
Empir Software Eng
DOI 10.1007/s10664-008-9076-6

“Cloning considered harmful” considered harmful:
patterns of cloning in software

Cory J. Kapser · Michael W. Godfrey

© Springer Science + Business Media, LLC 2008
Editors: Massimiliano Di Penta and Susan Sim

Abstract Literature on the topic of code cloning often asserts that duplicating code
within a software system is a bad practice, that it causes harm to the system’s design
and should be avoided. However, in our studies, we have found significant evidence
that cloning is often used in a variety of ways as a principled engineering tool. For
example, one way to evaluate possible new features for a system is to clone the
affected subsystems and introduce the new features there, in a kind of sandbox
testbed. As features mature and become stable within the experimental subsystems,
they can be migrated incrementally into the stable code base; in this way, the risk
of introducing instabilities in the stable version is minimized. This paper describes
several patterns of cloning that we have observed in our case studies and discusses
the advantages and disadvantages associated with using them. We also examine
through a case study the frequencies of these clones in two medium-sized open source
software systems, the Apache web server and the Gnumeric spreadsheet application.
In this study, we found that as many as 71% of the clones could be considered to
have a positive impact on the maintainability of the software system.

Keywords Clone detection · Clone analysis · Reverse engineering · Case study

1 Introduction

In much of the literature on the topic (Baker 1995; Baxter et al. 1998; Ducasse et al.
1999; Johnson 1994; Kamiya et al. 2002; Kontogiannis et al. 1996; Mayrand et al.
1996), cloning is considered harmful to the quality of the source code. For example,

C. J. Kapser (B) · M. W. Godfrey
Software Architecture Group (SWAG) David R. Cheriton School of Computer Science,
University of Waterloo, Waterloo, Ontario, Canada
e-mail: cjkapser@uwaterloo.ca

M. W. Godfrey
e-mail: migod@uwaterloo.ca

Empir Software Eng

code clones can cause additional maintenance effort. Changes to one segment of code
may need to be propagated to several others, incurring unnecessary maintenance
costs (Geiger et al. 2006). Locating and maintaining these clones pose additional
problems if they do not evolve synchronously. With this in mind, methods for
automatic refactoring have been suggested (Balazinska et al. 1999b; Baxter et al.
1998), and tools specifically to aid developers in the manual refactoring of clones
have also been developed (Higo et al. 2004).

There is no doubt that code cloning is sometimes an indication of sloppy design
and in such cases should be considered to be a kind of development “bad smell”
(Fowler et al. 1999). However, we have found that there are many instances where
this is simply not the case. For example, cloning may be used to introduce experimen-
tal optimizations to core subsystems without negatively affecting the stability of the
main code. Thus, a variety of concerns such as stability, code ownership, and design
clarity need to be considered before any refactoring is attempted; a manager should
try to understand the reason behind the duplication before deciding what action (if
any) to take.

This paper introduces eleven cloning patterns that we have uncovered during
case studies on large software systems, some of which we reported in (Kapser and
Godfrey 2003, 2004, 2006b) and more recently reported in (Kapser and Godfrey
2006a). These patterns present both good and bad motivations for cloning, and we
discuss both the advantages and disadvantages of these patterns of cloning in terms
of development and maintenance. Our goal is not to categorize clones for purposes
of refactoring but to document the types of cloning that occur in software to aid the
general understanding of how cloning is used in practice. In some cases, we identify
patterns of cloning that we believe are beneficial to the quality of the system. From
our observations we have found that refactoring may not be the best solution in all
patterns of cloning. Tools need to be developed to aid the synchronous maintenance
of clones within a software system, such as Linked Editing (Toomim et al. 2004) and
automatic source code generation.

To support our basic argument – that code cloning can be used as a effective
and beneficial design practice – we have performed a case study on two widely used
open source software systems, the Apache web server and the Gnumeric spreadsheet
application. In this study, we report on the observed uses of code cloning by the
developers, the apparent rationale behind the uses, and the relative frequency of
“good” versus “bad” clones.

This paper introduces the notion of categorizing high level patterns of cloning in
a similar fashion to the cataloging of design patterns (Gamma et al. 1995) or anti-
patterns (Brown et al. 1998). There are several benefits that can be gained from this
characterization of cloning. First, it provides a flexible framework on top of which
we can document our knowledge about how and why cloning occurs in software.
This documentation crystallizes a vocabulary that researchers and practitioners can
use to communicate about cloning.

As a second contribution, this categorization is a first step towards formally
defining these patterns to aid in automated detection and classification. These classifi-
cations can then be used to define metrics concerning code quality and maintenance
efforts. Automatic classifications will also provide us with better measures of code
cloning in software systems and the severity of the problem in general. For example,
a software system that contains many clones that are intended to evolve separately,

Empir Software Eng

such as experimental variation clones described in Section 3, will require different
maintenance strategies and tools compared to a software system containing many
clones that need to be maintained synchronously, such as those clones introduced
because of language limitations.

The rest of this paper is organized as follows: Section 2 provides a brief back-
ground concerning code cloning, Section 3 introduces a template to describe code
cloning patterns and then discusses eleven patterns we found in software systems,
Section 4 describes a case study investigating the frequency of these clone patterns in
two software systems, Section 5 discusses the implications of code cloning patterns on
maintenance and tool requirements, Section 6 describes work that has contributed to
the understanding of code cloning, and in Section 7 we discuss our conclusions and
future work.

2 Code Cloning

Code cloning is considered a serious problem in industrial software (Antoniol et al.
2002; Baker 1995; Baxter et al. 1998; Casazza et al. 2001; Ducasse et al. 1999;
Johnson 1994; Kamiya et al. 2002; Kontogiannis et al. 1996; Mayrand et al. 1996).
It is suspected that many large systems contain approximately 10%–15% duplicated
code (Baker 1995; Ducasse et al. 1999; Kapser and Godfrey 2004, 2006b), and it has
been documented to exist at rates of over 50% of the effective lines of code – lines of
code that contain more than just white space and comments – in a particular COBOL
system (Ducasse et al. 1999). This section describes many motivations that lead to the
creation of code clones as well as the positive and negative effects code clones have
on several of the quality attributes of source code in a software system.

2.1 Motivations to Clone Code

The literature on the topic has described many situations that can lead to the
duplication of code within a software system (Baker 1995; Baxter et al. 1998; Johnson
1994; Kamiya et al. 2002; Kontogiannis et al. 1996; Mayrand et al. 1996). Many
of these can be considered ill intentioned cloning. For example, developers may
duplicate code because the short term cost of forming the proper abstractions may
outweigh the cost of duplicating code. Developers may also duplicate code when
they do not fully understand the problem, or the solution, but they are aware of code
that can provide some or all of the required functionality. These examples attribute
cloning to programmer laziness. Clones can also be introduced as a side effect of
programmers’ memories; programmers may repeat a common solution, unknowingly
introducing clones into the software system (Baxter et al. 1998).

Duplicates can also be introduced with good intentions. In particular, there are
four categories of motivations that can be readily identified: code understandability,
code evolvability, technology limitations, and external business forces. Code clones
created for code understandability are intended to improve readability, conceptual
cohesion/coupling, and traceability. Duplicating code can, in some situations, keep
software architectures clean and understandable. Duplicates can also be used to keep
unreadable, complicated abstractions from entering the system.

Empir Software Eng

Code evolvability refers to the difficulty of introducing changes to existing code
in order to address evolving requirements. Code that is abstracted to address two
or more similar but separately evolving requirements may be difficult to modify.
For example, a virtualization layer used to interact with several similar operating
systems will need to maintain compatibility with each operating system as it evolves.
As these operating systems evolve, the compatibility requirements may diverge or
even conflict. Changes made to address one set of requirements may affect the code’s
fitness with the other sets of requirements. This kind of evolutionary force can lead to
the forking clones described in Section 3. Clones of this type may be used for change
decoupling to limit the scope of the impact of changes.

Technology limitations affecting developers’ ability to reuse code often appear
in the form of limited or cumbersome tools for abstraction, in some cases caused
by lack of expressiveness of a programming language. In these cases, limitations
of a given programming language may lead to the use of “boiler-plated” solutions
for particular problems (Walenstein et al. 2003), or even source code generation.
This kind of technique is common in COBOL development, for example, and can
lead to templating clones, described in Section 3. In these cases, the use of cloning
is typically well understood by the developers, and the aim is to prevent errors by
re-using trusted solutions in new contexts.

External business forces may necessitate the use of cloning. Cordy notes that
financial institutions consider code quality the most important concern when main-
taining software (Cordy 2003) because the cost of errors in software can dwarf
software maintenance costs. Fixing or modifying an abstraction can introduce risks of
breaking existing code and requires that any dependent code be extensively tested,
a process that is both costly and time consuming (Cordy 2003). Cloning is a common
method of risk minimization used by financial institutions that allows code to be
maintained and modified separately, containing the risk of introducing errors to a
single system or module (Cordy 2003). Another external business force is time-to-
market and opportunity cost. In some cases the long term cost of maintaining source
code may be grossly out weighed by the short term opportunity cost of lengthy
time-to-market, especially in emerging markets where technology adopters may be
difficult to attract once they have invested in a competing implementation. Code
cloning is a practice that can be used to rapidly develop similar yet distinct sets of
features. This motivation is one possible factor in the relatively high levels of cloning
found in web based applications (Rajapakse et al. 2007).

2.2 Effects of Cloning

Several software maintenance problems have been associated with the use of cloning.
In the long term, clones can unintentionally diverge if not carefully managed (Lozano
et al. 2007). Code cloning can also lead to an unnecessary increase in code size (Baker
1995; Johnson 1994). Additionally, unused, or “dead”, code can remain in the system
if clones are left unchecked, resulting in problems with code comprehensibility,
readability, and maintainability over the life time of the software system (Johnson
1994). These long term maintenance problems require tools and processes to track
and manage cloned software entities over the evolution of a software system.

There are other maintenance risks associated with the use of cloning, too. If a bug
is identified within code that has been cloned, then care must be taken to ensure

Empir Software Eng

that the bug is fixed in every clone instance. This may be both time consuming and
risky: in addition to the extra effort required to fix the “same” bug several times, the
location of the clones may not have been recorded explicitly, and differing contexts
may make it hard to simply “copy and paste” the fix.

When cloning is performed without a solid understanding of the original code
and its context, bugs can be introduced. For example, variables may be shared and
modified unknowingly (Johnson 1994). Program comprehensibility can be negatively
affected by the need to understand the differences between the duplicates.

However, despite these known problems, we have found that developers can and
do use cloning as a design tool when they judge that the likely benefits outweigh the
risks; that is, these developers believe that the use of cloning can improve the design
of the code. For example, aggressive refactoring can sometimes create abstractions
that are complex, overly subtle, and unintuitive; in this case, near duplicates may
be easier to understand and modify than a solution that employs abstraction, as the
study performed by Toomim et al. suggests (Toomim et al. 2004).

When clones are used to minimize exposure to risk or support alternative external
requirements, the scope of the impact of a change is reduced, improving modifiability
and testability attributes. Rajapakse et al. (2007) found that reducing duplication in a
web application not only had negative effects on the modifiability of an application –
after significantly reducing the size of the source code a single change required testing
of a vastly larger portion of the system – and also suggest that avoiding cloning during
initial development could contribute to a significant overhead. Code cloning can, in
specific cases, enable faster time-to-market which may have significant market share
benefits. These characteristics of clones are also useful in exploratory development,
where the reuse of behavior can be used to fast track development of a new feature
but the eventual path of evolution is too uncertain to be able to anticipate the
appropriate abstractions.

Evaluating the likely positive and negative effects of code cloning is a continuous
balancing act. Code clones that improve comprehensibility (and thereby improving
maintainability) may also increase required effort to extend or change code (there
by decreasing maintainability). Similar to many development decisions, developers
must assess the overall cost of cloning and decide on an individual basis the overall
expected gain versus cost. The patterns detailed in Section 3 are intended to provide
some guidance, and to enable developers to make decisions based on qualities of
the problem domain, the development and deployment environments, and the code
itself.

3 Patterns of Cloning

Prior to this work, we undertook several investigations to understand code cloning
in large software systems (Kapser and Godfrey 2003, 2004, 2006b). We wished
to answer the general question of how code clones are used and what types of
code are cloned. The study subjects of these initial investigations were the Linux
operating system kernel, the Postgresql relational database management system,
and the Apache httpd web server (Apache was also used as a study subject in the
validation described in this paper). While our initial investigations were not explicitly
intended to examine patterns of cloning, during our analysis we uncovered several

Empir Software Eng

recurring ways in which developers duplicated behavior. These patterns are defined
by what is duplicated and why, and to some extent how the duplication is done. More
specifically, the patterns we consider concern both cloning of large architectural
artifacts, such as files or subsystems, and finer grained cloning, such as functions or
code snippets. The reasons why developers use these patterns range from difficulty
in abstracting the code to minimizing the risk of breaking a working software system.
These reasons are inferred from the code and how it has been duplicated. In some
cases, documentation explicitly states the reasons for code cloning. While this is a
subjective assessment, both authors are experienced developers and have a strong
understanding of software design and maintainability. When we discuss how the
duplication is performed, we describe what the new artifacts will be rather than the
tools that are used to perform the duplication. The information described in these
patterns is drawn from the case studies we have performed.

To describe our patterns, we use the following template:

– Name Describes the pattern in a few words.
– Motivation Why developers might use this cloning pattern rather than an appro-

priate abstraction.
– Advantages Description of the benefits of this pattern of cloning compared to

other methods of reusing behavior.
– Disadvantages Description of the negative impacts of this pattern of cloning.
– Management Advice on how this type of cloning can be managed.
– Long term issues Issues to be aware of when deciding to use a cloning pattern as

a long term solution.
– Structural manifestations How this type of cloning pattern occurs in the system.

This section describes the scope and type of code copied, as well as the types of
changes that are expected to be made.

– Examples Examples in real systems. In this paper, the examples are drawn
from the GNU spreadsheet application Gnumeric version 1.2.12, the relational
database management system Postgresql 8.0.1, the web server Apache httpd
2.0.49, and the Java mail client Columba version 1.2.

