Unified Use Case Statecharts:
Case Studies

Davor Svetinovic! ~ Daniel M. Berry> Nancy A. Day?
Michael W. Godfrey?

June 4, 2007

Abstract

This paper presents the results of case studies evaluating a method of uni-
fying use cases (UCs) to derive a unified statechart model of the behavior of
the domain of a proposed computer-based system. An evaluation of the uni-
fication method, the obtained statechart model of the domain, the method’s
and model’s feedback on the UCs themselves, and how the method is used in
requirements engineering practice was carried out by examining 58 software
requirements specifications produced by 189 upper-year undergraduate and
graduate students. The results of these studies independently confirm some
of the benefits of building a unified SC mentioned in the works of Glinz;
Whittle and Schumann; and Harel, Kugler, and Pnueli.

1 Introduction

Analyzing and specifying the behavior of a computer-based system’s (CBS’s) do-
main is a very hard requirements engineering (RE) task. Teaching people how to
perform this task is even harder [14].

The goal of an RE effort is to elicit and analyze requirements, and eventually
to specify in a Software Requirements Specification (SRS) document CBS’s de-
sired behavior and properties, i.e., the CBS’s requirements. The portion of the

nstitute of Computer Technology, Vienna University of Technology, A-1040 Vienna, Austria.
ZDavid R. Cheriton School of Computer Science, University of Waterloo, Waterloo, Ontario,
Canada.

real world that a CBS is supposed to automate is the CBS’s domain. During RE
analysis for a CBS, the analysts typically develop the behavioral domain model,
which is a model of the behavior of the CBS’s domain. In use-case-driven re-
quirements analysis methods [e.g., 15], the first task analysts perform in modeling
the behavior of the CBS being built is to write use cases (UCs) that describe the
CBS’s intended behavior. A UC of a CBS is one particular way some user of
the CBS uses the CBS to achieve stakeholders’ goals. Domain experts and ana-
lysts together typically capture UCs during and after requirements elicitation from
many stakeholders, each with a different perspective. The description of a UC is
typically given at the shared-interface level, showing the CBS as a monolithic
black box. From these UCs, the analysts begin to model the entire CBS’s do-
main. A popular notation for modeling behavior is statecharts [9], and among the
artifacts that can be included in the SRS for a CBS, are a UC statechart, a state-
chart representation of each UC of the CBS; and a unified UC statechart, which
is a statechart representation of the CBS’s domain. In object-oriented analysis
(OOA), the analysts break down and describes the entire CBS’s domain in terms
of objects that are used later as a main source of objects for object-oriented design
(OOD). Conceptual analysis is this whole process of discovering and specifying
concepts from a domain.

Each of the authors has been involved in teaching a course titled “Software
Requirements Specifications” (CS445)° at the University of Waterloo for some
periods during the last six years. The term-long group project for this course is to
determine the requirements and to write an SRS for a large VoIP system and its
information-management system (IMS). The specification of this CBS involves
using a use-case-driven approach that results in an SRS with

1. formal finite-state modeling in SDL [1] for the real-time VoIP system com-
ponents and

2. the notations of UML [19] for the IMS components.

In addition, students are responsible for modeling user interfaces of the IMS and
for the overall management of the requirements specification process. The average
size of the resulting SRS document for the whole CBS is about 120 pages, with
actual sizes ranging from 80 to 250 pages. The estimated effort required for a
proper specification of this CBS is approximately 400 person hours.

During the last six years, we have observed the production of and have eval-
uated the SRSs, including UC specifications, produced by 910 students, working

3http://se.uwaterloo.ca/~dberry/cs445w06

2

in 3- or 4-person teams. We have observed that the typical result of this initial UC
capture is a set of UCs with missing functionality, unrelated functionality across
multiple abstraction levels, inconsistent amounts of detail in the form of over and
under specification, and problems arising from the difficulty of abstracting from
multiple UCs to the big picture of the domain. These observations are consistent
with those of other authors [e.g., 17]. In short, the quality of the UCs is not good.
Specifying consistent, high quality UCs is hard.

Specifying high quality UCs is necessary because of their central role in UC-
driven requirements analysis methods, such as OOA. In these methods, UCs drive
subsequent analysis, design, and coding. Any problem with the UCs propagates
through the rest of the development process and infects the artifacts that are pro-
duced. Therefore, it is essential to expose problems with UCs as early as possible.

