.05 22.13 4.92 0.21 0.61

Modules Ext. Swanson J48 51.55 44.80 6.75 0.48 0.63
Large Commit JRip 41.57 37.60 3.97 0.30 0.56
Detailed JRip 24.78 22.13 2.65 0.15 0.53

Projects whose developers have consistent roles will
probably fare better as well. A project with developers
dedicated to code cleanup, or repository maintenance
will prove easier to classify than authors of a team who
shares responsibilities.

The lesson learned from this is the more that de-
velopers annotate their changes consistently the more
likely that we can categorize the changes. This also im-
plies that maintaining a consistent lexicon for a project
will result in better automation of classification tasks.

5 Validity

For ground truth of categorizations we relied solely
on annotations that we performed on the data. We
also modified and created categorizations which threat-
ens the objectivity of the ground truth. We might be
discovering an automation of how we annotated the
changes as we simply automated our manual classifica-
tion in our first study.

The use of multiple annotations per change probably
reduced the accuracy of the classifiers. We think that
if the annotations were single purpose, we would get
better results. Alternatively we could have asked the
classifier to produce probabilities per each category.

A potential pitfall of this technique is that if it is
continuously used throughout development, the num-
ber of features will increase as the word distribution
increases, which happens as new tokens are introduced.

6 Future Work

Future work includes integrating this work into de-
veloper tools used to view and browse commits, where
classifying commits would be relevant to developers. A
direct extension to our work would be to test if using
the source code tokens provide any benefit for classify-
ing commits. We would also want to generalize further
and investigate commits of all sizes.

7 Conclusions

Our results indicate that commit messages provide
enough information to reliably classify large commits
into maintenance categories. We applied several ma-
chine learners and each learner indicated that there
was some consistent terminology internal and external
to projects that could be used to classify commits by
their maintenance task. We have showed that the ar-
duous task of classifying commits by their maintenance

9



activity, which we carried out in our previous work [3],
can be automated.

We have shown that the author’s identity may be
significant for predicting the purpose of a change, which
suggests that some authors may take on a role or take
responsibility for a certain aspect of maintenance in a
project.

We have been able to automate the classification of
commits, using the commit messages, that we previ-
ously manually applied. We have shown that commit
messages and the identity of authors provide learners
with enough information to allow most large commits
to be classified automatically.
Acknowledgements: We thank Gregorio Robles for
the initial direction of this work.

References

[1] A. Alali, H. Kagdi, and J. I. Maletic. What’s a typi-
cal commit? a characterization of open source software
repositories. In ICPC ’08: Proceedings of the 2008
The 16th IEEE International Conference on Program
Comprehension, pages 182–191, Washington, DC, USA,
2008. IEEE Computer Society.

[2] J. J. Amor, G. Robles, and J. M. Gonzalez-Barahona.
Discriminating development activities in versioning sys-
tems: A case study. In Proceedings PROMISE 2006:
2nd. International Workshop on Predictor Models in
Software Engineering, 2006.

[3] A. Hindle, D. M. German, and R. Holt. What do large
commits tell us?: a taxonomical study of large com-
mits. In MSR ’08: Proceedings of the 2008 interna-
tional working conference on Mining software reposito-
ries, pages 99–108, New York, NY, USA, 2008. ACM.

[4] A. Hindle, M. W. Godfrey, and R. C. Holt. Release
Pattern Discovery via Partitioning: Methodology and
Case Study. In MSR ’07: Proceedings of the Fourth In-
ternational Workshop on Mining Software Repositories,
page 19, Washington, DC, USA, 2007. IEEE Computer
Society.

[5] H. Kagdi, M. L. Collard, and J. I. Maletic. A survey
and taxonomy of approaches for mining software repos-
itories in the context of software evolution. J. Softw.
Maint. Evol., 19(2):77–131, 2007.

[6] R. Purushothaman. Toward understanding the rhetoric
of small source code changes. IEEE Trans. Softw. Eng.,
31(6):511–526, 2005. Member-Dewayne E. Perry.

[7] E. B. Swanson. The Dimensions of Maintenance. In
ICSE ’76: Proceedings of the 2nd international con-
ference on Software engineering, pages 492–497, Los
Alamitos, CA, USA, 1976. IEEE Computer Society
Press.