We have divided the eleven patterns into four related groups: Forking, Tem-
plating, Customization and Exact match. This partitioning is done based on the
high level motivation for the cloning pattern. Forking is cloning used to bootstrap
development of similar solutions, with the expectation that evolution of the code will
occur somewhat independently, at least in the short term. A major motivation for
forking is to protect system stability, by allowing for experimentation to occur away
from the core system. In these types of clones, the original code is copied to a new
source file and then independently developed. Templating is used as a method to
directly copy behavior of existing code when appropriate abstraction mechanisms,
such as inheritance or generics, are unavailable. Templating is used when there is a
common set of requirements shared by the clones, such as behavior requirements
or the use of a particular library. When these requirements change, all clones must
be maintained together. Customization occurs when currently existing code does not
adequately meet a new set of requirements. The existing code is cloned and tailored
to solve this new problem. Exact match duplication is typically used to replicate
simple solutions or repetitive concerns within the source code.

Empir Software Eng

3.1 Forking

Forking patterns often involve larger portions of code with the intention that the
resulting duplicates will need to evolve independently. The duplication can be used
as a “springboard” from which to start development and works well in situations
where the commonalities and difference of the end solutions are not clear. At a later
time when the new code has matured, it may be reasonable to refactor any remaining
duplicates. This section describes three forking patterns that we have seen in our case
studies.

3.1.1 Hardware Variation

Motivation When creating a new driver for a hardware family, a similar hardware
family may already have an existing driver. However, there are often non trivial
differences in the functionality/features between families of hardware, making it
difficult and risky to modify the existing code while preserving compatibility for the
original target.

Advantages Through code cloning, evolvability and testability of code can be
improved over changing the existing driver as testing the driver on older hardware
devices can be difficult and time consuming. Cloning the existing driver prevents the
need for this type of testing.

Disadvantages Maintainability can be negatively affected by code growth. This can
be a particular issue with this pattern of cloning because entire files or subsystems
are copied. In addition to the general maintenance issues such as propagating bug
fixes, cloned drivers may introduce unexpected feature interactions, in particular in
the realm of resource management.

Management Groups of cloned drivers should be clearly identified to facilitate
propagation of bug fixes within the group.

Long term issues Dead code can slowly creep into the system unless care is taken
to monitor which drivers are still actively supported.

Structural manifestations Drivers are commonly packaged into a single file. Devel-
opers usually copy the entire file, and the duplicate is then modified to match the new
device.

Examples The Linux SCSI driver subsystem has several examples of this pattern of
cloning (Godfrey et al. 2000). In one example, the file NCR5380.c was copied to the
file atari_NCR5380.c and adapted for the Atari hardware device. This new file
was then cloned as sun3_NCR5380.c to be adapted to the Sun 3 platform. Another
example of driver cloning is the file esp.c which has been duplicated and modified
in NCR53C9x.c. What is interesting in the Linux SCSI drivers is that the authors
duplicating the new file explicitly reference the file they have duplicated, making the
chain of replications easily verified.

Empir Software Eng

3.1.2 Platform Variation

Motivation When porting software to new platforms, low level functionality re-
sponsible for interaction with the platform will need to change. Rather than writing
portable code such as a virtualization layer, it is sometimes easier, faster, and safer
to clone the code and make a small number of platform specific changes. In addition,
the complexity of the possibly interleaved platform specific code may be much higher
than several versions of the cloned code, making code cloning a better choice for
maintenance. In the case of source code within virtualization layers themselves,
avoiding this complexity is often a reason to clone code. This pattern differs from
hardware variation in that the drivers are often comprised of lower level source code,
not uncommonly comprised of large portions of assembly. The differences in the type
of source code in these artifacts raises different types of maintenance concerns.

Advantages Comprehensibility and maintainability of source code may be im-
proved because complex code, inherent to platform optimized code that is inter-
leaved, is avoided. Evolvability is also enhanced because stability for currently
supported platforms is maintained. As platforms are likely to evolve independently,
maintaining support for one platform will not affect the stability of the code for other
platforms.

Disadvantages Maintainability can also can also be negatively affected. The code
will evolve along two dimensions: the requirements of the software and the support
of the platform. Bug fixes may be difficult to propagate as it may not be clear how or
if the bugs are present in each version of the code. Changes to the interface of the
platform specific code become more problematic because these changes will need to
be performed across several versions of the library.

Management The platform specific interaction should be factored out as much as
possible in order to minimize the amount of cloning necessary. When creating the
code clones, the variations should be well documented in order to facilitate bug fix
propagation.

Long term issues As groups of platform specific code clones grow, the interface that
they support will become more brittle and difficult to change because of the number
of places where changes will need to be made. In order to guarantee consistent
behavior on supported platforms it will be vital to ensure that visible behavior from
each of the clones remains consistent.

Structural manifestations Platform specific variations often exist in the same sub-
system. They often manifest as either cloned files or subsystems.

Examples Platform variation cloning is apparent in several subsystems within
Apache’s portable library, the Apache Portable Runtime (APR). This subsystem
is a portable implementation of functionality that is typically platform dependent,
such as file and network access. Two examples of this type of cloning are the fileio
and threadproc subsystems. In these two subsystems, there are four directories:
netware, os2, unix, and win32. threadproc has an additional subsystem beos.
All of these directories share some cloning that is easily detected by a clone detection

Empir Software Eng

tool, but there are also duplicates that are sufficiently different that clone detection
tools do not detect the similarity. In these cases, changes are typically characterized
as insertions of additional error checking or application program interface (API)
calls. With these changes, overall structure remains the same, and in several cases
cloned documentation exists providing further information about the cloning.

3.1.3 Experimental Variation

Motivation Developers may wish to optimize or extend pre-existing code but do
not want to risk system stability. By forking the existing code, users can have the
choice to run the experimental optimized code or the trusted stable code.

Advantages This pattern can contribute to evolvability. The stability of the software
system is protected while still allowing users access to leading edge development.
Further, this eases product distribution by avoiding version control branches that
would require multiple releases to be downloaded by users if they wanted to choose
between the stable and experimental versions of a feature. Changes made to the
experimental fork can be merged with or replace the stable version at a later time.
Risk exposure and time-to-market may also be reduced in some cases.

Disadvantages Merging code at a later point may be difficult if the corresponding
stable version continues to evolve independently, although this may not be a problem
if the experimental version is meant to be a replacement rather than a coexisting
feature.

Management Care should be taken to maintain the experimental version closely
with the stable version. Changes to the external behavior of the existing stable
module will need to be monitored and introduced in the duplicated experimental
code in order to maintain a consistent interface.

Long term issues As the original and duplicate code evolves, consistent main-
tenance may become more difficult. Documentation of the differences should be
maintained in order to aid program comprehension.

Structural manifestations The cloning pattern will appear as a cloned file, subsys-
tem or class. It may even be labeled as an experimental development effort, as in the
case of several Apache modules (Kapser and Godfrey 2006b).

Examples An example of experimental variation can be found in the Apache httpd
web server. In the multi-process management subsystem, the subsystem worker was
cloned multiple times as threadpool and leader (Kapser and Godfrey 2006b).
The cloned subsystems are experimental variations on worker that are designed
to provide better performance. Because they are separated from worker, the web
server remains stable while optimizations are being developed.

3.2 Templating

Templating occurs when the desired behavior is already known and an existing
solution closely satisfies this need. Often templating is a matter of parameterization,

Empir Software Eng

as opposed to the complex control flow that might be required for abstraction
when forking patterns are used instead. For example, one might use this pattern of
cloning to achieve the same behavior for floats and shorts in the C programming
language. In this case, the expected changes to the code are only the variable types.
When developers use cloning patterns of this type, the evolution of the clones is
often expected to be closely related, especially in the case of boiler-plating. In the
subsections that follow we describe four templating patterns.

3.2.1 Boiler-plating Due to Language Inexpressiveness

Motivation Due to language constraints, reusing trusted and tested code may be
difficult to achieve. This can occur for example when polymorphism cannot be used.
This form of cloning is common in software systems that are developed in the
COBOL language.

Advantages Technology limitations that hinder reuse are overcome. This pattern
can make reuse of trusted code possible. It allows for consistent behavior for related
concepts, improving program comprehensibility.

Disadvantages Maintainability can be negatively affected due to code growth and
change propagation, possibly leading to increased maintenance effort. These code
clones will be expected to evolve very closely, and any maintenance efforts will very
likely require n times the effort for n clones.

Management Documentation or other forms of an explicit link to all duplicates is
important to ensure that all clones are modified together. As suggested by Duala
et al., these links should be tracked over the evolution of the software system
(Duala-Ekoko and Robillard 2007). Tools and methodologies such as Linked Editing
(Toomim et al. 2004) should be used to ensure consistent changes are made to all
duplicates. Another approach to managing these clones is to create the code at build
time using a source code generator (Jarzabek and Shubiao 2003); in this case, the
duplicates do not come into existence until the system is being built.

Long term issues If maintenance is not performed rigorously, the duplicated code
may become unintentionally different making debugging and testing difficult.

Structural manifestations Typically these duplicates are closely located in the soft-
ware system, either in the same file or in the same subsystem, with names that are
also very similar.

Examples Boiler-plating can be readily found in most software systems. An ex-
ample of where this pattern was used in Postgresql is the contrib/btree_gist
subsystem where there are a great deal of code clones whose only modification is the
data type of the procedure parameters. Figure 10 demonstrates an example of this
pattern of cloning.

3.2.2 API/Library Protocols

Motivation Often the use of particular APIs require ordered series of procedure
calls to achieve desired behaviors. For example, when creating a button using the

Empir Software Eng

Java SWING API, a common order of activities is to create the button, add it
to a container, and assign the action listeners. Similar orderings are common with
libraries as well. The order of activities to successfully set up a network socket in
C on Unix systems is well established. Developers will often copy-and-paste these
sequences of communication and then parameterize them appropriately to be used
for their particular problem.

Advantages Development time can be improved as novice users of the API or
library can learn from existing code (using cloned code as a form of recipe).
Experienced users can reduce coding effort by quickly duplicating and modifying
the code. The duplicated code can flexibly be changed, and often the size of the
duplication may not warrant further abstractions.

Disadvantages Evolvability can be negatively affected as the severity of changes
to the library or API is increased with every clone. We have also experienced
several cases where developers have duplicated buggy or incomplete code with the
assumption it is correct, degrading the quality of their own code.

Management Locate prevalent cloning of this type and extend the API or library
in use with appropriate abstractions. For code clones of this type, rigourous review
of the duplicates can ensure that the duplicated code is of high quality.

Long term issues Changes to the API will result in required changes in multiple
sites, and these changes may be problematic in terms of consistency and testing. Us-
ing the appropriate abstractions may decrease the maintenance effort by centralizing
the required changes.

Structural manifestations These duplicates are typically scattered throughout the
source code, and are small in size.

Examples In the mail client Columba, this pattern is readily found in the GUI code
where buttons are added. This sequence of three operations that create a button, set
its action listener, and set its action command is present throughout the system where
GUI code is present. An example from the Gnumeric case study presented in Section
4 is shown in Fig. 1.

3.2.3 General Language or Algorithmic Idioms

Motivation Programming idioms are clear and concise implementations of par-
ticular solutions. These idioms tend to be self documenting for language experts
as they provide information as to how and why the implementation is done in
this way. Idioms are commonly discussed, books have been written on this specific
topic (Coplien 1992), and there is no shortage of web discussions either. They
can be conventional wisdom in the programming community, such as checking the
return after allocating memory in C programming, or personal dialects of individual
developers.

Advantages Idioms provide structured, standardized solutions to common problems.
These solutions become self documenting, improving program comprehensibility.

Empir Software Eng

Fig. 1 An example of API/Library protocols in Gnumeric

Disadvantages This code pattern can lead to bug introduction if not carefully used.
Inconsistencies or faulty implementations of programming idioms may be easily
overlooked. Incorrect or inefficient idioms (also known as anti-idioms) can also be
duplicated, degrading the quality of the code.

Management Anti-idioms, idioms that contribute to poor quality such as ineffi-
ciency, should be located and removed. Correct idioms should be located and verified
for consistent implementation.

Long term issues None.

Structural manifestations These idioms tend to be distributed throughout the code,
as code snippets.

Examples A common idiom in Apache is how a pointer to a platform specific
data structure is set in the memory pool, shown in Fig. 9. At least 15 occurrences
of this idiom can be found in the APR subsystem. First, the code checks if the
data structure containing the pointer exists in the memory pool, and if not space
is allocated for it, then the platform specific pointer is assigned. This idiom exists
because the APR library uses similarly defined data structures to point to platform

Empir Software Eng

specific ones, pthreads for example. These structures also store platform specific
data that is relevant to the concept, such as the exit status of the thread. A slight
variation to this idiom is that in some cases the code checks if the memory pool
exists, and returns an error if it does not. This is an interesting variation as we would
expect all copies to behave in this way.

3.2.4 Parameterized Code

Motivation When implementing a solution to a common problem, it is often the
case that this solution can be modified to solve a new problem by changing only
a few identifiers or literals in the code. This commonly occurs when implementing
basic solutions for very similar problems, such as opening a file descriptor that points
to stdout, stderr, or stdin. In this case, developers may implement a parameterized
function that takes an argument as an indicator of what descriptor to open. On
the other hand, developers may create a new function for each of the three file
descriptors.

Advantages Improves comprehensibility. In some cases, this type of cloning can be
used to ensure variable names closely match the semantics of the data they represent.
This is particularly true with mathematical equations that have commonly accepted
variable naming conventions.

Disadvantages Maintainability of the source code may be decreased. This type
of code may contribute to unnecessary growth of the software system when used
unnecessarily. If the code is copied out of context of the new parameters, such as
a different function call, it can violate assumptions and pre/post-conditions of the
copied code.

Management The behavior of these clones is expected to evolve together. Refactor-
ing the code is recommended if such an action does not reduce comprehensibility or
traceability. Otherwise documentation of the clone relationship should be attached
to the clones.

