
Identifying Architectural Change Patterns in Object-Oriented Systems

Xinyi Dong and Michael W. Godfrey
Software Architecture Group (SWAG)

David R. Cheriton School of Computer Science
University of Waterloo

{xdong, migod}@uwaterloo.ca

Abstract

As an object-oriented system evolves, its architecture
tends to drift away from the original design. Knowledge
of how the system has changed at coarse-grained levels is
key to understanding the de facto architecture, as it helps to
identify potential architectural decay and can provide guid-
ance for further maintenance activities. However, current
studies of object-oriented software changes are mostly tar-
geted at the class or method level.

In this paper, we propose a new approach to modeling
object-oriented software changes at coarse-grained levels.
We take snapshots of an object-oriented system, represent
each version of the system as a Hybrid Model, and detect
software changes at coarse-grained level by comparing two
hybrid models. Based on this approach, we further identify
a collection of change patterns, which help interpret how
system changes at the architecture level. Finally, we present
an exploratory case study to show how our approach can
help maintainers capture and better comprehend architec-
tural evolution of object-oriented software systems.

1 Introduction

Change is a measure of success in the world of software.
As users grow familiar with a system, they often conceive of
new features that can be added and new kinds of problems
that can be attacked. Successful systems will respond posi-
tively to these pressures to change, with the addition of new
features and support for using the system in new environ-
ments to solve new problems. However, change processes
themselves tend to be incremental rather than revolution-
ary; over time, as changes accrue, the de facto architecture
tends to drift away from the original design goals and archi-
tectural plans. In the absence of careful re-architecting, the
design of the evolving system becomes brittle and resistent
to further change. Maintenance activities become more dif-
ficult, time consuming, and risky.

Explicitly modeling the changes that have occurred to a
software system — at different granularities and from dif-
ferent points of view — provides valuable information to
the system maintainer who needs to understand exactly why
a system’s design is the way it is and what strategies may
work best to effect future change. In the last decade, more
and more attention has been focused on uncovering evolu-
tion change from source code or historical data [1, 2, 7, 16].
The goal of our work is to study evolutionary information
of object-oriented software systems as they also suffer from
high maintenance costs, and may benefit from this kind of
historical modeling and analysis.

Most current research on object-oriented software evo-
lution is targeted at the class level of abstraction, which is
natural as classes are the basic building blocks of object-
oriented programs. However, such an approach does not
scale well to the system level due to the large volume of
information involved. A complex object-oriented system
typically consists of hundreds of classes, which in turn
may exhibit a high degree of interdependence among them.
Furthermore, while considering one large system is hard
enough, comparing multiple versions of a system exacer-
bates the scaling problems by an order of magnitude.

One way of managing complexity is to model and ana-
lyze evolution at a coarse-grained level, such as the pack-
age level. However, in languages such as Java and C++, the
package (or namespace) construct is simply a container of
classes and has little or no semantics; a package does not
exhibit the important semantic properties of its containing
classes as classifiers, and a package diagram is unable to
capture inheritance and usage dependency between classes
at a coarse-grained level. In our previous work, we have
proposed a hybrid model to represent object-oriented sys-
tems at coarse-grained levels [3, 4]. In this paper, we apply
this modeling approach to uncover and analyze evolution-
ary change at the system level. The evolution analysis is
achieved by comparing the hybrid models of adjacent ver-
sions. With hybrid models, we were able not only to gain an
overall picture of software evolution, but also to investigate

the detailed structural change in a selected scope at a pre-
ferred level of granularity. We have applied our approach in
an exploratory case study, and have identified a collection
of change patterns that help interpret how a system changes
at the architecture level.

The remainder of this paper is organized as follows. Sec-
tion 2 introduces the notation and the construction of hy-
brid models. Section 3 outlines our evolution analysis. Sec-
tion 4 presents the case study. Section 5 discusses current
researches related to our work, and section 6 summarizes
what we have done and discusses planned future work.

2 The Hybrid Model

A hybrid model is derived from a package diagram, and
preserves the original package containment hierarchy, but
it differs from the package diagram in that it explicitly de-
scribes the boundary of the objects and emphasize their us-
age dependencies. As shown in Figure 1, a hybrid model is
composed of a collection of aggregate components and the
connectors between them. We now describe how we cus-
tomize the Hybrid Model for evolutionary analysis; details
of the basic Hybrid Model can be found elsewhere [3, 4].