Our observations let to some preliminary studies of the nature of the difficulty
[23]. Svetinovic began his Ph.D. research to find a way to teach the students to
do a better job in their projects. We explored the literature on UC-driven analysis
methods [e.g., 4, 8, 15]. We examined different variations of these methods on
some CBS domain modeling problems. We experimented with advice to give
to the students about these methods. With the students’ help and feedback, we
slowly iterated to a method that our students were able to apply and with which
the quality of the resulting SRSs was noticeably improved. The method, which
builds on using statecharts to model UCs and then unifying the UC statecharts
into a unified UC statechart [6, 26, 11], is called UCUM (Use Case Unification
Method). One of us, Berry, taught a graduate course titled “Advanced Topics in
Requirements Engineering” (CS846)* once at the University of Waterloo. One
of the goals of this course was to explore the impact of method modifications in
a more controlled environment than possible in the CS445 course. The students
were asked to apply the methods of CS445 on a smaller problem, the controller
for a two-elevator system in a low-rise building.

This paper describes the thinking that led to unified UC statecharts and to
UCUM and includes a detailed description of the authors’ observations of a group
of students working through the process of building a unified UC statechart. The
usefulness of unified UC statecharts and the effectiveness of UCUM were vali-
dated through evaluation of 58 SRSs specified by 189 upper-year software engi-
neering, electrical and computer engineering, and computer science undergrad-
uate and graduate students. Out of these 58 SRSs, 46 were produced by 3- or
4-person teams and 12 SRSs were produced by single-person teams. Each of

‘http://se.uwaterloo.ca/~dberry/ATRE/ElevatorSRSs/

these 189 students had none to several years of software development experience.

Section 2 reviews the problems with UC-driven requirements analysis meth-
ods as we experienced them. Section 3 explains the research method and its lim-
itations. Section 4 describes unified UC statecharts, the main artifact produced
in UCUM and UCUM itself. Section 5 presents a very detailed first case study
of UCUM use. Section 6 evaluates UCUM as a method by examining the first
and two other case studies of UCUM use. Section 7 describes related work, and
Section 8 concludes the paper.

2 The Problem

A traditional non-UC-driven RE method focuses on eliciting and specifying func-
tional, data, and non-functional requirements as distinct entities, without really
considering their context. Such a method results often in a SRS that is difficult for
both users and CBS’s designers to understand.

The failure to explicate the connections among the different kinds of require-
ments makes it difficult to determine if the SRS is complete, consistent, and cor-
rect. UCs [e.g., 12, 2] have helped solve some of these problems, at least for
functional requirements. The ability to integrate and present functional require-
ments from the users’ perspectives in UCs has made UCs particularly useful for
users. Because UCs present functional requirements as observed by a user, it is
easier to identify missing functions, and makes it possible to write a more consis-
tent and complete SRS that is understood by both the user and the analyst [e.g.,
2].

In the typical UC-driven requirements analysis method, UC discovery is fol-
lowed by drawing sequence diagrams for the UCs [e.g., 15] and then creating a
conceptual model and a behavioral model per concept. This kind of approach had
been taught to the CS445 students for several years. A less common alternative
method is to follow UC discovery by drawing UC statecharts [4, 15, 8]. Never-
theless, in each method, a UC is the artifact at the widest scope. Scope refers to
the number of functional requirements captured and specified using an artifact. A
sequence diagram for a UC, a UC statechart, or any other description of a UC is
at a scope equal to or less than that of the UC, i.e., it captures at most the same
number of functional requirements and relationships among them as does the UC.
To arrive at the big picture behavioral domain model, it was necessary to proceed
in the opposite direction, i.e., to widen the scope captured in an artifact.

Following this direction, we realized that maybe some new artifact based on

the UCs would allow analysts to produce even more complete, consistent, and
correct SRSs, and behavioral domain models in particular. Perhaps, the same way
that UCs help put functional requirements into context, this new artifact based on
the UCs would help an analyst to achieve the following five goals:

e detecting and fixing missing functionality,
e detecting and fixing functionality across multiple abstraction levels,

e detecting and fixing inconsistent amounts of detail, i.e., over and under
specification,

e discovering relationships, e.g., concurrency among UCs and functional re-
quirements and concepts, and

e finding a big picture behavioral domain model.

We realized that instead of decomposing the UCs, as suggested in many UC-
driven requirements analysis methods, it might be better to unify the UCs into a
behavioral domain model using statecharts, as suggested by others [6, 26, 11].

Therefore, our hypothesis is that unifying the UCs into a behavioral domain
model using statecharts helps an analyst to achieve the five goals discussed in the
preceding paragraph.