Long term issues These clones most often contribute to needless code growth,
something that can negatively affect the comprehensibility of the source code.

Structural manifestations These clones most commonly involve entire functions
that are within very close proximity of each other.

Examples An example of this cloning pattern is shown in Fig. 2. This example
comes from plugins/fn-eng/functions.c in Gnumeric.

3.3 Customization

Customization often arises when existing code solves a very similar problem to the
current development problem, but additional or differing requirements create the
need for extension or modification of the behavior. In some cases, such as concerns
about system stability or code ownership, existing code cannot be modified “in
place” to encompass the additional behavior. In these cases, code may be cloned

Empir Software Eng

Fig. 2 An example of parameterized code in Gnumeric

and customized to suit the specific development task. These patterns differ from
templating in that customization requires more than simple parametric changes to
the copied code. For example, lines of code are inserted or removed from the clone.
While other forms of cloning, such as templating and forking typically have the goal
of maintaining the original behavior to a high degree, customization is a reuse of
behavior often without requirements that force the behavior to remain the same or
similar. The sometimes unstructured editing that occurs in customization clones sets
them apart from other clones in important ways: their differences can be harder to
spot, the effects of the changes on behavior may be harder to understand, and the
code clones may be harder to detect. In this section we describe two customization
patterns.

3.3.1 Bug Workarounds

Motivation Due to code ownership issues or unacceptable exposure to risk, it may
be difficult to fix a bug at the source, so workarounds may be necessary. Copying
the code and fixing the bug in order to overload the broken code may be the
only available solution. In other situations, it may be possible to guard the points
where the buggy code is used. This guard is then copied as part of the usage of the
procedure.

Advantages Improves time-to-market. Problems can be solved without requiring
retesting of other code that may be external to the organization. This solution can
allow for progress in development, although it should only be a temporary measure.

Disadvantages Maintainability is reduced and evolvability may also be reduced.
The source of the bug is not addressed, causing further replication of code or, even
worse, new code may not even address the existence of the bug. Also, changes to the
behavior of the buggy code may cause confusion in the maintenance process if this
pattern of duplication is not made explicit.

Empir Software Eng

Management Once the original bug is fixed, remove any duplicates. Planning for
this will minimize issues for clone removal.

Long term issues The code clone may not be removed when the bug is fixed. This
forgotten fix may confuse maintenance efforts later on.

Structural manifestations These clones can appear as locally overloaded proce-
dures or methods, or as procedures with very similar names to the original source.
Cloned guarding statements will be duplicated at points where the buggy source code
is used.

Examples One of the authors (Godfrey) wrote a Java fact extractor that was built
around the internals of Sun’s javac compiler. On finding a small bug in the javac
source code, he cloned the offending code into a descendant class and fixed the bug
there. Because he didn’t have write access to the class that contained the offending
method, he could not make bug fix directly in the javac code-base (he created a bug
report instead).

In Postgresql, we see an example of duplication of a guard for the event of
an error due to bugs. In this case, the source code is dependent on MinGW,
an external set of libraries required for platform compatibility. This library
has a bug in it that has not been fixed for the current release. Because of
this, the Postgresql developers duplicated a three line solution three times in
three different files: backend/commands/tablespace.c, port/copydir.c,
and backend/access/transam/xlog.c.

3.3.2 Replicate and Specialize

Motivation As developers implement solutions, they may find code in the software
system that solves a similar problem to the one they are solving. However, this
code may not be the exact solution, and modifications may be required. While the
developer could generalize the original code, this may have a high cost in testing
and refactoring in the short term. Code cloning may appear to be a more attractive
alternative, and is commonly used in practice to minimize costs associated with risk
(Cordy 2003).

Advantages Maintainability is improved when used to avoid complex abstractions
that may have a high cognitive cost during development and maintenance (Toomim
et al. 2004). Time-to-market and risk exposure can also be affected. This pattern
reduces immediate costs in testing and refactoring existing code that may be en-
trenched in the software system.

Disadvantages Maintainability can also be negatively affected, particularly in the
cases of change propagation. Long term costs of finding and maintaining these
duplicates could outweigh the short term gains.

Management If an appropriate abstraction can be made, deprecating the original
code and transitioning to the abstraction may defer testing costs and protect system
stability. If the appropriate abstractions cannot be made, explicitly linking the code
clones through documentation or tool support will ensure consistent maintenance.

Empir Software Eng

Long term issues Duplicated code can, over time, become more entrenched, with
more of the software system dependent upon it. Over time, the cost of refactoring the
code may rise. In the case of this pattern, differences in the code may make locating
duplicates difficult, making maintenance of clones more costly.

Structural manifestations These code clones are often snippets or procedures lo-
cated near each other, but can be more widely distributed as well. In some cases these
clones can be particularly hard to detect due to the changes that have been made.
Often the copied code contains control structures, suggesting that developers use
duplication to reuse complex logic, an observation also noted by Kim et al. (2004).

Examples This pattern is the most common type of cloning that we have found in
our studies. In one example in Gnumeric, we see this pattern in use for developing the
procedures that build the locale and character encoding selection menus. The proce-
dures can be found in the files src/widgets/widget-charmap-selector.c
and src/widgets/widget-locale-selector.c. The control flow of both
procedures is very similar but distinct. Another example of this pattern is shown
in Fig. 3. This example is taken from the httpd study described in this paper,
located in the files httpd-2.2.4/srclib/apr/file_io/unix/readwrite.c
and httpd-2.2.4/srclib/apr/network_io /unix/sendrecv.c. Here we
see the action within the do/while loop has been changed. Because of the small size
of the clone, the changes made to it, and their near proximity within the source code,
these clones are considered good. Their proximity leads us to believe that updates to
the clones are unlikely to be overlooked. The abstraction would be not only be non-
trivial, but would also unnecessarily create dependencies on a higher level library call
that would only be used for these two subsystems, possibly cluttering the higher level
system design.

3.4 Exact Matches

Exact matches often arises when a particular problem is repeated within in the
software system but is either too small to make the creation of an abstraction
worthwhile or is incomplete when taken out of the context of its neighboring source
code. In this section we describe two exact match clone patterns.

3.4.1 Cross-cutting Concerns

Motivation Cross-cutting concerns are semantic properties of the software systems
that cut across otherwise unrelated functionality. Typical examples of cross-cutting
concerns are access control, logging and debugging (Kiczales et al. 1997). Clones
involving these concerns are typically unavoidable in programming languages based
on traditional programming paradigms, such as C or Java, because they do not have
the appropriate features to abstract this code.

Advantages There is little advantage to cloning cross-cutting concerns: they are
typically considered unavoidable. However, like idioms, cross-cutting concerns can
clearly present semantics of the code, improving comprehensibility. In the case
of cross-cutting concerns checking assertions, cross-cutting concerns document the
preconditions or post-conditions of the code they are near.

Empir Software Eng

Fig. 3 An example of replicate and specialize in Apache httpd

Disadvantages Evolvability can be negatively affected. Clones of cross-cutting
concerns can entrench design decisions as they create repeated dependencies on the
concern and its current design. Changes to the design of the modules that the concern
is dependent on will have broad reaching impacts to all the clones involving it.

Management Aspect-oriented programming is a recent solution to this type of
cloning. In this case, the clones are completely removed from the main application
code, and are maintained in one place, separate from the rest of the code; when
the system is later compiled, the language processing tools weave each aspect
into appropriate places in the source. This solution may remove certain types of
maintenance problems but also removes the implicit documentation that exact match
cross-cutting concerns provide. Transformation languages and linked editing can also
be used to maintain the code: these methods have the advantage of leaving the code
in place and with it the implicit documentation.

Long term issues The more often these concerns are duplicated, the more brittle the
concern will become making improvements and design changes increasingly difficult.

Structural manifestations These code clones are often snippets scattered through-
out the software system. The examples that we have seen are exact copies and are
small fragments of code.

Examples A very common example in Apache is the checking of the command
context before executing security sensitive functionality. This clone appears exactly
copied throughout the software system. An example of a cross cutting concern that
is used throughout the server subsystem of Apache httpd is shown in Fig. 4. This

Empir Software Eng

Fig. 4 An example of a cross cutting concern in Apache httpd

concern ensures the correct security requisites are met before continuing to execute
a function.

3.4.2 Verbatim Snippets

Motivation Often small repetitive fragments of logic must be reused throughout
the source code (e.g. branching control). These fragments, not having significant
semantics on their own, will be copied rather than implemented as reusable functions.
These differ from cross-cutting concerns in that they do not implement a specific
aspect or property of the system, rather they are general purpose fragments.

Advantages Comprehensibility is improved in the form of conceptual cohesion.
Conceptual integrity of modules or functions is maintained by keeping code simple
and close together. This pattern can also help to reduce interface “bloat” by avoiding
the accumulation of a many small procedures.

Disadvantages As with all code, assumptions are made about the data that is being
manipulated. Because these clones can be difficult to find due to their small size,
changes that affect these assumptions may be difficult to propagate.

Management When it becomes apparent that certain segments of code are copied
often, they should be factored out as helper functions.

Long term issues Over time this duplicated code can build up making it difficult to
remove. Design decisions that the duplicated code is dependent on will become more
brittle and difficult to change.

Structural manifestations These clones generally appear as small fragments of code
scattered throughout the code. Typically the number of similar code fragments is low.

Examples These clones are readily found in any software system. Common exam-
ples include the initial lines of for loops and fragments of error or condition checking.
An example of such a clone is shown in Fig. 5, taken from Apache httpd 2.2.4, in
the file httpd-2.2.4/srclib/pcre/pcretest.c. Verbatim snippets can also
occur as cloned data structures where the entire region is duplicated.

4 Empirical Evaluation

The purpose of this study was to demonstrate the degree to which these patterns
exist in software systems and to assess the relative harmfulness of clones in software
systems. In order to measure the prevalence of the cloning patterns in source code

Empir Software Eng

Fig. 5 An example of verbatim in httpd

we performed a case study of cloning occurring in two open source software systems:
Apache httpd and Gnumeric. The study performed was a multiple case, descriptive
case study. Two propositions were formulated:

1. Not all duplication of code is harmful; cloning may be used in sound design
decisions.

2. The cloning patterns we described in Section 3 appear with non-trivial frequen-
cies industrial software systems.

Beginning with the patterns of cloning originally described in the previous report
on this work (Kapser and Godfrey 2006a) and also described in Section 3 we
categorized a random sample of clones from each of the study subjects. As a result
of this study we discovered several new patterns of cloning, all of which have been
described above. In particular, the patterns for parameterized code clones, cross-
cutting concerns, and verbatim snippets were added during this study.

This section describes the study setup and the tools used to detect and visualize the
cloned code. It briefly describes the two study subjects and provides several statistics
summarizing the overall cloning found in the software systems. The results of the
case studies are then reported and discussed.

4.1 Study Setup

In this section four aspects of the study setup are discussed: the clone detection
methodology, the granularity of the sampling and analysis, the clone presentation,
and the classification criteria.

4.1.1 Detecting the Clones

The candidate clones were detected using the CLone Interpretation and Navigation
System (CLICS) clone detection tool. This tool locates common sub-strings within
the code using a parameterized string matching method based on suffix trees
very similar to the clone detection tool CCFinder (Kamiya et al. 2002) or clones
(Koschke et al. 2006). There are many other clone detection methods available,
differing largely on the underlying data structure used to search for similarity.
These representations include abstract syntax trees (Baxter et al. 1998; Jiang et al.
2007; Kontogiannis et al. 1996; Mayrand et al. 1996), program dependence graphs
(Komondoor and Horwitz 2001; Krinke 2001), normalized lines of code (Ducasse
et al. 1999; Johnson 1994), and parameterized token streams (Baker 1995; Kamiya
et al. 2002). We chose to use parameterized substring matching based on parame-
terized token streams because it has been shown to have the highest recall (Bellon

Empir Software Eng

2002; Koschke et al. 2006). We chose recall as the most important property because
we wanted to ensure that we were able to sample a large variety of clones. This
section summarizes the process of parameterized substring matching. For a complete
description of the algorithm, please refer to (Kamiya et al. 2002).

There are three steps to this approach: source code parameterization, suffix
tree generation, and candidate selection and filtering. In the first step, an abstract
representation of the source code is generated. For each file of the source code,
a tokenized string is produced and all identifiers that occur within the boundaries
of a function are replaced with a generic placeholder, such as $P. The resulting
string, containing keywords, operators and separators, and place holders, is called
a p-string. It is a representation of the underlying structure of the source code.
In previous studies (Kapser and Godfrey 2004, 2005, 2006b) the authors found
that parameterizing tokens outside of functions leads to a high occurrence of false
positives that require strict filtering on the resulting clone set. By not parameterizing
these tokens in the pre-processing phase, most of the false positives of this type are
avoided.

Using the p-strings as input, a generalized suffix tree is constructed and maximal
repeats are then extracted from the tree. Maximal repeats are repeated sub-strings
with the property that if the sub-strings were extended one character to the right
or left they will no longer be an exact match. Only those maximal repeats that are
at least as long as a user specified size are extracted from the tree. In this case, the
minimum length is specified as the shortest sequence of tokens that can be considered
a clone. Suffix trees are an attractive data structure for this task because they can be
built in O(n) time where n is the length of the string and maximal pairs can be found
in O(n + z) where z is the number of maximal repeats. For details on suffix trees and
their uses refer to (Gusfield 1997; Ukkonen 1995).

The maximal repeats are then filtered by checking for an ordered one-to-one
mapping between the identifiers of the two repeated strings. For example, x = 1;
f(x, y); has an ordered one-to-one mapping with the string a = 1; g(a, b); but does not
have an ordered one-to-one mapping with b = 1; g(a, b);. This enforces a stronger
structural similarity between the two strings, eliminating many false positives from
the results. Stepping through the string starting from the first token of each string,
the mapping is constructed. If a token that breaks the mapping is found the maximal
repeat is split, and the process is restarted at the point of the mismatch. Any sub-
matches that are longer than the predefined minimum length are reported as clones
found in the source code, and sub-matches that do not meet the minimum length are
discarded.