2.1 Aggregate Component

An aggregate component is created from a package. It
models not only the package, but also the collection of ob-
jects that can be instantiated from the concrete classes of
the package. As Figure 1 depicts, an aggregate component
contains three types of classes: defined, exiled, and ghost
classes. The defined and exiled classes of a component de-
scribes the scope of the package from which the component
is created, while the ghost and defined classes of a compo-
nent provide the complete static description for the objects
the component represents:

• Defined classes are implemented in the package.

• Exiled classes are declared but not implemented in the
package.

• Ghost classes are the duplicates of the classes that the
defined classes inherits from other packages.

2.2 Ports

An aggregate component can be viewed as a logical
computation unit that provides resources to and require
resources from its environment. Ports are the interfaces
through which an aggregate component interacts with its
environment. We distinguish two kinds of ports: inports
and outports [13].

co
nt

ai
ns

containsD
el

eg
at

io
n

C
on

ne
ct

or
s

D
elegation

C
onnectors

Exiled Classes

Ghost Classes

Inport Defined
Classes

Outport

Aggregate Component β Aggregate Component γ

Aggregate Component α

Assembly
Connectors

Figure 1. An Example Hybrid Model

• An inport lists the set of resources that the component
provides and are actually used by other components.

• An outport describes the resources that the component
requires from others.

In this paper, we focus on call dependencies, and refer a
resource as a pair: resource ∈ C × M , where

• C is the set of types of the receiver objects,

• M is the set of message signatures, which consist of
the action names, the types of arguments and the return
types of messages.

Thus, the inport of component α, inport(α) ⊆ C × M ,
represents the incoming messages that the component may
receive from others, while its outport, outport(α) ⊆ C ×
M , represents the outgoing messages that the component
may send to others.

2.3 Connectors

A connector [12, 13] specifies the interrelationship
among two components. There are two types of connec-
tors among aggregate components: delegation and assem-
bly connectors.

• A delegation connector promotes the required and pro-
vided interfaces of the contained component to the
corresponding interfaces of its container components.
Thus, the delegation connector between component α
and its containing component β is associated with the
resources shared by their corresponding ports.

dcinport(α, β) = inport(α) ∩ inport(β)
dcoutport(α, β) = outport(α) ∩ outport(β)

• An assembly connector specifies the client-server rela-
tionship between two components. The assembly con-
nector between the client component µ and the server
component ν is associated with the resources shared
by the outport of µ, and the inport of ν.

ac(µ, ν) = outport(µ) ∩ inport(ν)

3 Evolution Analysis

In this section, we show how comparing the hybrid mod-
els of successive versions of the system can aid in better un-
derstanding the evolution of the system’s architecture. Cur-
rently, we recover the additions and removals of entities in
hybrid models by comparing their names. We consider that
two classes/packages/components are same if they have the
same fully-qualified name, and that two resources are the
same if they have the same receiver type and message sig-
nature.

3.1 Change in Aggregate Components

Our objective in investigating change in an individual
component is to capture the externally visible change of its
corresponding package. In a hybrid model, the properties
of a package are summarized into the defined, ghost and
exiled classes, and the inport and outport of its correspond-
ing component. Therefore, to gain an overview of package-
level evolution, we consider the additions and removals in
those five parts of the component:

• Defined classes: The number of defined classes that
have been added or removed serve as a measure of the
growth of the containing package.

• Ghost classes: If the set of ghost classes of a compo-
nent has changed, then cross-package inheritance rela-
tions have also changed.

• Exiled classes: Exiled classes are effectively the set
of abstract concepts declared in a component, but im-
plemented elsewhere; consequently, a change in this
set means that the high level design of the system has
changed.

• Provided resources: A change in the inport likely en-
tails a change in the component’s responsibilities, pos-
sibly through a refactoring of the high-level design. In
Dig and Johnson’s study on frameworks, most inci-
dents of “breaking” an API were found to result from
refactoring activities [2].