3 Research Method

The idea of unifying UCs into a unified UC statechart is due to Glinz; Whittle and
Schumann; and Harel, Kugler, and Pnueli [6, 26, 11]. The students did not fol-
low any of these authors’ proposed methods per se. Instead, the students used the
underlying UC integration idea and basic integration steps common to all these
methods to manually unify UCs into a unified UC statechart. Rather than hav-
ing students follow a strict method, the idea was to have students tackle building
unified UC statecharts as an engineering problem that they had to solve. The first
author of this paper used a small domain as an exercise during the tutorials to have
students work from scratch on applying and refining a simple manual method, i.e.,
UCUM, for unifying use cases into a unified UC statechart. This exercise is the
Turnstile case study described in Section 4, which describes UCUM and discusses
the results of this initial exercise of specifying a behavioral domain model using
statecharts.

UCUM was presented and refined during three tutorial sessions with almost
140 students in attendance over the three sessions. UCUM was tailored through
practical work on a concrete domain. The way UCUM was presented allowed a
student to observe the reasoning of other students and evaluate pitfalls that would
help her complete her main course project. Only after specifying UCUM and
only after completing all case studies, we compared the students’ results with
those of the work that inspired UCUM. This comparison is presented as part of
the description of related work in Section 7.

3.1 Threats to Validity

The contribution of this paper is a retrospective, after-the-fact analysis of the re-
quirements engineering exercises performed during the courses. No experimental
controls were applied during the courses, and there were no restrictions on the stu-
dents’ behavior beyond the normal restrictions applied during in-class exercises
and in long-term course projects, e.g., standard measures to prevent academic dis-
honesty. In particular, the course staff

1. did not require the strict use of the method presented in tutorials by the
students, beyond the basic core UCUM,

2. did not require any particular group organization or division of work, and

3. did not limit the size of the CBS, of the CBS’s domain, or of any artifact
produced.

Finally, each analyzed behavioral domain model was just one part of a complete
SRS produced in the exercises. With respect to the first non-exercised control,
not only was the exclusive use of UCUM not enforced, but students were in fact
encouraged to extend and adapt UCUM as they progressed with their projects and
obtained feedback on UCUM itself. Clearly, there is too much variability for these
case studies to be considered controlled experiments. Thus, the threats to validity
of these case studies are exactly the same as in any other uncontrolled software
engineering study.

Nevertheless, the large number of subjects and the high consistency of the
results of the case studies in spite of all the variability provides strong support for
accepting the finding of the case studies.

The more important question is whether the results presented in this paper can
be generalized to apply to practicing professional software engineers. Given that

1. each student subject of the case studies was an upper year undergraduate
or a graduate student; the typical undergraduate student subject had from
one to two years of industrial software engineering experience through the
University of Waterloo’s co-operative education program; and an occasional
graduate student had worked as a software engineer prior to coming to grad-
uate school,

2. each of statechart modeling and UC modeling is applicable to a broad class
of problems,

3. each of statechart modeling and UC modeling is widely used in industry,
and

4. each of statechart modeling and UC modeling is widely taught in universi-
ties,

the results present here could be generalized at least to apply to a recently gradu-
ated software engineer who is joining a new or already existing software develop-
ment project in which statechart modeling or UC modeling is applied.

4 Unified UC Statecharts

UCUM is based on a simple idea inspired by observing practice: an effective way
to unify a complete set of UCs into a behavioral domain model for the CBS is
to perform the unification in the statechart notation. That is, if each UC in the
set can be described with a UC statechart [e.g., 4, 8], then it should be possible
to merge these UC statecharts into a unified UC statechart that serves as a high
quality behavioral domain model® of the CBS [6, 26, 11].

The method depends on the analysts’ having specified the UCs’ behaviors in
UC statecharts. However, after practice, an analyst can learn to proceed directly
from UCs to a unified UC statechart without having given UC statecharts for the
UCs. Indeed, we found many a student skipping the production of UC statecharts
and still producing a good unified UC statechart. Douglass [4] summarizes the
advantages of specifying a UC’s behavior using a UC statechart:

Note, this model should not be confused with any high-level business model. The difference
is in the abstraction and decomposition levels.

Another means by which UC behavior can be captured is via state-
charts. These have the advantage of being more formal and rigor-
ous. However, they are beyond the ken of many, if not most, do-
main experts. Statecharts also have the advantage that they are fully
constructive—a single statechart represents the full scope of the UC
behavior.