The advantage of using this mapping rather than searching for exact matches
is that copied code whose identifiers have been changed can still be detected. In
practice, we have found that strictly enforcing this one-to-one mapping may cause
the detection process to miss code clones that have not been systematically changed.
To account for this, the CLICS clone detection tool allows for up to 7% (1 in 15)
mismatches in a given sequence of code.

One disadvantage with this approach is that it produces a high number of false
positives, even after enforcing a mapping. In particular, sections of code with
relativity little structural complexity do not have enough distinguishing features to
differentiate them. Examples of these types of code are initialization lists, sequences
of simple assignments, and switch statements. In order to improve the accuracy of our

Empir Software Eng

clones we filter the clone set by enforcing stricter requirements for a match in this
type of code. In particular the following additional filters are applied to the clones
(Kapser and Godfrey 2006b):

1. Simple call filter. Clones occurring on statements that are “simple function calls”
can often contribute to many false positives when using parametric string match-
ing algorithms. Regions of code that are “simple function calls” are sequences of
code of the form

function_name(token [, token]*).

The criterion for a match is that 70% of the function names in either region
must be similar. Two function names are similar when their edit distance, as
computed by the Levenshtein Distance algorithm, is less than half the length
of the shortest of the two function names being compared. This threshold was
determined by examining the edit difference of function calls in a sample of
confirmed code clones. This sample was taken from a set of clones found in
Apache, Gnumeric, and Postgresql that were primarily composed of function
calls. In such cases, we found that the edit distance was always less then 50% of
the total length of the function name. During our studies, we found that typical
clones of function calls would use mostly the same or similar functions, but did
occasionally contain calls to completely unrelated functions. To accommodate
this, we adjusted the percentage of function names that must match until true
clones were not removed from the dataset.

2. Logical-structures filter. We found that clones within simple logical structures
such as switch statements are often false positives. To filter clones in these areas,
we require that 50% of the tokens in these areas are identical and in the same
order. Clones in very simple if-then-else blocks are also filtered in this way.
Initial values for this percentage match were found by analyzing cloning in these
regions, and counting the number of tokens that remain unchanged in a true
clone. We then tuned the filter by making it less strict until we found no true
positives were removed from the dataset.

3. Overlap filter. Clones whose two segments of code overlap by more than 30% of
their length are also removed. This value was determined through observation of
overlapping clones, and counting the maximum overlap of true clones. The value
was then adjusted through several trials.

During this filtering step clones are also grouped by the regions of the source
code they occur in. Regions are non-overlapping, contiguous lines of code grouped
according to syntax. There are eight types of regions: consecutive type definitions,
prototypes, and variables; individual macros, structs, unions, enumerations, and
functions. Comments are ignored in the analysis. Regions are extracted using a
modified version of ctags that reports the start and end of important syntactic
elements in the code, particularly: macro definitions, type definitions, prototypes,
variables, structs, unions, enumerators, and functions. Each line of code in the system
maps to a region (regions contain one or more lines). Code clones are split at region
boundaries. For example, two identical files containing three procedures each would
have three separate clones. This splitting of clones is similar to that which is done by

Empir Software Eng

Fig. 6 Two procedures with
six “cloned” lines grouped as
one RGC

Koschke et al. (2006) and Kamiya et al. (2002) where clones are split at the boundary
of methods or procedures.

If two regions have cloning between them, we say they have a cloning relationship.
For example, a code clone between two procedures forms a cloning relationship
between them. For each pair of regions with a cloning relationship we group together
all the clones that form this relationship; we call this a Regional Group of Clones
(RGC). An RGC represents the cloning relationship strictly between two regions
as code clones do not cross region boundaries in our analysis. For example, each
identical statement shared in the procedures shown in Fig. 6 might be considered
a code clone, constituting eight code clones forming a cloning relationship between
the two procedures. These eight code clones (braces included) are grouped as a single
RGC in our analysis. The concept of RGC is useful for both visualizing and filtering
clones and is the granularity of the sample set we analyze in the case study.

4.1.2 Sample Selection

In this study, we chose to use RGCs as single elements rather than individual clones.
In our previous work, we found that cloned code is often modified in non-trivial
ways, causing the clone detection tools to detect several individual clones with breaks
between them. These groups of clones in reality are part of a single larger clone.
RGCs are better representations of cloning than individual code clones because they
present these groups of clones as a single clone, providing more context for each
clone as well as results that more accurately reflect the cloning occurring in a software
system. For example, a large number of small segments of code can often be the
result of a single code cloning action. The choice of analyzing clones in this way
is not an aspect directly related to how clones are detected, but rather how clones

Empir Software Eng

Fig. 7 Two clones occurring in the same region

are presented, as most clone detection techniques identify segments of similar code,
leaving differences as breaks in between the segments.

To sample the RGCs for categorization, we used a uniform random sample of
the RGCs that do not occur in the same region. We chose to not consider clones
that occur in the same region as they are most often segments that would not be
considered for refactoring or would be considered false positives. Figure 7 shows two
segments of code taken from the same procedure in the Apache httpd source code. In
this example, the code fragments are detected as clones. However, while they follow
similar logic, the fragments test different conditions, and assign different values and
return using different variables. While this is not a false positive, it is not a clone that
would be considered for refactoring. Because of their relatively high frequency in the
clone sets, using them in the studies would bias our results toward good clones.

4.1.3 Clone Presentation

The randomly sampled RGCs were presented in the CLICS graphical user interface.
Key features of the tool that were relevant to this study include the ability to query
for clones related to the ones being presented, visualization of the differences in the
code comprising the selected clone or RGC, highlighting of other clones occurring
between the two files, and automatic classification of clones via a taxonomy described
in Kapser and Godfrey (2005, 2006b). Combined, these features provide contextual
information to aid the evaluation of cloning in a software system.

For the purposes of the study, the tool presents to the user a single randomly
selected RGC at a time. Figure 8 shows an example of how a random RGC is
presented to the user. In the upper left a tree indicates the automatic classification of

Empir Software Eng

Fig. 8 Sample visualization of randomly selection clone

the cloning between the two regions. This classification indicates the relative location
of the clones in the software system, the type of region they occur in, the degree of
similarity between the two regions and possibly the type of code the clones occur in.
For example, the clone shown in the diagram occurs in the same file and the category
function clone indicates the detected clone covers more than 60% of the functions it
occurs in.

On the right of Fig. 8 we see the code encompassed within the two regions of the
RGC indicated by highlighted text. Using CLICS we can show the differences of the
two regions rather than just the detected clone. The common tokens and differing
tokens are highlighted with different colors to make the changes in the duplication
clear to the user. CLICS also highlights other clones occurring in the file to provide
additional context in understanding the clone presented (this feature is not shown
here). The lower left panel is used to annotate the clone according to our cloning
patterns.

4.2 Classification Criteria

In the case study, we performed a subjective classification of each of the randomly
selected RGCs. For each RGC presented, we rated four attributes of the RGC:

1. The effect of the clone on the quality of the software system.
2. The scope of the cloning (Does it cover the majority of the two regions in the

RGC or is the code clone only a fragment of code?).

Empir Software Eng

3. The high level classification of the clone (forking, templating, customization, or
exact matches).

4. The low level classification (the specific pattern).

Rating how a code clone affects the software system is undoubtedly the most
controversial aspect of this study, and also the most subjective. The range of the
rating was good, incidental, harmless, and harmful. Good clones are clones we
believed to have an overall positive effect on maintenance and development. In
the study below, if a code clone was considered good, we felt that certain quality
attributes improved by the clone, such as comprehensibility or evolvability, and the
degree to which they were improved had a larger contribution to overall source
code quality than the quality attributes that were negatively affected, such as the
bug fix prorogation. Incidental clones are clones that cannot be abstracted further
and therefore are neither good nor harmful. Generally this means the code is at the
highest level of abstraction, such as referencing a single function or multiple calls
to the same function, and the parameters to that function are changed in a non-
systematic way. Harmless clones are those clones that are likely to have no impact
on maintenance or development, usually small fragments of code. Harmful clones are
those clones we believe will have a negative effect on the maintainability of software
system. In our study, a clone was considered harmful when we judged that the overall
negative effects on quality attributes of source code out-weighed the positive effects.
In effect, this is an assessment of the perceived net gain/loss to source code quality.

In our rating of the harmfulness of the duplication we tried to take into account
several considerations including likelihood of the clones requiring co-evolution and
how difficult this would be to maintain, complexity of abstracted code, and effects of
clones on semantics or understandability of the code. First, we asked how likely is
it that changes in one code segment of the clone will need to be propagated to the
other? This question is often most easily answered by determining what requirements
the code is most dependent on, and how many of those requirements are shared
between the cloned code segments. If the cloned code involves concepts internal to
the system (such as managing memory, parsing data streams, converting arguments
to the appropriate type for a function call, etc.) then it is likely that the clones are
strongly dependent on a similar set of requirements and these segments of code will
need to evolve together. For example, clones that implement adding and removing
items from a request queue will be comprised of standard queue operations, plus
error checking and data conversion code. In most cases, these clones will need to
maintain similar if not identical behavior. If the cloned code acts primarily as an
interface to independent external systems, then the requirements of the cloned code
segments are less likely to evolve together because it is unlikely the two external
systems are evolving together. An example of an external set of requirements is
the interface with database management systems such as Postgresql, Mysql, and
Oracle. While interaction with these systems is very similar, each system has its own
protocol for connection management and implements its own flavor of SQL. Also,
each system will add, remove, and change features independently. The developer of
a virtualization layer supporting these systems will have to decide on the how these
commonalities will be dealt with. In this case, code cloning is less likely to be harmful
and more likely to be beneficial as it enables maintainers to freely evolve the code.
On the other hand, in the case of the internal example the duplicate is more likely to

Empir Software Eng

be harmful because changes to the internal concepts will need to be reflected in all
of the cloned code.

Our second consideration was evaluating the complexity of forming an abstraction
in order to refactor the code. There is evidence that abstractions can be harder to
maintain than managing duplicated code (Toomim et al. 2004). Forming abstractions
for Replicate and Specialize clones can be difficult if the modifications have been
interleaved with the cloned code. In cases where the code is already complex, forming
abstractions may only exacerbate the complexity. On the other hand, when an
obvious abstraction exists, such as when the specialization is restricted to the end
of the duplicated code, it is likely harder to maintain the clone than maintaining the
straightforward abstraction.

Our third consideration was evaluating how refactoring the clone would affect
the semantics or understandability of the code it occurred in. This is particularly
important when evaluating cloned code fragments rather than cloned regions. In
several cases in Gnumeric variable names are changed to closely reflect the common
mathematical notation the functions represent, such as the parameters for statistical
distributions. This type of cloning acts as a form of documentation to ensure that
future maintainers will immediately grasp the meaning of the code. Refactoring
some of this code may in fact break the conceptual ties the variable names create.
Another example where code cloning aids understandability is the cloning of small
code fragments. These fragments do not have meaning on their own and refactoring
would result in breaking the conceptual cohesiveness of source code.

Evaluating the scope of the code cloning – whether the RGC involves a fragment
of code or the majority of the two regions in the region pair – is done by examining
all of the common code between the two regions. In cases where the code clones
in the clone relationship covered most or all of the two regions they occur between,
the scope of the duplication was considered to be the whole region. In cases where
the clone detector only found several fragments of code, the region diff-ing utility
was used to visualise the overall similarity. If a large portion of the two regions in
question is found to be shared, the scope of the clone was considered to be the whole
of the regions. If the degree of similarity between regions pairs was restricted to
fragments of code, the scope of the cloning is considered to be a fragment.

Classifying the clones into patterns was done manually, based on the descriptions
we have documented in Section 3. The high level classification was one of the four
clone pattern groups: Forking, Templating, Customization and Exact match. The
low level classification is chosen from one of the patterns in the group of patterns
specified by the high level classification. The primary mechanism for classification
was to infer the motivation for the duplication. This required an understanding of
programmer intent for each code fragment individually and also the types of changes
made to the cloned code. To determine the purpose of the source code fragments,
we analyzed the code fragments in the context of the software system. Relevant
documentation (either found within the source code or distributed with the source
code), data structures, and data flow were referenced to gain as much information
about the source code as possible. Documentation can provide a clearer picture of
the external behavior of a segment of code (pre- and post-conditions for example).
Data structures used by both segments of code often enriched this information
by making more explicit the low level behavior requirements, such as the range
of valid values for a variable. Data flow, included calling and called functions or

Empir Software Eng

procedures, provides more information about how the segments of code manipulate
data, enriching the view of how the procedures operate. This analysis results in an
understanding of the programmers’ intent for each segment of code individually.
Next we analyzed the differences between the clones. These differences include not
only the textual differences of the cloned code fragments, but also the differences
in the programmer intent uncovered in our analysis of the purpose of the code. For
example, we analyzed the differences in the data structures used by the two code
fragments. In a few cases, this required referencing external documentation relevant
to shared libraries provided by external projects. We also analyzed the purpose of the
file and subsystems containing the clones. Combining information about the intent of
individual code fragments with an understanding of their differences, we could then
assess individual attributes, such as forces that will affect evolution of the source
code and difficulty to form a more general abstraction, in order to infer motivation
for forming the code clone. With this information in hand, we then compare the
information we have compiled with the various patterns listed in Section 3. This
process was very time consuming in the beginning of the sample analysis of each
system, but as we analyzed more clones the process became easier as we could reuse
much of the knowledge about the system we gained over time.

4.3 Study Subjects

The two study subjects of this experiment were Apache httpd, version 2.2.4, and
Gnumeric, version 1.6.3. Both software systems are of medium size: Apache is
312,460 LOC across 783 files and Gnumeric is 326,895 LOC across 530 files. Apache
httpd is an open source web-server designed to run on a wide variety of platforms:
BeOS, *BSD, Linux, Netware, OS/2, Unix, and MS-Windows. The core development
team of Apache consists of approximately 25 developers who contribute a large
majority of new features (88% of new code in 2000 (Mockus et al. 2000)). While
there is no explicit policy on code ownership, contributors tend to defer decisions
concerning changes to more experienced developers. As a result, small groups, rather
than individual developers, modify modules and files (Mockus et al. 2000).