• Required resources: Adding or removing a resource
to/from the outport indicates that the aggregate re-
quires different services internally, i.e., that the imple-
mentation details have changed.

A usage dependency, such as calls, between two classes
indicates the possible relations between the objects they
represent. Since an object of a class is also polymorphically
an object of the ancestors of the class, usage dependencies
must be interpreted in the context of a class hierarchy. In
hybrid models, such interpretation is reflected in terms of
the composition of ports. Thus, we also study how the port
composition changes.

• Change of inport composition.

An aggregate component may receive direct and in-
direct requests. A direct request is sent to an object
of a defined class, while an indirect request is sent
to an object of an ghost class. Increasing the services
provided by its defined classes indicates more defined
classes are directly known to other packages. Increas-
ing the services provided by the ghost classes shows
that more defined classes of the component is hidden,
and known to others as the implementation of some
abstract concepts.

• Change of outport composition.

A component may send requests to an object of its ex-
iled class. This reveals that the component is “open
for extension” [11], and the requests are the con-
tract that specify the obligations of its server compo-
nents. Change, especially the removal, of an open-for-
extension request implies that the interactions between
the component and its service providers are changed.

A component may also send requests to an object of
a ghost or defined class of the component. The re-
quired service has a number of possible behaviors.
Some are defined in the components, while others are
implemented externally. The addition of open-for-
variation requests indicates the increasing coupling
between variations of implementations for the same
abstract concept.

3.2 Change in Assembly Connectors

An assembly connector specifies a client-server relation-
ship between the components at the same level of granu-
larity. It is associated with a collection of resources that is
provided by the server component and used by the client
component. An assembly connector is changed if there is
any addition or removal of the associated resources.

Change in the assembly connector between client α and
server µ is characterized by the following equation:

∆ac (α, µ) = ∆outport (α) ∩ ∆inport (µ) (1)

∪ ∆outport (α) ∩ Ξinport (µ) (2)

∪ Ξoutport (α) ∩ ∆inport (µ) (3)

Version 1 Version 2

(C1, M1)
(C2, M2)

β

(C1, M1)
(C2, M2)
(C4, M4)

β

(C2, M2)

γ

(C3, M3)

α

(C1, M1)
(C3, M3)

µ

(C1, M1)
(C2, M2)
(C4, M4)

ν

(C1, M1)

µ

(C2, M2)

ν

Figure 2. Change in Assembly Connectors.

(1) Co-change between the client and server component.
The involved resource is added to or removed from both
the outport of the client component and the inport of the
server component. This indicates either the change in the
server component leads to the change in the client com-
ponent, or the server component changes in order to meet
new requirements of the client component. For example, in
Figure 2, component α requires a new resource, (C3 ,M3),
and component µ provide such a new resource. Thus,
∆ac(α, µ) = {(C3 ,M3)}.

To further investigate how the client and server com-
ponent affect each other, we normalize the number of co-
changed resources with the change size of the client outport
and the server inport, respectively.

rafferent(α, µ) =
|∆outport (α) ∩ ∆inport(µ)|

|∆inport (µ)|
rafferent(α, µ) represents how much change in the inport

of the server component µ is demanded by the client compo-
nent α. Comparing rafferent of all incoming assembly con-
nectors of a server component, we are able to assess why its
responsibility has changed. In Figure 2, rafferent(α, µ) = 1
and rafferent(β, µ) = 0, thus new responsibility is added to
component µ solely for the needs of component α.

refferent(α, µ) =
|∆outport (α) ∩ ∆inport(µ)|

|∆outport (α)|
refferent(α, µ) indicates how much change in the outport

of the client component α is caused by the change from the
server component µ. Comparing refferent of all outgoing as-
sembly connectors of a client component, we can evaluate
how its change depends on the change in other components.
In Figure 2, refferent(β, µ) = 0 and refferent(β, ν) = 1,
thus only component ν contributes to the change of compo-
nent β.

(2) Reuse resources. The client component requires a re-
source that the server component provided in the previous
version, or the client component no longer requires the re-
sources, while the server component still provides such a
resource to other components. For example, ∆ac(γ, ν) =
{(C2 ,M2)}, since component γ in version 2 reuses an ex-
isting resource, (C2 ,M2), provided by component ν.