Statecharts have an additional advantage of being able to help an analyst to
unify a set of UC statecharts into a single unified UC statechart. Unifying UCs
using a single unified UC statechart widens rather than narrows scope in terms
of the number of functional requirements taken into consideration, i.e., a single
unified UC statechart binds together the requirements from all UCs rather than
just requirements from one UC. Widening scope leads to exposing problems that
might still exist in the individual UCs in the same way that widening scope during
the unification of functional requirements leads to exposing problems that exist
in the individual functional requirements. This integration method produces a
model of increased complexity since it captures a larger number of functional re-
quirements and their relationships than without the method. Producing this model
and managing its larger complexity facilitates detecting missing requirements and
inconsistencies.

The rest of this section discusses the semantics of unified UC statechart models
and then describes the process of UCUM. Note that we defined the semantics of
unified UC statechart models only after all the case studies were finished. We
started with a simple semantics in which a state is either

e any configuration of variable values, or
e an activity of interest,

but this definition was insufficient for the specification of the unified UC state-
charts for even a small CBS due to the additional information that needed to be
captured as part of unified UC statecharts.

4.1 Unified UC Statechart Model Semantics

A statechart is a higraph, a general kind of diagramming object based on graphs
and sets [10], that can be used to model different aspects of a software system.
Thus the first, and most important, step in using statecharts is to clearly state what
is being modeled. An explicit agreement is needed on what a state represents.

While there are various definitions of “state” in the literature, Douglass’s defini-
tion summarizes a common view: “A state is an ontological condition that persists
for a significant period of time.” [4] In practice, a state is used to capture any
configuration of the object’s variables or any activity occurring within the system
being modeled [e.g., 4]. For the purposes of behavioral domain modeling, the
most appropriate semantics for a state in a unified UC statechart is as a postcon-
dition, as a reflection of goals, as in goal-driven RE [e.g., 18, 24].

Goal-driven RE focuses on identification of the goals, as a prerequisite for
requirements specification. Goal-driven RE focuses on ensuring that the CBS
being built actually fulfills the users’ goals. This focus requires shifting away
from considering what a CBS should do to considering why the CBS should do
what it does. In other words, the main focus is on requirements rationale.

Although goal-driven RE focuses on determining CBS requirements through
analysis of users’ personal and business goals, goal-driven RE has been used to
enhance traditional RE methods, among which are UC-driven requirements anal-
ysis methods [e.g., 2]. In the case of UCUM, it was natural to start by determining
the UCs for a CBS being built by considering the goals for the CBS. The preser-
vation of the goals, and postconditions in particular, as states in the unified UC
statechart followed.

Goals capture the intentions and the target conditions for the entity under anal-
ysis. For example, in the case of an elevator system, a goal for an elevator is to
deliver passengers to their requested floors. This goal captures both the in-
tention of delivering passengers and the rarget condition of arriving at the
passengers’ requested floors. This particular goal captures the rationale for an
elevator’s responsibility for carrying each passenger from a floor to a floor.

In other words, a UC’s goals are achieved through a sequence of activities
each of which is described by a functional requirement. Each goal can exist at an
abstraction level different from those of other goals. For example, continuing with
the elevator CBS example, the decomposition of the goal deliver passengers to
their requested floors might include such lower-level goals as move elevator
cab, stop elevator cab, pick up a passenger, etc. That is, the higher-level
goal of delivering passengers to their requested floors becomes a functional
requirement for the lower-level goals in its goal decomposition. Thus, the goal
decomposition hierarchy provides traceability among the goals.

Therefore, a state in a unified UC statechart for a CBS’s domain is more gen-
eral than a traditional state, which is only a configuration of values of CBS vari-
ables and which can be very tedious to specify when there are many variables in
a CBS. A state in a unified UC statechart can be either

e an activity in the CBS, or

e a goal that captures the target condition of a part of the CBS or of the entire
CBS.

In the latter case, the goal represents the postcondition that describes the impact
that the activity in the previous state or on the incoming transition has on the CBS.
Therefore, we note that the semantics of transitions in unified UC statecharts is
consistent with that in traditional statecharts, while the semantics of states differs.
In addition, in each presented case study, each statechart conforms to UML 1.x
or UML 2.0 statechart syntax and semantics [19]. This underlying behavioral
domain model semantics is consistent with Glinz’s [5, 7].