Gnumeric is an open source spread sheet application, part of the GNOME
Desktop environment. It supports a variety of platforms but this platform support
is implemented in the libraries it depends on rather the source code of Gnumeric.
Using svn blame to measure who last modified all of the lines of code in Gnumeric
in the last five years reveals that more than 88% of the LOC have been modified by
only three developers. This finding is confirmed by documentation distributed with
the source code.

4.4 Sample Set

Two sets of clones were detected for each study subject. Several patterns of cloning
described in Section 3 are typically only present as small fragments of cloned code
and therefore are detectable only when the minimum threshold for a match is set to a
low value. In order to detect these types of clones we ran the clone detector searching
for clones with a minimum length of 30 tokens. When this is done, however, many
false positives are detected as well as many small code fragments that would normally

Empir Software Eng

Table 1 Detected clones in Apache and Gnumeric

Min Clone Size
30 Tokens 60 Tokens
Num RGCs Sampled Clones Sampled Num RGCs Sampled Clones Sampled

Apache 10,657 100 61,481 204 1580 100 21,270 2655
Gnumeric 23,129 230 84,028 807 3437 100 11,400 405

not be considered for refactoring, creating a bias in the results. In order to detect and
sample both smaller cloning patterns and larger ones, we chose to detect two sets of
clones for each subject using two minimum lengths: 30 and 60 tokens. The resulting
clones detected with a minimum length of 60 tokens is a direct subset of the results
returned when detecting clones with a minimum length of 30 tokens. This is because
we are only setting the minimum size of code clone, and therefore any clone larger
than the minimum will also be detected.

A summary of the total number of clones returned by the clone detector is shown
in Table 1. In the table, the columns “RGCs” indicates the number of RGCs we
detected, and the column directly to its right indicates the number of RGCs we
randomly selected to be categorized. For each data set, we categorized the maximum
of 100 RGCs or 1% of the total RGCs. The minimum of 100 RGCs was chosen to
ensure we viewed a large number of code clones throughout the systems. Only a small
percentage of the code clones available were categorized due to time constraints.
For the data sets where a minimum clone size of 30 tokens was used, we randomly
sampled 0.93% of the total RGCs in Apache and 0.99% of the RGCs in Gnumeric.
For the clone sets detected with a minimum size of 60 tokens we randomly selected
6.3% of the RGCs in Apache and 2.9% for Gnumeric. One can see from Table 1
that there is a significant difference in the number of clones detected when adjusting
the minimum length, especially in the case of the Gnumeric clone sets. As will be
presented in the results, this large difference in clones is largely comprised of false
positives but also contains many of the smaller clones that contribute to larger clones
such as in the Replicate and Specialize clone pattern.

The total number of false positives found in the sample sets are shown in Table 2.
This table shows the number of RGCs from the clone sample set that were considered
to be false positives. As we predicted, the number of false positives was dramatically
reduced after increasing the minimum length of a clone to 60 tokens.

4.5 Results

The results of the subjective categorizations are summarized in Tables 3, 4, 5, 6. Each
row in the tables indicates a clone pattern and the frequency of good, incidental,

Table 2 False positives in sample sets

System Min. Clone Size
30 60
RGCs % of sample RGCs % of sample

Apache 41 41% 7 7%
Gnumeric 159 69% 29 29%

Empir Software Eng

Table 3 Clones by type - Apache httpd 2.2.4–30 Tokens

Group Pattern Good Incidental Harmless Harmful Total
% # % # % # %

Forking Hardware variation 0 n/a 0 n/a 0 n/a 0 n/a 0
Forking Platform variation 9 100 0 0 0 0 0 0 9
Forking Experimental 0 n/a 0 n/a 0 n/a 0 n/a 0

variation
Templating Boiler-plating 8 100 0 0 0 0 0 0 8
Templating API 0 0 7 87.5 0 0 1 12.5 8
Templating Idioms 0 n/a 0 n/a 0 n/a 0 n/a 0
Templating Parameterized 1 16.7 0 0 0 0 5 83.3 6
Customize Replicate and 10 76.9 0 0 1 7.7 2 15.4 13

specialize
Customize Bug workarounds 0 n/a 0 n/a 0 n/a 0 n/a 0
Exact match Cross-cutting 12 92.3 0 0 1 7.7 0 0 13
Exact match Verbatim snippets 2 100 0 0 0 0 0 0 2
Total 42 71.2 7 11.9 2 3.4 8 13.6 59

harmless and harmful RGCs seen in the sample set. The column “Total” indicates the
total number of RGCs classified as that pattern of cloning. The bottom row of each
table indicates the total number of good, incidental, harmless, and harmful RGCs.

In this section we will discuss the specific results of each study subject and compare
the results obtained from the two different samples extracted from each subject.

4.5.1 Cloning in Apache httpd

When comparing the result of the two clone sets sampled for Apache httpd, shown
in Tables 3 and 4, the most striking observation is the very large difference in the
number of harmful RGCs. In the Apache case study where the minimum clone length
was 30 tokens, 71% of the 59 true positive RGCs were considered good and only 14%
were considered harmful. In the sample set where the minimum clone length was 60

Table 4 Clones by type - Apache httpd 2.2.4–60 Tokens

Group Pattern Good Incidental Harmless Harmful Total
% # % # % # %

Forking Hardware variation 0 n/a 0 n/a 0 n/a 0 n/a 0
Forking Platform variation 10 100 0 0 0 0 0 0 10
Forking Experimental 4 100 0 0 0 0 0 0 4

variation
Templating Boiler-plating 5 100 0 0 0 0 0 0 5
Templating API 0 0 17 100 0 0 0 0 17
Templating Idioms 0 0 0 0 0 0 12 100 12
Templating Parameterized 5 27.8 0 0 1 5.6 12 66.7 18
Customize Replicate and 12 75 0 0 0 0 4 25 16

specialize
Customize Bug workarounds 0 n/a 0 n/a 0 n/a 0 n/a 0
Exact match Cross-cutting 2 100 0 0 0 0 0 0 2
Exact match Verbatim snippets 1 12.5 0 0 0 0 8 88.9 9
Total 39 41.9 17 18.3 1 1.1 36 38.7 93

Empir Software Eng

Table 5 Clones by type - Gnumeric 1.6.3–30 Tokens

Group Pattern Good Incidental Harmless Harmful Total
% # % # % # %

Forking Hardware variation 0 n/a 0 n/a 0 n/a 0 n/a 0
Forking Platform variation 0 n/a 0 n/a 0 n/a 0 n/a 0
Forking Experimental 0 n/a 0 n/a 0 n/a 0 n/a 0

variation
Templating Boiler-plating 3 100 0 0 0 0 0 0 3
Templating API 0 0 5 83.3 0 0 1 16.7 6
Templating Idioms 2 100 0 0 0 0 0 0 2
Templating Parameterized 5 23.8 0 0 0 0 16 76.2 21
Customize Replicate and 9 56.3 0 0 0 0 7 43.8 16

specialize
Customize Bug workarounds 0 n/a 0 n/a 0 n/a 0 n/a 0
Exact match Cross-cutting 2 50 0 0 0 0 2 50 4
Exact match Verbatim snippets 2 11.1 0 0 2 11.1 14 77.8 18
Total 23 32.9 5 7.1 2 5 40 57.1 70

tokens, 42% of the clones were considered good and 39% were considered harmful.
We believe this difference is caused by the types of clones found when increasing the
minimum clone size. The code clones in the sample of larger clones tend to be more
similar and clones with complex changes are overlooked by the matching algorithm.
Line insertions and deletions are more likely to cause clones to be overlooked when
a higher minimum length is used. This biases the sample set toward simplistic clones
that can be clearly refactored, and are therefore have no value as clones in the system.
This observation is supported by the large increase in the number of RGCs classed
as templating clones.

The clone sets for Apache httpd contain a total of 19 RGCs for platform variation.
Additionally, four RGCs in the set of larger clones were related to experimental

Table 6 Clones by type - Gnumeric 1.6.3–60 Tokens

Group Pattern Good Incidental Harmless Harmful Total
% # % # % # %

Forking Hardware variation 0 n/a 0 n/a 0 n/a 0 n/a 0
Forking Platform variation 0 n/a 0 n/a 0 n/a 0 n/a 0
Forking Experimental 0 n/a 0 n/a 0 n/a 0 n/a 0

variation
Templating Boiler-plating 6 85.7 0 0 0 0 1 14.3 7
Templating API 0 0 8 88.9 0 0 1 11.1 9
Templating Idioms 1 100 0 0 0 0 0 0 1
Templating Parameterized 10 29.4 0 0 0 0 24 70.6 34
Customize Replicate and 15 93.8 0 0 0 0 1 6.25 16

specialize
Customize Bug workarounds 0 n/a 0 n/a 0 n/a 0 n/a 0
Exact match Cross-cutting 0 n/a 0 n/a 0 n/a 0 n/a 0
Exact match Verbatim snippets 1 25 0 0 0 0 3 75 4
Total 41 57.7 0 0 0 0 30 42.3 71

Empir Software Eng

Fig. 9 Two examples of idioms in Apache httpd

variation. In each of these cases we felt that the code clones were beneficial to the
comprehensibility and evolvability of the source code.

Boiler-plating due to language constraints was present in both sets of clones. These
were exclusively due to changes in the data types. The authors noted several of these
clones could be refactored using a combination of anonymous pointers and passing
individual members of composite data types to the functions. However it was felt that
the added complexity to both the abstracted function and the source code dependent
on the function outweighed the advantage of reduced code size.

Idioms were found only in the sample of larger clones of Apache httpd. This
is a surprising result as we expected precisely the opposite. Two examples of the
idioms found are shown in Fig. 9. Both idioms allocate memory for a pointer in a
memory pool. In the first example, the existence of the pool is asserted, then if the
variable key is NULL, memory is allocated for it and a pointer to the memory pool
it has been allocated in is set. In the second example, memory is allocated for the
variable new. The return value of the allocation method is checked, and if memory
could not be allocated the function returns an error code. If there is no error, the
pointer to the memory pool is set. Both idioms occur frequently in the source code.
While these idioms were detected separately, we noticed that they are related. The
second idiom, Fig. 9(b) should be implemented in the first. That is to say, the first
idiom should check the return of the allocation method before attempting to assign
a value to a member of the newly allocated variable. Also, the second idiom should
check that pool is not NULL before attempting to allocate memory from it. In both
cases, attempting to assign a value to a NULL pointer will result in a segmentation
fault. Our observation is that both instances of these idioms are incomplete and are
therefore harmful. All idioms we found were clones of these two examples, and were
rated as harmful to the software system.

The API clones in both studies that were considered incidental were involved in
testing. In these clones, the same function is repeatedly called to build a test suite
and then the test suite is returned. In all cases, the function call was used in the same
way, with the only variation being the function pointer passed as an argument. We
consider this type of cloning incidental because the API usage is already abstracted
to the highest level, resulting in the series of repeated function calls to the same
function.

Empir Software Eng

Parameterized code clones were found in both clone sets for Apache httpd. Only
25% of these clones were considered good. Samples rated as good clones were code
fragments that were cloned very few times in the system (typically, once) or would
have become complex if abstracted due to the presence of ifdefs or switch statements.
In one case the parameterized code fragment was cloned between two subsystems.
We felt this small clone was more beneficial if left where it was. More commonly,
these types of clones were considered harmful as they involved reasonably simple
code that was trivially abstracted. In these cases, the code would be more compact
and easier to understand if the clones were removed.

The clones classified as the replicate and specialize pattern were rated as good
76% of the time. In all cases this was because the complexity that abstraction
would introduce would make the code difficult to understand and maintain. In these
cases, non-trivial changes were interleaved throughout the cloned regions. Examples
of these changes were adding or removing statements, unsystematic changes to
identifiers, and changes to data types. Several clones of this pattern were rated as
harmful because obvious abstractions were available and were deemed to make the
code more clear if used. In these cases, the specialization could be neatly modularized
into a single block of code or could be guarded by control flow statements.

In the sample set of the small clones, 12 cross-cutting concern patterns were
rated as good. These were aspects related to security, in particular checking that the
command was safe to run in the current program context. These duplicates were
considered good as they explicitly stated that the function was security sensitive,
something that was not included in the source code documentation. A single RGC
of this type was rated as a harmless clone because it comprised of a single procedure
call. Cross-cutting concerns appeared very infrequently in the sample set of the larger
clones. This was not surprising because this type of clone typically appears as small
portions of code. The clones of this type were found essentially by chance: the
subsequent code to the aspect was similar enough to be matched by the duplication
detection but was not actually cloned code.

The verbatim snippets clones found in the small clone size set were code fragments
involving control flow. It was deemed that these code fragments were helpful. Ab-
stracting them would adversely affect the conceptual cohesion of the functions they
appeared in. Verbatim snippets clones found in the large clone size set were mostly
considered harmful. In these cases, the snippets consisted of complete conceptual
units of code. For example, initializing a data structure and then error checking,
or dealing with differences in how a new line is represented in various operating
systems. In one particular case of verbatim cloning, a whole file (abts.c) was
cloned.

4.5.2 Cloning in Gnumeric

The results from the categorization of the clones in Gnumeric are summarized in
Tables 5 and 6. The sample size for the data shown in Table 5 was 230 RGCs
and the sample size of the data shown in Table 6 was 100 RGCs. In Table 5
we see that 57% of the RGCs sampled were considered harmful. This does not
sharply contrast the results of the second sample set of the larger clones, where
42% of the clones were considered harmful. The Gnumeric source code has a large
amount of mathematical computations. The interface between the spreadsheet and
the mathematical computations requires a function that initially converts the values

Empir Software Eng

of the cell data to data types that can be used for mathematical computations
(such as integers and floating point numbers). A typical scenario we found in
both sample sets was cloning that consisted of the duplication of initialization of
variables and then the identifier calling a particular function was changed. This high
percentage of “harmful” cloning is a reflection of this type of scenario. The interface
between computation functions and the spreadsheet also contributed to the very high
percentage of false positives in this study. When the long series of cell conversions
are abstracted to a p-string, they become identical, and because they usually do not
repeat identifiers in the assignment, the one-to-one mapping almost always succeeds.
This points out a particular weakness in the method of clone detection used in this
case study.