[8] I. H. Witten and E. Frank. Data Mining: Practical ma-
chine learning tools and techniques. Morgan Kaufmann,
San Francisco, USA, 2nd edition, 2005.

move config license merge removed fixes proto2 refactoring cvs
0 checkin updates 1 2 copyright almost cosmetical merged to perforce specific
fixed licence and cpp 4 9 3 link tabs borland creating revision by preprocessing head

converted proposal copyrights directory review ascii v1 part progress sync documentation into

295 regex commit change line docs submission gif initial tests candidate phoenix2 message bump hpp

unix contest friendly 6 empty moving problem apply library pre add dunno headers support graph jamfiles

class building separate main default for removing links cleanup seq doc updated minmax bbc2 accessor tr2

miniboost boost a remove update reverting style tweaks reworked linefeeds from good is all fusion attributes

again reserving dots name renamed also cr on

(a) Boost

head added fixed as plugin crap dev4 for new directory
update removed 12 old better apps around 4 51 first 6 moving 0 been after

add additional sitemgr switching default identical converted incl updated catalan php remove the

now index cleanups plus 52 1240675 branch fixes 50 places set 65 documentation to phpgwapi

dir svn of anymore system and reverted labbe based amazon docs addressbook applying rc1

hopefully

(b) EGroupware

api stuff updates a nav page all indent warnings nuke
2005 structure e17 argh add ie split cleanup quite removed fixes html we fixed allow

breaks as adding there strings bump first direcotry merging ability mon 0 dead merge doing keys

bug works headers 22x22 data setting for may 28 correct head themes images forgot imenu this edb

about copyrights lately seb 17 foucs icons actually copyright bit test update ones cleanups asm work

eapi 2000 have anyway menus wed do added pages download autof00 browsers patch arguments hide

rendering kainx also wshadow configuration ran doxygen better files hopefully move

(c) Enlightenment

zoneinfo removing translation copyright license
moved revision 18 gpl between make nntp address lots directory a the because 29

except to api library compile fixing translations clean for federico updated rewrite 03 my almost

(d) Evolution

initial 1 moved const license a remove cleaning
tests firebird isql interfaces vulcan removed cleanup stylesheets all
due nuke imports names at are associated src ctx instructions test unneeded below
backup conversion jim others message 0 free struct add c split 2 no msvc7 progress when
and install arbitrary corrections files correctness handling unzipped structure chance environment fresh

3 original allocation icu been early borland gds directories dbschema backport testware intlcpp memory

default 40 firebirdclient borrie new updated unmodified belong the cache cleanups builds deleted style

rebench pool series local variables inprise added allocator macro 10 misc handle change fbsqlexception

w3 cr on ironing integrate move netprovider refactoring import back collations don global unified cvs

older after fb gateway status tabify headers finished changed s fiel fix head in assert driver merged

alvarez warning forums v1 branch fixes common firebird2 65 4th dir fixed compile requiem used poor

final functions related private symbol code better g trace characters another

(e) Firebird

atis config auto constants mvdir r 05 crash
98 parsing sets 13 should discless marker append afghanistan initializing vc grant 140
covarage delimiters changed engine 120 alt000001 future 1 3rd 2 bin 62 accepted 56 skip
bitkeeper perl leak cmvmi build 2000 to array found 78 fixed atoll int flexbench bk
updating acconfig allocated ndb strmov tools 01 symbol docs g cacert files 0009

(f) MySQL 5.0

initial 98 copyright docs gborg did create cvs documentation
and cleaned some pghackers ends work anything abort head going refer tag in remaining dependencies

time add support

(g) PostgreSQL

initial creating preparing removing docbook rcs 3 debian
check jermey regenerate new about no need can is 18 tree header auto just shuffling through

than convert pre3 been creat stuff be bulk main s character fix for updated 30 got or jeremy

2 a remove were update hellier removed then conf using access regenerated able really still compile

samba but used commit 1997 attic afs based docs on if ntstatus not files andrew

(h) Samba

javadoc 0 polishing null polish rework renamed backported
carriage advice reference scoping main sample 1 adapted formatting completed to code
suspension aspectjautoproxycreator header initial tests commits refactoring modularization working consistency

avoid first cvs log refined commons reorganized after ws primary annotation introduced consolidation

different by guide abstractjdbcclinic src org phonebook evaluation tag in spring 17 review a scripting

update m1 hibernate3 removed build work instrument naming repository internal method documentation

cleans extended samples related jstl executor out based map binding files move

(i) Spring Framework

Figure 2. Text Clouds of Tokens used in J48
trees for each project

10