“Why not use UML activity diagrams [19] instead of statecharts?”” was asked
many times because of the presence of states representing activities in the unified
UC statecharts. There are several reasons:

e The activity diagram notation is harder to use because of its different inter-
pretations; e.g., an activity diagram can be viewed as a statechart, as a Petri
net, or as a flowchart [4].

e Laying out and managing a large activity diagram is more difficult, in our
experience, than laying out and managing a large statechart.

e By definition, it is harder to show, using activity nodes, anything but activ-
ities in an activity diagram [4], implying that it is harder to show different
abstraction levels in an activity diagram for anything but activities.

e For any interactive system, there can be many external asynchronous and
internal synchronous events, in addition to the implicit activity-completion
events for which an activity diagram is tailored, and these are all easier to
represent using statecharts.

Moreover, we did not find any feature provided by activity diagrams that is not
provided by statecharts.

4.2 Process

UCUM is derived from several sources. UCUM is primarily Larman’s UC-driven
iterative method [15]. The principles of constructing a unified UC statechart are
based on Douglass’s and Gomaa’s principles of UC statechart construction [4, 8].

10

UCUM emerged from our literature review, practice on our own examples,
and the preliminary work with students on specification of a Turnstile CBS, that is
described in Section 5. We recommended UCUM to the students for their projects,
and encouraged them to modify UCUM based on the experiences gained through
their work. The sequential ordering of steps given here is only for exposition
purposes. The students were taught both sequential and iterative processes, and
each unit, individual or group, was allowed to use whatever it thought would be
more effective. We now define UCUM:

For the CBS S to be built:

Step 1: Specify UCs:
e Identify S’s main goals and UCs.

e For each of S’s UCs, U, write a clear description of U with indications of
U’s actors; the data exchanged in U between S and S’s environment; and
U’s preconditions, postconditions, and invariants.

e Draw a UML UC diagram showing all of S’s UCs, to emphasize the rela-
tionships that exist among the UCs.

Step 2: Group UCs into domain subsystems:

e Group the UCs into domain subsystems according to the UCs’ business
concerns. This grouping yields the first level of the decomposition of S’s
domain D into groups of related business concerns, i.e., the first-level do-
main subsystems of D.

e Show the decomposition of the UC diagram using UML package notation.

e Repeat Step 2 for any domain subsystems of any level of D that can be
further decomposed.

Step 3: Draw UML system sequence diagrams [15] for the UCs of .S, in order
to be able to identify D’s external interface. In each of these system sequence
diagrams, S'is considered as a black box. For each UC U, draw U’s UML system
sequence diagram, in order to be able to identify U’s contributions to D’s external
interface.

Step 4: Specify the unified UC statechart:

11

e Merge the activities of all UCs of .S to build a unified UC statechart for S’s
domain, D, either (1) directly or (2) by drawing a UC statechart for each
UC of S and then merging all these UC statecharts into a single unified UC
statechart.

e If any problem is detected in any UC during the building of the unified UC
statechart for D, then fix the UC. These problems can include, but are not
limited to, abstraction level clashes, missing operations, redundant opera-
tions, inconsistent terminology and improper ordering of operations.

e Simplify the unified UC statechart using concurrent and sub-machine states.

To reduce unified UC statechart rework due to activity refinements, we used the
rule: If an activity clearly needs no further decomposition then model it as a tran-
sition action, a state’s internal action, or a state’s internal activity; otherwise model
it as a sub-machine state.

The next section shows an example of an application of UCUM.

5 Turnstile Case Study

The Turnstile case study (TCS) concerns the collaborative production of three
unified UC statecharts during three tutorial sessions of the CS445 and CS846
courses®. The three unified UC statecharts were of the same CBS, the Turnstile
CBS, described in an example SRS at the course Website”.

The starting point for building unified UC statecharts was the set of UCs
identified in the example SRS. The first unified UC statechart was produced by
12 CS846 students, the second unified UC statechart was produced by about 80
CS445 students, and the third unified UC statechart was produced by about 50
(CS445 students.

The primary value of the exercise was observing:

o three different groups of about 140 students altogether thoroughly analyzing
a small CBS’s domain to produce unified UC statecharts, and

®Note, the case study description includes all steps as recommended to the students for their
projects and as described in Section 4.2. Some of the steps in this case study are simplified and do
not fully conform to the steps of the process either due to the way initial UCs were specified, e.g.,
there are no specified goals in Step 1, or due to the simplifications made due to the simplicity of
the problem itself.

"http://se.uwaterloo.ca/~dberry/cs445w06/turnstilesystem.pdf

12

o the feedback the production of these unified UC statecharts had on the UCs
in the earlier, Website-published, and supposedly polished UCs?.