The reader will note that no forking patterns were found in this study. While this
does not rule out their existence in Gnumeric, it does demonstrate their relative
rarity in the code. This is very likely due to the fact that there are very few
external dependencies on other systems such as databases or operating systems in this
source code.

Boiler-plating clones found in the Gnumeric study were generally rated as good
clones with one exception. These clones were again caused by changes to data types.
An example of this type of cloning is shown in Fig. 10. Abstracting these clones would
not improve the source code in any way. The single exception rated harmful had an
obvious abstraction that could be made without adding complexity.

Fig. 10 An example of boiler-plating in Gnumeric

Empir Software Eng

Most cloning categorized as API/Library protocol clones were rated as incidental
for the same reason as they were in the Apache clone samples. In this case, the
cloning involves the connection of UI signals to actions. These clones cannot be
abstracted further because they are already calling a single function. While there is
high degree of similarity between many individual clone pairs of this type, the overall
variability of the total set make it very difficult to create an appropriate abstraction
that would reduce code size without introducing a very high degree of complexity.
The two exceptional cases where this pattern of cloning was considered harmful were
clone pairs that appeared frequently in the system and had an obvious abstraction
using macros. Frequency can be a concern when considering the overall maintenance
time that might be saved by reducing all of the clones to a single, simple abstraction.

Only three idioms were found in the sample sets for the study subject Gnumeric.
These idioms were rated as good because they were relatively simple and provided
context to what the code was doing. One idiom involved differing data types that
could not be refactored. In the other two cases the idioms were consider good
because they were not at risk of being poorly implemented contrary to the case in
Apache.

Parameterized code clones were considered harmful 76% of the time in the
sample of small clones, and 71% of the time in the sample of large clones. In
nearly all of these cases, passing a function pointer as an argument to a single
function would remove many of these clones. Fifteen of the clones of this type were
considered good. In these cases, the identifiers were changed to reflect the standard
notation of the variables in the mathematical functions they represented. This was
considered a good type of clone because it provided traceability from the code to
the documentation (the mathematical function). In cases where parameterized code
clones were considered harmful, we found that the parameterized code represented
such similar concepts (such as related numerical functions) that there would likely be
no loss in conceptual traceability of the code if it were abstracted.

When considering replicate and specialize clones in the sample of small clones,
nearly 44% of the RGCs were considered harmful. Three of these clones were varia-
tions on the type of parameterized code clones described above, with additional error
checking added. In these cases, the abstraction was obvious. Three cases of harmful
replication and specialization were the creation of a dialog. The additional code
added to one function could be factored out and the clones could be parameterized
and merged.

Good cloning of the type replicate and specialize had non-trivial changes. While
these changes were typically smaller than the ones seen in Apache httpd, we
considered them to be beneficial because of the semantic traceability they create
to the mathematical equations they represent. A clone of this type is shown in
Fig. 11.

There were four cross-cutting concerns seen in the sample set from the small
clones. The two that were considered good performed assertion checks of the
parameters of the function and, implemented as macros, caused the function to
return if they failed. The RGCs of this type that were considered harmful were
fragments of code consisting of several steps responsible for removing references to
dynamically allocated variables. In these cases, removing references involved a call to
a function that decrements the number of references to the data and then setting the

Empir Software Eng

Fig. 11 An example of replicate and specialize in Gnumeric

pointer to NULL. We felt this could be better encapsulated as a macro or procedure
call. This would avoid the risk of missing the step of setting the pointer to NULL.

As with the Apache study subject, most of the verbatim snippets clones were
considered harmful, in this case 63%. Only clones that were small fragments were
considered good as the code was small and incomplete on its own. The resulting
abstraction would have break the understandability of the procedure they were
found in.

4.6 Case Study Discussion

There were two goals for this case study. The first goal was to empirically evaluate a
generally accepted wisdom: “Cloning considered harmful”. We proposed that not all
duplication is harmful. Our results show that a non-trivial number of RGCs can be
categorized, according to our criteria and our judgement, as good forms of cloning:
in Apache 71% were classified as good in the sample set of clones with a minimum
length threshold of 30 tokens and 42% were classified as good in the sample set of
clones with a minimum length of 60 tokens, and in Gnumeric 33% were classified
as good in the sample set of clones with a minimum length of 30 tokens and 57%
were classified as good in the sample set of clones with a minimum length of 60
tokens. While a non-trivial number of clones were considered good it should be
noted that, as described in the patterns listed in Section 3, these clones were not
considered to be free of maintenance risk either. As with any principle of design or
development, there are trade-offs and maintenance concerns that should always be
considered while developing software systems.

Empir Software Eng

Second, we proposed that the cloning patterns described in Section 3 appear in
industrial source code. We wanted to measure whether the patterns we found during
previous case studies appeared regularly in source code, and if they did, how often.
The results clearly show that these patterns appear in non-trivial frequencies in
the two study subjects we investigated, with the exception of bug-workarounds and
hardware variations. In the case of bug-workarounds this exception is possibly an
indication of the rarity of such a pattern and that examples of its use may be special
cases. While we have observed this form of cloning, it may not be as common as
we first believed and may not be justified as a pattern. In order to investigate this
further, one direction of our future work is to detect and analyze more clones of this
type. In the case of hardware variation we did not expect to see this pattern as neither
software system directly interacts with a hardware device. However, the pattern we
describe in this paper is clearly visible in the Linux kernel. Section 3.1.1 lists two
families of drivers that demonstrate this pattern. To properly evaluate this pattern,
studies focussing on the analysis of driver code must be performed. Candidate study
subjects might include Xorg, Linux, and FreeBSD.

Comparing Tables 3 and 4 we can see that, in most cases, specific types of
clones were classified similarly in both sample sets. Two notable exceptions to this
observation are the idiom clones and the verbatim snippets clones. In the case of
idiom clones, as mentioned previously, this is a surprising result as we expected to
find idioms in the sample set of clones detected using a minimum token length of
30. In the case of the two verbatim snippets seen in the sample with a minimum clone
size of 30 tokens, they were considered good because these were very small fragments
contributing to control flow and not complete fragments of code on their own. In the
sample set of clones with a minimum size of 60 tokens, eight of the clones were large,
identical clones representing complete conceptual units that had obvious abstractions
that would improve the code. Only one clone of this type was classified as good in
the sample set. This is not surprising as one would expect that in many cases large,
identical blocks of code would be more easily maintained when refactored into a
single unit. Because the set of clones with a minimum size of 60 tokens set is a subset
of the set of clones with a minimum size of 30 tokens, increasing the number RGCs
sampled from latter set would have likely revealed these clones.

Tables 5 and 6 also show that specific types of clones were classified similarly,
with the notable exception of replicate and specialize clones. The larger replicate and
specialize clones found in Gnumeric the set of clones with a minimum size of 60
tokens had more non-trivial changes compared to many of the clones sampled in the
sample set with a lower minimum size. From these results we can see that in cases
where larger clones are non systematically modified the complexity of the abstraction
makes cloning a better alternative to refactoring.

The total number of verified code clones sampled varies largely between the two
samples in Apache (Tables 3 and 4) but does not vary between the samples in
Gnumeric (Tables 5 and 6). This is due to the larger number of RGCs sampled out
of the clones detected in Gnumeric with a minimum size of 30 tokens. The lack of
precision of the sample sets with a smaller minimum threshold, shown in Table 2 and
highlighted in the comparison of the number of actual clones sampled, demonstrates
a particular weakness of parameterized string matching. Smaller sequences of tokens
become increasingly similar as less information is provided to differentiate them.
Tokens become “anonymous” when they are unique within a sequence because there

Empir Software Eng

(a) (b)

Fig. 12 Percentage of clone types in Apache. a Thirty tokens. b Sixty tokens

are no back references to them, removing any information about order. Smaller
sequences of code are more likely to contain a high percentage of unique tokens,
making these sequences appear to be clones. The imprecision of the clone sample
sets, particularly when using a minimum token size of 30, had a large impact on the
tractability of our study. While precision is greatly increased when the minimum
threshold is increased, certain observations, such as the difference between the
classification of replicate and specialize, could not have be made unless we had
sampled the set of smaller clones. This observation and the results shown in Table 2
emphasize the need for more sophisticated filtering of clone detection results.

Cloning in Apache httpd and Gnumeric appears to be qualitatively different.
Figures 12 and 13 summarize the percentage of RGCs categorized into each of
the four groups of cloning patterns. Forking did not appear in Gnumeric, and the
templating patterns appear to be a much larger contributing factor to the overall
cloning when looking at the larger clones. This is largely due to the interface between
the spreadsheet and the mathematical functions. The differences in the types of

(a) (b)

Fig. 13 Percentage of clone types in Gnumeric. a Thirty tokens. b Sixty tokens

Empir Software Eng

cloning found in the two study subjects reflects the differences in design and purpose
of the software systems. The focus of Apache httpd is to be a highly stable, portable
web server. The focus on stability implies changes to stable core code will be done
cautiously, or even avoided, when adding new functionality. This can lead developers
to clone and change rather than modify working code. The focus on portability re-
quires the implementation of a large set of common functionalities for many different
platforms, with each of these common functionalities differing in implementation
in non-trivial ways, again leading to cloning to avoid inter-dependencies amongst
largely unrelated platform specific code. The focus of Gnumeric is to be a broadly
featured spreadsheet application. This functionality is accessed through a common
interface, and the code using this interface, not surprisingly, will have much in
common.

In both studies templating clearly represent the majority of patterns sampled
when considering the sample set of larger clones. We feel this phenomenon is
largely due to the type of clone detector we are using. Specifically, the type of
clone that parameterized string matching finds is the templating pattern because of
the definition of a match: a substring whose identifiers have a bijective mapping.
Structural or logical changes will not match. We feel that the results from the sample
sets using smaller clones are a better representation of their relative frequencies
because smaller clones have been grouped to form larger clones, and this grouping is
less sensitive to changes in logic and structure.

As can be seen in Figs. 12 and 13, the ratio of exact matches decreases dramatically
when the minimum clone size is increased to 60 tokens. This indicates that developers
are less likely to directly copy-and-paste large segments of code if they do not require
enhancement or modification. In contrast, Customization patterns did not decrease in
their relative frequency, indicating that the size of the code plays a role in developers’
decisions to duplicate or abstract.

Though there are differences in the overall frequency of the clone patterns
in the study subjects, all clones sampled were categorized using the catalog of
clone patterns. Also, most patterns were found in the samples demonstrating their
relevance to real software systems. The absence of hardware variation clones and the
qualitative difference in the types of clones found in the two study subjects suggests
that factors such as the design and purpose of the software can affect the types of
code clones one can expect to find. Future work in characterizing software systems
and the relative occurrences of these patterns will benefit software practitioners as it
can provide a point of comparison to assess the quality of their own code.

Tables 7 and 8 summarize the scope of the clones for each cloning pattern found
in the sample sets. In these tables, the column “Scope” refers to the scope cloning
was considered to have over the region. “Full” indicates that the cloning covered the
majority of the regions and “Fragment” indicates the cloning covered a fragment of
the regions. As can been seen in the tables, in general the intuition in the pattern
descriptions is supported by the evidence collected in the case study, with a few
exceptions. In the cases where verbatim snippets is “Full” scope, the cloning either
occurs in very small functions, data structures, or preprocessor directives, the latter
being the most frequent case. These tables clearly show that cloning most often
involves entire regions, usually functions. This is likely due to the ease of finding
and duplicating entire functions as opposed to code fragments. Code fragments are

Empir Software Eng

Table 7 Scope of clones by type - Apache httpd 2.2.4–30 Tokens and 60 Tokens

Group Pattern Scope 30 Tokens 60 Tokens
Count % in sample Count % in sample

Forking Experimental variation Full 0 N/A 4 100
Fragment 0 N/A 0 0

Forking Platform variation Full 9 100 10 100
Fragment 0 0 0 0

Templating Boiler-plating Full 7 88 5 100
Fragment 1 22 0 0

Templating API Full 6 75 17 100
Fragment 2 25 0 0

Templating Idioms Full 0 N/A 0 0
Fragment 0 N/A 12 100

Templating Parameterized Full 4 67 15 83
Fragment 2 33 3 17

Customize Replicate and specialize Full 10 77 16 100
Fragment 3 33 0 0

Exact match Verbatim snippets Full 0 0 4 44
Fragment 2 100 5 56

Exact match Cross-Cutting Full 0 0 0 0
Fragment 13 100 2 100

more likely to be reimplemented rather than sought out for duplication and this
reimplementation will be more difficult to detect as clones.

4.7 Threats to External Validity

There are several threats to the validity of this analysis. First, the RGCs were judged
by a single expert observer who is one of the authors of this paper. Without additional

Table 8 Scope of clones by type - Gnumeric 1.6.3–30 Tokens and 60 Tokens

Group Pattern Scope 30 Tokens 60 Tokens
Count % in sample Count % in sample

Templating Boiler-plating Full 3 100 7 100
Fragment 0 0 0 0

Templating API Full 1 17 9 100
Fragment 5 83 0 0

Templating Parameterized Full 16 84 34 100
Fragment 5 16 0 0

Templating Idioms Full 1 50 0 0
Fragment 1 50 1 100

Customize Replicate and specialize Full 14 88 16 100
Fragment 2 14 0 0

Exact match Cross-cutting Full 0 0 0 N/A
Fragment 4 100 0 N/A

Exact match Verbatim snippets Full 6 32 3 75
Fragment 13 68 1 25

Empir Software Eng

judges in this study there is no way to measure bias. However, experts in code cloning
research are uncommon making a larger study much more difficult and costly to
conduct.