(3) Re-implement resources. The server component pro-
vides an implementation for the resource that was required
in the previous version, or the server component no longer
provide the resource, but other components still provide the
same resources. For example, component ν provides the re-
source, (C1 ,M1) to component β, which already used the
resource in version 1.

When an assembly connector changes due to the co-
change between components, it is likely that the involved
resources become (or are no longer) significant at the pack-
age level. When an assembly connector changes for the pur-
pose of reuse or re-implementation, the involved resource
are significant in both versions of the software system.

3.3 Change in Delegation Connectors

A delegation connector promotes the ports of the sub-
components to their container component. It is associated
with a collection of resources shared by the ports of the con-
tainer and containee component. Additions and removals of
resources from delegate connectors reveal how fine-grained
change contributes to the change at a coarse level of granu-
larity. The analysis on the delegation connectors promoting
inports is same as the analysis on the delegation connec-
tors promoting outports. Due to the length limitation of the
paper, we discuss only the analysis on the delegation con-
nectors that connect the inports of components.

Suppose component α contains component µ, the change
of the delegation connector between the two can be divided
into three parts.

∆dc−inpot (α, µ) = ∆inport (α) ∩ ∆inport (µ) (4)

∪ ∆inport (α) ∩ Ξinport (µ) (5)

∪ Ξinport (α) ∩ ∆inport (µ) (6)

(4) Internal change leads to external change. The in-
volved resources are added to or removed from both the
ports of the container component and the ports of the con-
tainee component. For example, in Figure 3, component µ
provides a new resource (C3 ,M3), which is promoted by
its container component α.

To further investigate how the fine-grained components
contribute to the externally visible change of their container
component, we normalize the number of exposed internal

Version 1 Version 2

(C1, M1)

α

(C1, M1)
(C2, M2)
(C3, M3)

α

(C1, M1)

µ

(C1, M1)
(C3, M3)

µ

(C2, M2)

ν

(C2, M2)

ν

(C1, M1)

ω

Figure 3. Change in Delegation Connectors.

changes with the change size of the ports of both container
and containee components.

rcoarse−in(α, µ) =
|∆inport(α) ∩ ∆inport (µ)|

|∆inport (α)|
rcoarse−in(α, µ) represents how much of the externally

visible change of component α at the coarse-grained level
is contributed by the component µ at the more fine-grained
level. Comparing rcoarse−in of the delegation connectors
from all containee components, we are able to answer ques-
tions, such as: Which component contributes the most to
the externally visible change of its container component?
Do the sub-components equally contribute to the change of
their container, or is there a dominant contributor?

rfine−in(α, µ) =
|∆inport (α) ∩ ∆inport(µ)|

|∆inport (µ)|
rfine−in(α, µ) represents how much the change in com-

ponent µ at the fine-grained level contributes to the exter-
nally visible change of component α. Examining rfine−in

for all containee components, we are able to learn whether
the majority of change at the fine-grained level is externally
visible at the coarse-grained level.

(5) Exposing or hiding internal resources. The con-
tainer component exports or hides the resource that is signif-
icant at the finer-grained level. For example, in Figure 3, re-
source (C2 ,M2), which was significant at the fine-grained
level in version 1, becomes visible at the coarse-grained
level in version 2.

(6) Reusing or re-implementing external resources.
Resources are added to or removed from the ports of the
containee component, while those resources are significant
at the coarse-grained level in both versions. This happens
when at least one of the siblings of the containee compo-
nents provides or requires the same resources. For exam-
ple, in Figure 3, new component ω in version 2 provides
resource (C1 ,M1), which was already exported by compo-
nent α in version 1.

Toolkit

Code History

Query
results

Extractor

Visualizer

Evolution
Matrices

Comparison
Views

Snapshots

Query
Engine

Queries

HM1

ΔHM1,2

HM2 ...

...

Figure 4. The Architecture of HEAT System.

4 Tool Support

We have developed the High-level Evolution Analysis
Toolkit (HEAT) to implement and evaluate our approach.
Our goal is to automate the extraction and comparison of
hybrid models, and use visualization techniques to help
maintainers to intuitively grasp the change at coarse grained
level.