The goal of each session was to help the students learn UCUM by a process of
facilitated collaborative self-discovery of the steps necessary to produce a unified
UC statechart. While the teaching assistant, who is the first author of this paper,
tried his best to let the students go where they wanted, the author’ did step in
to prevent them from going too far astray, and the author did ask some leading
questions that helped students notice things that the author could see they were
overlooking.

It was valuable also to see the quality of unified UC statecharts produced by
undergraduate students who were novices at statechart modeling. The case study
showed also the amount of improvement in the quality of modeling that can be
expected when many people are attacking a small problem.

The diagrams in the rest of this section are cleaned up from those produced
during the third and final tutorial session.

5.1 Stepl

The first step is to specify UCs. Figure 1 shows the three main UCs from the orig-
inal Turnstile SRS'? and the context diagram with a domain boundary definition,
based on UC descriptions. There are two identified actors: Visitor and Operator.
Operator is the initiator of the UC2 and UC1, and Visitor is the initiator of the
UCS3. Turnstile consists of the Turnstile hardware and the control software, and
it serves as the <system>> in the context diagram and as System in the UCs'!.

5.2 Step 2

The second step is to group UCs into domain subsystems according to their busi-
ness concerns in order to produce a more refined decomposition of the CBS’s
domain into domain subsystems. An effective way to document these domain
subsystems is with UML packages superimposed on the UC diagrams. One can

$http://se.uwaterloo.ca/~dberry/cs445w06/turnstilesystem.pdf
9The unadorned noun “author” in the rest of Section 5 refers to the first author of this paper
who guided these tutorial sessions.
Onttp://se.uwaterloo.ca/~dberry/cs445w06/turnstilesystem.pdf
nttp://se.uwaterloo.ca/~dberry/cs445w06/turnstilesystem.pdf

13

<<system>>
Turnstile

%

A

Visitor

UC1: Turn Off System

1. Operator turns off Turnstile

2. System resets counters for available
entries and visitors

3. System locks barrier

4. System stops responding to events
except “turn on”, shall return payment
immediately if it was made at this point

UC2: Turn On System
1. Operator turns on Turnstile
2. System (again) accepts external events

Operator

UC3: Enter Area

1. Visitor inserts payment

2. System concludes payment can
purchase one entry

3. System updates the number of available
entries

4. System unlocks barrier

5. Visitor pushes barrier

6. System rotates barrier

7. System notes visit, increments visitor
count

8. System locks barrier

Figure 1: Use Cases

further decompose domain subsystems into lower-level domain subsystems that
correspond to more refined groupings of UCs into business concerns.

Figure 2 shows the main UC diagram with the CBS’s domain boundary de-
fined. During the tutorials, students attempted to group UCs according to the UCs’
business concerns, but the students were not able to reach consensus. Therefore,
the students decided to proceed without the grouping UCs, with the understanding
that the grouping could be done later if necessary. The only proposed grouping,
suggested during one of the tutorials, was to place UC2 and UCT1 into one sub-
system and to put UC3 into another. This breakdown made sense because the
common business concern of UC2 and UC1 is managing systems status, while
the business concern of UC3 is controlling access to restricted area. Yet, many
students did not agree to this grouping since they perceived UC2 and UC1 as sup-
porting UC3 and thus having the same business concern as the UC3. In addition,
the students who were in favor of the proposed grouping had difficulty in naming
the resulting domain subsystems properly.

Grouping UCs into domain subsystems is neither required nor crucial because
this grouping only facilitates further decomposition of the domain into concepts
during conceptual analysis, i.e., conceptual analysis can be done even without
grouping of UCs into domain subsystems. Therefore, given that time was limited,
the students decided to proceed with following steps and come back to this step
later if necessary. Also, the small size of the Turnstile CBS made it difficult to
group UCs into meaningful domain subsystemes, i.e., the decomposition of domain
into domain subsystems did not seem essential due to the CBS’s small size. This

14

<<system>>

Turnstile
Visitor Operator

Figure 2: Use-Case Diagram

specification was perfectly clear without the help of the domain subsystems.

5.3 Step3

The third step is to define UC system sequence diagrams. The goal of this step is
to define the domain’s external interface. It is important to clearly identify input
and output events for the specification of the unified UC statechart in the next step.