The choice of study subjects may also be a threat to the validity of this analysis.
Both are medium size (just over 300,000 LOC) software systems, and the results may
change when analyzing larger systems. Also, these study subjects are open-source
software projects with many developers distributed through-out the world. Manage-
ment and organizational partitions of responsibility that are present in closed-source
software projects may not be mirrored in open-source software projects. The typical
development model for these projects does not restrict developers from modifying
code throughout the system. However, in the case of Apache we see that most
changes to the source code are made by relatively few developers and there appears
to be an implicit agreement of ownership within the development community
(Mockus et al. 2000). In the case of Gnumeric, we found that the code is maintained
by very few developers. In both cases, these scenarios are unlikely to differ by a
large degree from closed source development environments. Without further study
into the qualitative similarities and differences of open source and closed source
software systems, generalizing results is difficult. More broadly speaking, a better
understanding and characterization of attributes of software is required before these
results, or the result of many studies of software, can be applied or generalized to
groups of software systems. For example, what is the effect of the problem domain
on the overall design? This question has direct implications regarding the types of
clones we can expect to find in a software system.

The detector and analysis environment is also a threat to the validity. The CLICS
clone detector uses parameterized string matching and does not find clones with
reordered statements or statements added/removed. These types of clones would be
considered customization clones. The number of missed clones is difficult to estimate;
however, by examining the clones using a small minimum size for a clone match
we have provided a reasonable estimate of the lower bound on the percentage of
RGCs in a software system that would be regarded as customization clones. Clone
detection methodologies using program dependence graphs overcome this limitation
(Krinke 2001) but tools implementing this technology were not available to us for this
study. However, parameterized substring matching is one of the top clone detection
methods in terms of recall (Bellon 2002; Koschke et al. 2006) and we feel it is well
suited for the goals of our study.

5 Discussion

In describing the patterns of code cloning, we see different management strategies
that should be considered. For example, experimental variation requires developers
to monitor changes to the external interface of a cloned subsystem to make decisions
on whether or not to propagate changes to the duplicated code. On the other hand,
boiler-plating requires close synchronization of the maintenance effort, preferably
through an automated approach such as source code generation. These varying
maintenance strategies require a variety of different tools.

Empir Software Eng

In the case of templating patterns, as mentioned above, it is clear that there is a
need for synchronous editing, as suggest by Toomim et al. (2004), to manage clones
where evolution between the duplicates should be tightly coupled but abstraction is
not possible. Even in the cases where abstractions are possible, such as in the case of
API and Library Protocols, Toomim et al. provides evidence to suggest that there is
less cognitive load required to manage the duplicated code, compared to performing
the proper abstraction, if Linked Editing is used.

In cases of duplication where the evolution of the duplicates may not be so tightly
coupled, as in the cases of forking patterns, architectural and historical dependencies
of cloning can guide developers to related points in the software system that should
be taken into consideration during a maintenance operation. In Kapser and Godfrey
(2003, 2004, 2006b) the authors used cloning relationships visualized as architectural
relationships as aids to locate several examples of these forking patterns.

In addition to locating forking cloning patterns, it is important that development
tools also explicitly outline the similarities and differences in the code. During our
case studies, we noted that while it was easy to see similarities in code, it was
far more difficult to find and understand the differences in the code. Identifying
and understanding differences in the code clones is very important as it affects the
decisions of how and when to propagate changes to duplicated code.

In the cases of customization patterns, the tool requirements are a combination of
forking and templating patterns. In extreme cases of customization, automated tool
support may not be possible for editing, and may not be desirable. Semi-automated
approaches for “patching” code clones may be necessary, especially in cases of large
groups of duplicated code. Such a tool would iterate over all candidate code clones
and selectively patch clones according to human (expert) decisions. In all cases, it
is vital that all clones are tracked to ensure no clones are excluded from an update
(Duala-Ekoko and Robillard 2007).

While we believe that not all clones require refactoring, we also believe there are
situations that warrant the effort. In cases where code is directly copied to duplicate
behavior, such as in sibling classes of an object-oriented program, refactorings should
be performed if the language supports this. In situations where the behavior of the
clones is similar but not the same, the effect of the costs of refactoring, such as effects
on program comprehension and exposure to risk, should be measured against the
expected gain in maintainability or extendability of the system.

We do not consider the patterns described in this work are exhaustive. The case
study described in Section 4 confirms the patterns we describe occur in software
systems, but also demonstrates that the list of patterns we originally reported (Kapser
and Godfrey 2006a) was incomplete. During the study, three new patterns were
added. We believe that this list of patterns will grow as more case studies are
performed, and this is the focus of our future work on this topic.

Finally, the results of the case study identify a set of patterns that are most often
harmful, namely verbatim snippets and parameterized code. While there were several
examples of good usage of these clone patterns, the majority were deemed harmful.
This may be an indication that developers should avoid this form of cloning. On the
other hand several patterns were found to be mostly good: boiler-plating, replicate
and specialize, and cross-cutting concerns. While not always good, when used with
care (as with any form of design or implementation decision) these patterns are more
likely to achieve an overall beneficial effect on the software system.

Empir Software Eng

6 Related Work

Cataloging of software engineering principles and behaviors is not a new idea. Other
works have cataloged common scenarios that arise in software development and
maintenance. Godfrey et al. (Godfrey and Zou 2005) describe several scenarios in
which maintenance activities lead to new functions in a software system. Fowler
et al. documented approximately 70 refactorings (Fowler et al. 1999). Refactorings
are patterns of behavior-preserving restructuring of source code used to eliminate
bad design or source code entities, including duplicated code. Gamma et al. have
described many design patterns to aid in making more flexible and reusable code
(Gamma et al. 1995).

Clone classification schemes have been previously suggested, usually based on the
degree of similarity of segments of code and also the type of differences (Balazinska
et al. 1999a; Mayrand et al. 1996). In the work presented by Mayrand et al. (1996)
and Balazinska et al. (1999a) these classifications are limited to function clones only.
In previous work (Kapser and Godfrey 2003, 2005, 2006b) the authors present a
classification scheme based on locality, size, code type, and similarity. The classifi-
cation includes clones varying in scope from functions down to code fragments. This
classification scheme was used to aid the analysis of cloning in large software systems.
Balazinska et al. (2000) used a classification of function clones to produce software
aided re-engineering systems for code clone elimination.

The classification of cloning presented in this study differs from the above
categorizations both in the type of categorization and the goal of the work. In this
paper, cloning is categorized primarily from a motivational perspective, while other
categorizations focus on the structural properties of the clones. The goal of this paper
is not to categorize clones for purposes of refactoring but to document the types of
cloning that occurs in software to aid the general understanding of how cloning is
used in practice.

Several case studies on cloning in software systems have contributed to the source
of information for compiling these cloning patterns. Clone detection case studies
on the Linux kernel have been reported (Antoniol et al. 2002; Casazza et al. 2001;
Godfrey et al. 2000). Casazza et al. (2001) use metrics based clone detection to detect
cloned functions within the Linux kernel. The conclusions of this study were that
in general the addition of similar subsystems was done through code reuse rather
than code cloning, and more recently introduced subsystems tended to have more
cloning activity. Antoniol et al. (2002) did a similar study, evaluating the evolution of
code cloning in the Linux, concluding that the structure of the Linux kernel did not
appear to be degrading due to code cloning activities. Godfrey et al. present (Godfrey
and Tu 2000) a preliminary investigation of cloning among Linux SCSI drivers. The
authors recently investigated cloning in several large software systems (Kapser and
Godfrey 2003, 2004, 2006b). These studies provide insight into the types of code that
are cloned and why; in particular the authors (Kapser and Godfrey 2006b) describe
an in-depth investigation into the sources of duplication in the Apache httpd web
server.

Cordy reports on the use of code cloning as a method of minimizing and containing
risk during maintenance and extensions of financial software (Cordy 2003). Often
occurring in the form of customization, developers may use cloning to reuse the
design of an existing application. Cloning is also used to separate the dependencies

Empir Software Eng

of custom views on data that several modules or applications may have. Cloning in
this way prevents the introduction of bugs into working code, and confines testing to
a smaller subset of source code. Cordy also suggests that developers may not want
to universally propagate bug fixes across clones as this may break dependent code
(Cordy 2003).

Jarzabek et al. (Jarzabek and Shubiao 2003) and Basit et al. (2005) performed
case studies for reducing duplication in the Java buffer classes and the STL. In their
studies, they used a meta-language XVCL to reconstruct the code at compile time.
(Jarzabek and Shubiao 2003) report that many clones existed because of language
limitations and were removed using templates. Basit et al. (2005) show that the
STL made heavy use of generics to reduce redundant code but redundant code
still existed in a form analogous to customization and boiler-plating patterns where
operators were modified. In a recent study, (Rajapakse et al. 2007) studied the
effects of reducing cloning in web applications using server pages. During their study
they initially build a web application based on the requirements of an industrial
partner and then went through two stages of clone removals. While they were able
to reduce they size of the source code by 75%, during this process they made
several observations supporting our findings that not all cloning should be considered
harmful. First, the initial version of the web application was developed rapidly
because less time was spent trying to reduce duplicated code. In fact, as part of
their development process they cloned modules to accelerate development of new
ones. They also found that the overall performance of the final application was three
times slower than the initial version. Clone unification also adversely affecting the
overall evolvability of the software system. Six modules were unified into one, and
if a single feature was changed for one of the original six modules, all modules
would require retesting. Rajapakse and Jarzabek also suggested that distribution of
the application might be adversely affected because a large amount of unnecessary
code (embedded in branches of the unified module) must be distributed with the
application. Updates that are distributed may unnecessarily cause downtime if only
unused code us updated.

Balazinska et al. (1999a) measured the number of clones with various degrees
of similarity, and found that exact duplicates were the most common followed
by duplication with larger changes. The third and forth most prominent groups
appeared to be clones where the called methods have been changed or a global
variable has been changed. These last two types are similar to a templating pattern.

Research has also suggested that refactoring clones is not a major concern in
the maintenance process. While studying the use of refactorings in the evolution of
Tomcat, Rysselberghe and Demeyer compared the use of move method refactorings
for removing duplicated code and encapsulating similar functionality (Rysselberghe
and Demeyer 2003). Their findings show that developers are much more concerned
with grouping functionality than removing duplicated code.

Kim et al. studied how developers used copy-and-paste features of the Eclipse
IDE (Kim et al. 2004). In this study, they noted that developers often use copy-and-
paste to structure and guide the task of extending a software system. For example,
they noted that developers will sometimes copy a parent or sibling class to use as
a template for writing a new sibling class. Kim et al. also observed usage patterns
similar to the templating pattern noted here. The also observed that developers used
copy-and-paste to duplicate control structures, similar to our replicate and specialize

Empir Software Eng

pattern. The work presented here differs in that it focuses on how duplicated code
that persists in source code is used as part of a design decision.

Kim et al. studied the evolution of code clones over time (Kim et al. 2005). In
this study they grouped clones into clone classes and measured how often they were
changed together over a series of CVS checkins. They found that in many cases,
clones only remained in the source code for several days, and that many long lived
clones (clones that remained in the system for extended periods of time) could not be
easily refactored for a variety of reasons: standard refactoring techniques could not
be used, changes to design would be required, or because of programming language
limitations. They concluded that aggressive refactoring of clones was not always the
correct management decision for cloning and that many clones cannot be refactored.
They also suggest other maintenance techniques should be considered for this class
of clones. Our work differs in that we consider a single version of a public release
of the software. Therefore we do not consider short lived clones in this work or our
classification. We only analyze clones that have become integrated into the system.
Also, we evaluate clones based on their harmfulness or helpfulness in maintaining
software systems. This rating of the harmfulness is not limited to the feasibility of
refactoring the clones, although it is one part of our decision.

In order to empirically measure the common belief that cloning is harmful due
to the possibility of inconsistent updates, Aversano et al. closely analyzed how
clones are modified over time (Aversano et al. 2007). Defining a set of evolutionary
patterns based on the work of Kim et al. (2005), they analyzed how maintenance
activities affected clone classes. In particular, they investigated how and why some
code clone classes change together and others did not. Their findings show that in
the majority of cases, clone classes are changed together (classified as a consistent
change pattern (Aversano et al. 2007)), particularly in the case of bug fixes and other
forms of maintenance where it would be risky to not propagate changes to all clones.
Aversano et al. note that non-risky changes (such as modifying visibility of class
members) may not be propagated immediately but may be delayed (classified as a
late propagation pattern (Aversano et al. 2007)). They also found a large number of
clones evolved independently, indicating developers use cloning as a development
practice for starting new code (Aversano et al. 2007). Lozano et al. suggest that
cloning should not always be considered harmful as they do not generally pose a
risk of inconsistent updating. Lozano et al. (2007) report somewhat different results
to those of Aversano et al. on the same study subject, DNSJava. In their findings,
Lozano et al. report that most procedures that share a code clone do not co-change
together, and those procedures that do contain clones tend to change more often,
presumably because the developers are not aware of clone relationships between
procedures. This result would suggest that developers do not update clones together.
The difference in these results may be due to the differences in the clone detection
tools used. In the case of Aversano et al. an AST based clone detection tool similar
to the method proposed by Baxter et al. (1998) was used. This method of clone
detection has been shown to have very high precision but low recall (Bellon 2002;
Koschke et al. 2006). This may have resulted in overlooking types of clones that
have several changes. Lozano et al. chose to use CCFinder (Kamiya et al. 2002),
a parameterized suffix tree approach similar to the one presented in this paper.
This approach is shown to have very high recall but very low precision (Bellon
2002; Koschke et al. 2006). The low precision of this approach may have falsely

Empir Software Eng

indicated that many procedures have a cloning relationship when in reality they do
not, skewing the overall number of procedures with cloning that are not consistently
changed.