As shown in Figure 4, the toolkit is composed of three
parts: extractor, query engine, and visualizer. The extrac-
tor automatically recovers hybrid models from code history
and identifies the difference among extracted hybrid mod-
els. The query engineer provides an interactive environ-
ment, in which users can ask questions about the properties
of hybrid models, and choose the preferred scope and gran-
ularity of subsequent visualization. The visualizer, which
uses Graphviz to perform the layout and rending [9], can
produce three automated evolutionary views of a a target
system:

1. A snapshot view presents the hybrid model reverse en-
gineered from an object-oriented system at a particular
point in its history.

2. A comparison view presents the difference between
two selected hybrid models. For example, Figure 6
shows the difference between Ant version 1.4 and 1.5.

3. A evolution matrix organizes snapshots of the selected
aggregate components in a matrix. Figure 5 shows the
history of sub-packages of package ant.

We apply polymetrics visualization technique [10] to
highlight the key properties of hybrid models. For ex-
ample, the height of a component is determined by the
(change) size of its ghost classes, defined classes, and ex-
iled classes, while the width of a component is determined
by the (change) size of its ports.

5 Case Study: The Evolution of Apache Ant

In this section, we present an exploratory case study in
which we apply hybrid models to investigate how an object-
oriented software system evolves over time. Our choice of
case study was Apache Ant [14], a Java-based build tool.
We analyzed 7 major releases of the system. In the first
studied release, there were 6 packages and 116 classes (20
KLOC), while in the latest release, there were 71 packages
and more than a thousand classes (234 KLOC).

5.1 How has the package ant evolved?

As Figure 5 shows, package ant has changed a lot since
version 1.1. New packages were introduced in each major
release. All of the original packages still exist in version
1.7, but in different sizes, shapes, and colors. Compared to
their first appearance in the system, small packages, espe-
cially those introduced in the later versions of the system,
are relative stable, while the four packages with the longest
history have changed most.

In the remainder of this section, we discuss our detailed
observations about the history of Apache Ant, based on ap-
plying the methodology for studying architectural change
that we have introduced above. We pay particular attention
to possible indicators of architectural drift.

5.1.1 Increasing number of ghost classes

The number of ghost classes at this level of granularity has
steadily increased. There were only two ghost classes in
version 1.1, and both belonged to package taskdefs. In ver-
sion 1.7, 63 classes have become ghost classes of one or
more of the 7 packages at this level.

Several packages have acquired ghost classes since their
first appearance in the system. For example, package lis-
tener inherited class BuildListener. The class and
package name suggest that the package was used to group
some classes that implement a common abstract concept. It
is not surprising that these packages, which were initially
designed to be at a low data abstraction level, continuously
had ghost classes over their lifetime. However, when a
package with no ghost classes starts to inherit from other
packages, it may be an indicator of architectural drift. In
the versions of Ant that we studied, we found three such
cases, two of which are related.

Ghost classes first appeared in package types in
version 1.3, when the package reused an existing
class, DirectoryScanner, from package ant.*. In
version 1.5, package ant.* acquired a ghost class,
SelectorScanner, which was declared in package
type, and is the superclass of class DirectoryScanner.
We consider it likely that developers intended to introduce

a more general concept without causing too much change
to the existing high-level design. As a result, a class in
the middle of a class hierarchy tree was separated from the
other family members. Furthermore, in version 1.6, pack-
age ant.* was involved in another cross-package inheritance
relationship, which was also due to the presence of class
DirectoryScanner. History shows that the number of
ghost classes in package types continually increased since
version 1.3, while package ant.* had only a few in the more
recent version. Thus, we consider that it would be rea-
sonable for maintainers to apply “move class” refactoring
technique [5], and move class DirectoryScanner from
package ant.* to package type.

The third case took place in version 1.5, when pack-
age util acquired a ghost class named Argument.The same
class also appeared as a new ghost class in package taskdefs.
After examining the internal structure of package util, we
found that one of its subcomponents contains a subclass
of Argument, which is in turn inherited by some classes
defined in package taskdefs. This subcomponent is not
used by any other subcomponents within package util. It
is likely that programmers intend to reuse the code from
class Argument without changing the existing code. At
the same time, it is also likely that the developers wanted to
maximize the code reuse by putting common code in pack-
age util. As a result, the possible behaviors of Argument
are described in three different packages.