Figure 3 shows the UC system sequence diagrams for the three identified UCs.
The students detected only external interfaces that capture input to the system.
There were several indications of possible output from the system, in Operations'?
2 and 3 of UC1, and Operations 3, 4, 5, 6, 7 and 8 of UC3. These outputs were
not included in the diagrams because a majority of the students considered them
to be internal communication rather than communication between the domain and
domain’s environment.

5.4 Step4

The fourth step is to specify the unified UC statechart. This step is the largest and
most important in UCUM and is also the most difficult. For each UC, the students
had to merge the UC with the unified UC statechart built so far. The students had
the option to specify the UC’s statechart separately before merging it with unified
UC statechart.

12A step of a UC is called an “operation” to avoid confusion with a step of the construction
carried out in the TCS.

15

1. Operator turns off Turnstile <<system>>
2. System resets counters for available Turnstile

UC1: Turn Off System 7%

entries and visitors

3. System locks barrier

4. System stops responding to events
except “turn on”, shall return payment
immediately if it was made at this point

Ope‘rator
| turn off

<<system>>
UC2: Turn On System Turnstile

1. Operator turns on Turnstile !

|
2. System (again) accepts external events Opefator

T
|
! turn on i
; i
| |
| I
| I
! i
UC3: Enter Area
1. Visitor inserts payment
2. System concludes payment can purchase <<system>>
one entry ‘ Turnstile
3. System updates the number of available it
entries |s}| o

insert payment

4. System unlocks barrier
5. Visitor pushes barrier

|

i
6. System rotates barrier i push

I

I

I

7. System notes visit, increments visitor count

T
|
I
I
J
|
|
I
I
i
8. System locks barrier i

Figure 3: System Sequence Diagrams

16

If the students were to detect any problems with the UCs, the system se-
quence diagrams, or the system boundary definition, then they were supposed
to fix them. Most often, these problems were found in the UC currently being
currently merged with the unified UC statechart — problems such as inconsis-
tent abstraction levels, missing operations, redundant operations, and improper
step order. After each UC was merged, the students were advised to attempt to
simplify the unified UC statechart using concurrent and sub-machine states.

Additional advice the students received included:

e Use a statechart action to capture an activity only if it is certain that there
is no need for further decomposition of that activity. Otherwise, the activity
should be modeled as a sub-machine state.

e Use a statechart internal action or a statechart internal activity to capture
an activity only if it is certain that there is no need for further decomposition
of that activity. Otherwise, the activity should be modeled as a sub-machine
state.

The purpose of these recommendations was to minimize required rework if an
activity were to need further decomposition.

Figures 4 through 21 show the step-by-step construction of the unified UC
statechart for the Turnstile. The description of each step discusses all choices for
the step, the resulting artifact, and the impact of the step on other artifacts.

Figure 4 shows that students decided to start building the unified UC statechart
by merging UC2 first since it is the UC that logically and temporally precedes the
other two UCs. Some students wanted to start with UCS3, as the main UC from the
primary actor perspective, but more students wanted to start with UC2. It appears
in retrospect that the students could have started with either UC. In general, one
should be able to start with any UC.

Figure 4 shows the turn on event as the first operation of UC2 and as the
initial event in the partial unified UC statechart built so far. Figure 4 shows also
capturing Operation 2 of UC2 as the accepting events state.

Operation 2 of UC2 was judged by a number of students to be poorly written
because:

e it is written in a very generic fashion, i.e., it says that the “System (again)
excepts external events”, which is not domain-specific functionality, i.e.,
almost every CBS accepts external events, and

e the term “again” indicates tight coupling with some other UC.

17

.\turn on

UC2: Turn On System

1. Operator turns on Turnstile

2. System (again) accepts external
events

accepting
events

Figure 4: Building Unified UC Statechart (1)

UC3: Enter Area turn on

1. Visitor inserts payment
2. System concludes payment can purchase
one entry

3. System updates the number of available
entries

4. System unlocks barrier

5. Visitor pushes barrier

6. System rotates barrier

7. System notes visit, increments visitor count
8. System locks barrier

Figure 5: Building Unified UC Statechart (2)

Nevertheless, the students decided not to tackle these problems until they explored
and integrated the other UCs.

The next UC that students decided to tackle was UC3. Figure 5 shows how
the first external event, insert payment, was integrated into the partial unified UC
statechart. The students observed that the state accepting events obtained from
Operation 2 of UC2 does not capture the intent of the event of the Operation 2
of UC3 and cannot be merged with the unified UC statechart due to a difference
of abstraction levels and concerns, i.e., the first part of Operation 2 of UC2 is a
general observation about accepting events, while the second part of Operation
2 of UC3 captures the domain-specific functionality of processing a payment.