While interviewing and surveying developers and how they develop software,
LaToza et al. (2006) uncovered six patterns of cloning based on the motivation
for duplication: repeated work, example, scattering, fork, branch, and language.
Repeated work occurs when two or more developers unknowingly duplicate effort to
solve a similar problem. Example cloning is similar to our idioms and API patterns.
Scattering directly maps to our cross cutting concerns. Fork clones are similar to our
replication and customization and forking patterns. Branch is not strictly a clone,
but represents the repeated work required to propagate changes across branches of
the entire source tree. Language involves implementing the same code in multiple
languages. Two patterns, repeated work and language, are not covered by our cloning
patterns. This is likely due to the fact that clone detection algorithms are unlikely
to find these types of clones. The implementation details, either due to developer
design decisions or syntactic differences, vary largely enough that simple similarity
matching will not uncover this type of duplication. Based on these patterns, LaToza
et at. found that developers rarely clone code in the basic copy-and-paste fashion
cited in much of the literature. For each pattern, LaToza et al. found that less than
half of the developers interviewed thought the pattern was a problem. The findings
of LaToza et al. is another indication that most cloning is unlikely to be created with
ill intentions.

7 Conclusions

Code cloning is often presented as a negative design characteristic in software
systems, usually attributed to the limitations of the developers. Often referred to as a
bad “code smell”, many negative effects of code cloning have been cited as reasons to
remove code duplicates from source code. During our case studies of large software
systems, we found that code cloning can often be used in a positive fashion.

In this paper we list several patterns of cloning that are used in real software
systems. In our descriptions of these cloning patterns we discuss the pros and cons of
using cloning and suggest methods of managing these code clones. We also discuss
long term issues that may arise and provide concrete examples of these cloning
patterns in real software systems. These insights provide evidence to support the
notion that clones can be a reasonable design decision and that tools should be
developed with long term maintenance of duplicates in mind.

In the future we would like to identify more patterns of cloning, and develop
methods/tools to automatically identify these patterns in order to aid developers in
maintenance and refactoring decisions. We would also like to identify the degree to
which these patterns exist in software systems as well as occasions where using the
cloning pattern was a successful development method and when it was not.

References

Antoniol G, Villano U, Merlo E, Penta MD (2002) Analyzing cloning evolution in the linux kernel.
Inf Softw Technol 44(13):755–765

Empir Software Eng

Aversano L, Cerulo L, Di Penta M (2007) How clones are maintained: an empirical study. In: CSMR
’07: proceedings of the 11th european conference on software maintenance and reengineering.
IEEE Computer Society, Los Alamitos, pp 81–90

Baker BS (1995) On finding duplication and near-duplication in large software systems. In: WCRE
’95: proceedings of the second working conference on reverse engineering. IEEE Computer
Society, Washington, DC, pp 86–95

Balazinska M, Merlo E, Dagenais M, Lague B, Kontogiannis K (1999a) Measuring clone based
reengineering opportunities. In: Proceedings of the sixth international software metrics sympo-
sium. IEEE Computer Society, Los Alamitos, pp 292–303

Balazinska M, Merlo E, Dagenais M, Lague B, Kontogiannis K (1999b) Partial redesign of java
software systems based on clone analysis. In: The proceedings of the 6th. working conference on
reverse engineering. IEEE Computer Society, Los Alamitos, pp 326–336

Balazinska M, Merlo E, Dagenais M, Lague B, Kontogiannis K (2000) Advanced clone analysis to
support object-oriented system refactoring. In: Proceedings of the 7th. working conference on
reverse engineering. IEEE Computer Society, Los Alamitos, pp 98–107

Basit HA, Rajapakse DC, Jarzabek S (2005) Beyond templates: a study of clones in the STL and
some general implications. In: ICSE ’05: proceedings of the 27th international conference on
software engineering. ACM, New York, pp 451–459

Baxter ID, Yahin A, Moura L, Sant’Anna M, Bier L (1998) Clone detection using abstract syntax
trees. In: ICSM ’98: proceedings of the international conference on software maintenance. IEEE
Computer Society, Washington, DC, p 368

Bellon S (2002) Detection of software clones—tool comparison experiment. In: International work-
shop on source code analysis and manipulation. Montreal, October 2002

Brown WJ, Malveau RC, McCormick HW III, Mowbray TJ (1998) AntiPatterns: refactoring soft-
ware, architectures, and projects in crisis, 1st edn. Wiley, New York

Casazza G, Antoniol G, Villano U, Merlo E, Penta MD (2001) Identifying clones in the linux
kernel. In: First IEEE international workshop on source code analysis and manipulation. IEEE
Computer Society Press, Los Alamitos, pp 92–100

Coplien JO (1992) Advanced C++ programming styles and idioms, 1st edn. Addison Wesley,
Reading

Cordy JR (2003) Comprehending reality—practical barriers to industrial adoption of software main-
tenance automation. In: Proceedings of the 11th IEEE international workshop on program
comprehension. IEEE Computer Society, Los Alamitos, pp 196–206

Duala-Ekoko E, Robillard M (2007) Tracking code clones in evolving software. In: 29th interna-
tional conference on software engineering (ICSE 2007). IEEE Computer Society, Los Alamitos,
pp 158–167

Ducasse S, Rieger M, Demeyer S (1999) A language independent approach for detecting duplicated
code. In: Proceedings ICSM’99: international conference on software maintenance. IEEE Com-
puter Society Press, Los Alamitos, pp 109–118

Fowler M, Beck K, Brant J, Opdyke W, Roberts D (1999) Refactoring: improving the design of
existing code, 1st edn. Addison-Wesley Professional

Gamma E, Helm R, Johnson R, Vlissides J (1995) Design patterns: elements of reusable object-
oriented software, 1st edn. Addison-Wesley, Reading

Geiger R, Fluri B, Gall H, Pinzger M (2006) Relation of code clones and change couplings. In:
Fundamental approaches to software engineering, 9th international conference, FASE 2006,
Lecture notes in computer science, vol 3922. Springer, Heidelberg, pp 411–425

Godfrey MW, Tu Q (2000) Evolution in open source software: a case study. In: Proceedings of the
2000 international conference on software maintenance. IEEE, Piscataway, pp 131–142

Godfrey MW, Zou L (2005) Using origin analysis to detect merging and splitting of source code
entities. IEEE Trans Softw Eng 31(2):166–181

Godfrey MW, Svetinovic D, Tu Q (2000) Evolution, growth, and cloning in Linux: a case study.
A presentation at the 2000 CASCON workshop on ’Detecting duplicated and near duplicated
structures in largs software systems: Methods and applications’, on November 16, 2000, chaired
by Ettore Merlo. http://plg.uwaterloo.ca/~migod/papers/2000/cascon00-linuxcloning.pdf

Gusfield D (1997) Algorithms on strings, trees, and sequences: computer science and computational
biology. Cambridge University Press, New York

Higo Y, Kamiya T, Kusumoto S, Inoue K (2004) Aries: refactoring support environment based on
code clone analysis. In: The 8th IASTED international conference on software engineering and
applications (SEA 2004). MIT, Cambridge, pp 222–229

http://plg.uwaterloo.ca/~migod/papers/2000/cascon00-linuxcloning.pdf

Empir Software Eng

Jarzabek S, Shubiao L (2003) Eliminating redundancies with a “composition with adaptation” meta-
programming technique. In: ESEC/FSE-11: proceedings of the 9th European software engineer-
ing conference held jointly with 11th ACM SIGSOFT international symposium on Foundations
of software engineering. ACM, New York, pp 237–246

Jiang L, Misherghi G, Su Z, Glondu S (2007) DECKARD: scalable and accurate tree-based detection
of code clones. In: ICSE ’07: proceedings of the 29th international conference on software
engineering. IEEE Computer Society, Los Alamitos, pp 96–105

Johnson JH (1994) Substring matching for clone detection and change tracking. In: Proceedings of
the international conference on software maintanence. IEEE, Piscataway, pp 120–126

Kamiya T, Kusumoto S, Inoue K (2002) CCfinder: a multilinguistic token-based code clone detection
system for large scale source code. IEEE Trans Softw Eng 8(7):654–670

Kapser C, Godfrey MW (2003) Toward a taxonomy of clones in source code: a case study. In:
Evolution of large scale industrial software architectures. Amsterdam, 23 September 2003

Kapser C, Godfrey MW (2004) Aiding comprehension of cloning through categorization. In: Proc. of
2004 international workshop on principles of software evolution (IWPSE-04). IEEE Computer
Society, Los Alamitos, pp 85–94

Kapser C, Godfrey MW (2005) Improved tool support for the investigation of duplication in
software. In: ICSM ’05: proceedings of the 21st IEEE international conference on software
maintenance (ICSM’05). IEEE Computer Society, Washington, DC, pp 305–314

Kapser C, Godfrey MW (2006a) ‘Cloning considered harmful’ considered harmful. In: WCRE
’06: proceedings of the 13th working conference on reverse engineering (WCRE 2006). IEEE
Computer Society, Washington, DC, pp 19–28

Kapser CJ, Godfrey MW (2006b) Supporting the analysis of clones in software systems. J Softw
Maint Evol Res Pract 18(2):61–82

Kiczales G, Lamping J, Menhdhekar A, Maeda C, Lopes C, Loingtier J-M, Irwin J (1997) Aspect-
oriented programming. In: Akit M, Matsuoka S (eds.) Proceedings European conference on
object-oriented programming, vol. 1241. Springer, Berlin Heidelberg New York, pp 220–242

Kim M, Bergman L, Lau T, Notkin D (2004) An ethnographic study of copy and paste programming
practices in oopl. In: ISESE ’04: proceedings of the 2004 international symposium on empirical
software engineering (ISESE’04). IEEE Computer Society, Washington, DC, pp 83–92

Kim M, Sazawal V, Notkin D, Murphy G (2005) An empirical study of code clone genealogies. In:
ESEC/FSE-13: proceedings of the 10th European software engineering conference held jointly
with 13th ACM SIGSOFT international symposium on foundations of software engineering.
ACM, New York, pp 187–196

Komondoor R, Horwitz S (2001) Using slicing to identify duplication in source code. In: SAS
’01: proceedings of the 8th international symposium on static analysis. Springer, Heidelberg,
pp 40–56

Kontogiannis K, DeMori R, Merlo E, Galler M, Bernstein M (1996) Pattern matching for clone and
concept detection. Autom Softw Eng 3(1/2):77–108

Koschke R, Falke R, Frenzel P (2006) Clone detection using abstract syntax suffix trees. In: WCRE
’06: proceedings of the 13th working conference on reverse engineering (WCRE 2006). IEEE
Computer Society, Washington, DC, pp 253–262

Krinke J (2001) Identifying similar code with program dependence graphs. In: WCRE ’01: proceed-
ings of the eigth working conference on reverse engineering (WCRE 2001). ACM, New York,
pp 301–309

LaToza T, Venolia G, DeLine R (2006) Maintaining mental models: a study of developer work
habits. In: ICSE ’06: proceedings of the 28th international conference on software engineering.
IEEE Computer Society, Los Alamitos, pp 492–501

Lozano A, Wermelinger M, Nuseibeh B (2007) Evaluating the harmfulness of cloning: a change
based experiment. In: MSR 2007: proceedings of the 4th int’l workshop on mining software
repositories. IEEE Computer Society, Los Alamitos, pp 18–22

Mayrand J, Leblanc C, Merlo E (1996) Experiment on the automatic detection of function clones
in a software system using metrics. In: Proceedings of the international conference on software
maintenance. IEEE Computer Society Press, Los Alamitos, pp 244–253

Mockus A, Fielding R, Herbsleb J (2000) A case study of open source software development: the
Apache Server. In: Proceedings of the 22nd international conference on software engineering
(ICSE 2000). ACM, New York, pp 263–272

Rajapakse D, Stan Jarzabek S (2007) Using server pages to unify clones in web applications: a trade-
off analysis. In: Proceedings ICSE ’07: 29th international conference on software engineering.
IEEE Computer Society, Los Alamitos, pp 116–126

Empir Software Eng

Rysselberghe FV, Demeyer S (2003) Reconstruction of successful software evolution using clone de-
tection. In: IWPSE ’03: proceedings of the 6th international workshop on principles of software
evolution. IEEE Computer Society, Washington, DC, p 126

Toomim M, Begel A, Graham SL (2004) Managing duplicated code with linked editing. In: VLHCC
’04: proceedings of the 2004 IEEE symposium on visual languages - human centric computing
(VLHCC’04). IEEE Computer Society, Washington, DC, 173–180

Ukkonen E (1995) On-line construction of suffix trees. Algorithmica 14(3):249–260
Walenstein A, Jyoti N, Li J, Yang Y, Lakhotia A (2003) Problems creating task-relevant clone

detection reference data. In: Proceedings of the 10th working conference on reverse engineering
(WCRE-03). IEEE Computer Society, Los Alamitos, pp 285–294

Cory J. Kapser graduated from the University of Alberta with a B.Sc. in Computer Science in
2002. He is currently pursuing a Ph.D. at the David R. Cheriton Computer Science, University
of Waterloo under the supervision of Dr. Michael Godfrey. Currently he is interested in analysis
and comprehension of large software systems.

Michael W. Godfrey is Associate Professor at the David R. Cheriton School of Computer Science
in the University of Waterloo, where he is also a member of SWAG, the Software Architecture
Group. He holds a PhD in Computer Science from the University of Toronto (1997), and be-
tween 2001 and 2006 he held an Associate Industrial Research Chair in telecommunications soft-
ware engineering sponsored by Nortel Networks and NSERC. His main research area is software
evolution: understanding how and why software changes over time. His research interests include
empirical studies, software tool design, reverse engineering, and program comprehension.

	``Cloning considered harmful'' considered harmful: patterns of cloning in software
	Abstract
	Introduction
	Code Cloning
	Motivations to Clone Code
	Effects of Cloning

	Patterns of Cloning
	Forking
	Hardware Variation
	Platform Variation
	Experimental Variation

	Templating
	Boiler-plating Due to Language Inexpressiveness
	API/Library Protocols
	General Language or Algorithmic Idioms
	Parameterized Code

	Customization
	Bug Workarounds
	Replicate and Specialize

	Exact Matches
	Cross-cutting Concerns
	Verbatim Snippets

	Empirical Evaluation
	Study Setup
	Detecting the Clones
	Sample Selection
	Clone Presentation

	Classification Criteria
	Study Subjects
	Sample Set
	Results
	Cloning in Apache httpd
	Cloning in Gnumeric

	Case Study Discussion
	Threats to External Validity

	Discussion
	Related Work
	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