5.1.2 Removal of Exiled Classes

Since version 1.5, a number of exiled classes have been in-
troduced to serve as contracts between components. For ex-
ample, class TimeoutObserverwas introduced to pack-
age util in version 1.5 as an update interface to receive the
signal from the class WatchDog. The two classes are a part
of an instance of the observer design pattern [6].

However, it is unusual to remove an abstract concept
that was significant at package levels; we noted only one
such case in the studied period, and it resulted from pack-
age splitting. In version 1.1, package ant.* has an exiled
class, EnumeratedAttribute, which was extended by
package taskdefs. The exiled class disappeared in the next
version. At the same time, the new package types has an ex-
iled class with the same class name. It is possible that class
EnumeratedAttribute was moved. After examining
the other removed classes in package ant.*, we found that
class Path were also moved from package ant.* to types.
This confirmed that some classes were split from package
ant.* to form a new package.

5.1.3 Expansion of Ports

One noticeable architectural change in Figure 5 is that the
ports of most packages became wider and wider. Some

v 1.1

v 1.2

ant.*

ant.*

taskdefs

taskdefs

v 1.3
ant.*

taskdefs

types

types

v 1.4

ant.*

taskdefs

types

util

util

v 1.5

ant.*

listener

listener

taskdefs

types util

v 1.6

ant.*

filters

filters

helper

helper

input

inputlistener

taskdefs

types
util

v 1.7

ant.* filters helper input

launch

launchlistener

loader

loader

taskdefs

types
util

dispatch

Figure 5. The history of packages package tools.ant is displayed in an Evolution Matrix.

changed not only in size, but also in color.
The width of package ant.* grew much faster than its

height. Compared to package ant.* in version 1.1, the pack-
age in version 1.7 responds to 4 times more message types,
while the number of its defined classes increased by only
50%. This indicates that one or more classes of the pack-
age have accumulated a number of responsibilities that are
significant at the package level. Thus, applying change to
those classes become more likely to affect other packages.

The growth of package taskdefs can be divided into two
stages. Before version 1.5, it grew much faster than any
other packages, while its inport had little change. This is not
surprising since package taskdefs was originally designed to
extend the abstract concepts from package ant.*. However,
since version 1.5, not only did its inport expand rapidly, it
also started to receive direct requests from others. This in-
dicates that package taskdefs increasingly acquired respon-
sibilities that were not strongly related to the abstract con-
cepts it implements.

5.1.4 Change of Assembly Connectors

We also created comparison views to study the difference
between hybrid models of adjacent versions of Ant. There
are at least 3 similarities shared by those views.

First, we observe that package taskdefs appears to be
the driving force of the evolution of Ant: it is the biggest
subpackage of the top-level package ant, it grew much
faster than any of its siblings, and it continually demanded
changed resources from its siblings. In Figure 6(a), pack-
age taskdefs has dark outgoing arrows to five siblings. As
the arrows are weighted by rafferent of assembly connec-
tors, the dark color indicates most of the inport change of
the five packages were contributed to the changes in pack-
age taskdefs. It is likely that package taskdefs demanded
new services as it grew, and its sibling packages changed in
order to meet its new requirements.

Second, package ant.* provides some services that are
used and reused by its siblings. Figure 6(b) shows that some
resources package ant.* provided in version 1.4 were reused
by its sibling in version 1.5. Change to those services may
affect a number of other packages.

Third, there are increasing number of classes that were
implemented in multiple packages. Figure 6(c) shows that
in version 1.5, both package util and listener provided new
implementation for the classes that were important in ver-
sion 1.4 at the package level.

5.2 Evolution at the Finer-grained Level

As Ant has evolved, packages util, taskdefs, and types
have all become significantly more complex and have ac-
quired several subpackages. However, their evolutionary
histories are quite different.

Most internal changes in package util are externally vis-
ible. Figure 6(d) depicts the comparsion view of package
util. The dark color of the delegation connectors indicates
that the change at the sub-package level is also visible at the
package level. Package util, as its package name suggested,
was initially designed to be a utility package, providing ser-
vices shared by other packages. It is composed of several
sub-packages with few dependencies among them. Those
sub-packages evolves independently.

Package taskdefs continuously provided implementa-
tions for the existing abstract concepts. As Figure 6(e)
depicts, all sub-packages of taskdefs in version 1.5 imple-
mented some existing classes that were significant at the
coarse-grained level. Package taskdefs was designed as
an implementation package, which contains many ghost
classes, such as class Task, EnumeratedAttribute,
etc. Many of them were implemented in more than one sub-
package of taskdefs. Therefore, when a new class or a new
package is added, the resources it provides or requires may
have already been important at the coarse-grained level.

Many internal changes in package type are limited within
the package. As Figure 6(f) demonstrates, all three sub-
packages of type have added ghost classes, and two of them
have added exiled classes, but none of them are visible at
the coarse-grained level. In addition, the delegator connec-
tor between package types and types.* are darker than oth-
ers, which indicates that most externally visible changes of
package types are contributed by package types.*.

5.3 Discussion

In the proposed evolution analysis, we take snapshots of
a target system along its life time, and then analyze the dif-
ference between successive snapshots. With hybrid models,
we can not only gain an overview of how a software system
evolves over time, but also analyze the difference between
two versions of a software system at the selected level of
granularity.

However, this approach is sensitive to the choice of inter-
val between snapshots. If the two snapshots are too close in
time, the difference between them may not be significant at
the selected level of granularity. A lot of effort is required to
recover and analyze hybrid models, while little evolutionary
information is revealed. If two snapshots are too far apart in
time, then a lot of important design may be missed. There-
fore, it is important to find a balance between accuracy and
efficiency.

From our experience, the proposed approach is most ef-
fective when 50% to 80% of classes in the previous snap-
shot exists in the next one. In this case study, we created
hybrid models for each major releases of Ant system, as we
found that there is little package-level change in minor re-
leases. Other systems may not share the same properties.

ant.*

helper

inputlistener

taskdefs

types

util

filters

ant.*

helper

inputlistener

taskdefs

types

util

filters

ant.*

helper

inputlistener

taskdefs

types

util

filters

(a) (b) (c)

util

util.* depend facade optional regexp

taskdefs

taskdefs.*

compilers condition cvslib email

optional

rmic

(d) (e)

types

types.* depend selectors
(f)

Figure 6. Comparison between Ant 1.4 and Ant 1.5. (a) assembly connector change in package ant
caused by co-change between components. The color shades of connectors are determined by their
rafferent values. (b) assembly connector change in package ant for the reuse purpose. (c) assembly
connector change in package ant for the reimplementation purpose. (d) delegation connector change
in package util caused by the co-change between components. The color shades are determined
by rfine−in and rfine−out values. (e) delegation connector change in package taskdefs for the reuse
and reimplementation purpose. (f) delegation connector change in package types caused by the co-
change between components. The color shades are determined by rcoarse−in and rcoarse−out values.

6 Related Work

Our work on architecture evolution analysis builds on
prior work in two primary areas: change pattern detection
and evolutionary visualization.

Change Pattern Detection. Godfrey and Zou employ
origin analysis to detect structural change in procedural
code [8]. They emphasize the analysis on call relationships,
and classify the detected change into renaming, moving,
splitting, and merging methods.

Xing and Stroulia presented a technique to recover co-
evolution patterns among classes of an evolving software
system [16]. They first detect and classify structural change
of individual classes, and then apply association rules to dis-
tinguish three co-evolution patterns among classes.

Change of object-oriented systems is often interpreted in
terms of refactorings. A number of approaches have been
developed to detect possible refactoring activities [1, 7].
However, they can only recover the change patterns that
they intend to identify.

Evolutionary Visualization. Current techniques for vi-
sualizing software evolution rely heavily on software met-
rics to produce condensed views.

The work most closely associated with our research is
Lanza et al.’s use of polymetrics to visualize the history of
classes [10]. Their method produces an evolution matrix,
in which each cell represents a snapshot of a class, and the
dimensions of the cell are determined by the metrics values
of the class. They focus on the change of individual classes,
while we emphasize on the change of packages and their
interrelationships.

Wu et al. also use matrices, called Evolution Spectro-
graphs, to visualize the evolutionary measurements com-
puted on subsequent versions [15]. They developed spe-
cial coloring techniques to represent one particular property,
e.g., fanin and fanout, of a target system at a selected level
of granularity.

7 Conclusion and Future Work

In this paper, we have presented an approach for studying
the evolution of large, object-oriented software systems at a
coarse level of granularity. We take snapshots of an object-
oriented systems, represent each version of the system as
a Hybrid Model, and detect software change at coarse-
grained level by comparing two hybrid models. In our case
study of the Apache Ant system, we showed how hybrid
models can help us to gain an overview of how the system
evolved over time, identify possible architectural drift, and
interpret detailed structural change in a selected scope at a
prefered level of granularity.

Future work includes performing additional case stud-
ies. We plan to study the evolution of several applications

from the same problem domain, e.g., UML modeling tools.
We hope to find similar change patterns or general trends in
evolution.

References

[1] S. Demeyer, S. Ducasse, and O. Nierstrasz. Finding refac-
torings via change metrics. In Proc. of the 15th ACM
SIGPLAN Conf. on Object-oriented Programming, Systems,
Languages, and Applications (OOPSLA-00), pages 166–
177, Minneapolis, MN, USA, Oct. 2000. ACM.

[2] D. Dig and R. Johnson. The role of refactorings in api evo-
lution. In Proc. of the 21st IEEE Intl. Conf. on Software
Maintenance (ICSM-05), pages 389–398, Budapest, Hun-
gary, Sept. 2005. IEEE.

[3] X. Dong and M. W. Godfrey. A hybrid program model for
object-oriented reverse engineering. In Proc. of the 15th
IEEE Intl. Conf. on Program Comprehension (ICPC-07),
pages 81–90, Banff, AB, Canada, June 2007. IEEE.

[4] X. Dong and M. W. Godfrey. System-level usage depen-
dency analysis of object-oriented systems. In Proc. of
the Intl. Conference on Software Maintenance (ICSM-07),
pages 375–384, Paris, France, Sept. 2007. IEEE.

[5] M. Fowler, K. Beck, J. Brant, W. Opdyke, and D. Roberts.
Refactoring: Improving the Design of Existing Code.
Addison-Wesley Professional, 1 edition, 1999.

[6] E. Gamma, R. Helm, R. Johnson, and J. M. Vlissides. De-
sign Patterns: Elements of Reusable Object-Oriented Soft-
ware. Addison Wesley Professional, 1995.

[7] C. Gőrg and P. Weißgerber. Detecting and visualizing refac-
torings from software archives. In Proc. of the 13th Intl.
Wksp. on Program Comprehension (IWPC-05), pages 205–
214, St. Louis, MO, USA, May 2005. IEEE.

[8] M. W. Godfrey and L. Zou. Using origin analysis to detect
merging and splitting of source code entities. IEEE Trans.
on Software Engineering, 31(2):166–181, 2005.

[9] Graphviz. URL: http://www.graphviz.org/.
[10] M. Lanza. Object-oriented Reverse Engineering: Coarse-

grained, Fine-grained and Evolutionary Software Visualiza-
tion. PhD thesis, University of Bern, May 2003.

[11] R. C. Martin. The open-closed principle. In More C++
gems, pages 97–112. Cambridge University Press, New
York, NY, USA, 2000.

[12] N. Medvidovic and R. N. Taylor. A classification and com-
parison framework for software architecture description lan-
guages. IEEE Trans. on Software Engineeering, 26(1):70–
93, 2000.

[13] OMG. Unified modeling language: Superstructure(version
2.0). http://www.omg.org, July 2005.

[14] The apache ant project. URL: http://ant.apache.org/.
[15] J. Wu, R. C. Holt, and A. E. Hassan. Exploring software

evolution using spectrographs. In Proc. of the 11th Work-
ing Conf. on Reverse Engineering (WCRE-04), pages 80–89,
Delft, Netherlands, Nov. 2004. IEEE.

[16] Z. Xing and E. Stroulia. Understanding the evolution and co-
evolution of classes in object-oriented systems. Intl. Jour-
nal of Software Engineering and Knowledge Engineering,
16(1):23–52, 2006.