The students judged that Operation 2 of UC3 did not capture the CBS’s ac-
tivity, but rather its postcondition. In addition, this postcondition was judged as
overly specific due to its specification of exactly one entry. Therefore, the stu-
dents proceeded by replacing accepting events by waiting for payment in UC2
and modifying Operation 2 of UCS.

Figure 6 shows the modifications of Operation 2 of each UC as well as the
modification of Operation 3 of UC3. The students realized that Operation 3 of
UCS3 was written at the same abstraction level as Operation 2 of UC3 and is thus
a part of the same activity. Therefore, Operation 3 of UC3 should be merged
with the new Operation 2 of UCS3. The students then merged Operations 2 and 3
of UC3 as the activity processing payment, which was captured as a sub-ma-

18

UC2: Turn On System

1. Operator turns on Turnstile
2-System-(again)-accepts-external
events

2. System waits for payment

turn on

UC3: Enter Area

1. Visitor inserts payment waiting for

payment

purchase oneentry
3-System-updates-the-number-of-available insert payment(payment)
entries

. System processes payment

. System unlocks barrier

. Visitor pushes barrier

. System rotates barrier

. System notes visit, increments visitor count
. System locks barrier

processing
paymerg@

NOoO O~ WN

Figure 6: Building Unified UC Statechart (3)

chine state'?. The sub-machine state was expected to be decomposed later and
was expected to include the activities of the old Operations 2 and 3, among other
activities in the decomposition.

Figure 7 shows the refining of the unified UC statechart using a composite
state. The students judged the modified Operation 2 of UC2 UC to be at an ab-
straction level lower than that originally intended for UC2 and to be of a different
business concern. Therefore, they decided to introduce a new higher level state
controlling access and to modify UC2 and the unified UC statechart appropri-
ately. From that point on, UC2 was considered to be written at a higher abstrac-
tion level than UC3. That is, the activities of UC3 became part of the composite
activity captured as Operation 2 of UC2.

Figure 8 shows how the students proceeded with the integration of Operation
3 of UCS3 into the unified UC statechart. The positioning of the Operation 3,
unlocks barrier, immediately after Operation 2, processing payment, was rec-
ognized as introducing a big logical gap in the state machine. Missing was the
conclusion of a successful payment that results in unlocking the barrier and noti-
fying Visitor. Operation 3 of UC3 was modified to express the conditions under
which the barrier is unlocked. The students updated also the system sequence
diagram for UC3 to show notification to Visitor, as shown in Figure 9.

Figure 10 shows the refinement of Operation 3 of UC3. Dealing with the suc-
cessful payment option raised the issue of dealing with an alternative when pay-

3That this state is a sub-machine state is indicated by the infinity-like symbol inside the state
in Figure 6.

19

UC2: Turn On System

1. Operator turns on Turnstile

2-System-{againy-acecepts-externalevents

2. System controls access to restricted

area

turn on -
.ﬁ/ controlling access \

waiting for
payment

insert payment(payment)

processing
t
paymen

- /

Figure 7: Building Unified UC Statechart (4)

UC3: Enter Area

1. Visitor inserts payment
2. System concludes payment can purchase
one-entry

3. System updates the number of available
entries

2. System processes payment

3. System unlocks barrier if payment OK
and notifies Visitor

4. Visitor pushes barrier

5. System rotates barrier

6. System notes visit, increments visitor count
7. System locks barrier

turnon -

controlling access

insert payment(payment)

waiting for
payment

barrier
unlocked [AVisitor.notifyToGo

-

processing
ayment
pay

[payment OK]

unlocking

barrier

Figure 8: Building Unified UC Statechart (5)

A

|
|
Visjtor

<<system>>
Turnstile

insert payment

push

T
|
I
i
|
notifyToGo |
|
|
I
I
|
|

Figure 9: UC3 System Sequence Diagram

20

turn on
UC3: Enter Area

1. Visitor inserts payment

one-entry

3. System updates the number of available
entries

2. System processes payment

3 EI’ S!E.F. “]'I!.E E.IEE parrier if payment OK
3. System unlocks barrier if payment OK
and notifies Visitor, else system returns
money to the Visitor

4. Visitor pushes barrier

5. System rotates barrier

controlling access

~

waiting for

insert payment(payment)

payment

Ll return money

‘Ea yﬁnt WK]——

(

processing
t
/—Llﬂme'ao

I [payment NOK]/return money) [payment OK]

barrier

e

—_ Y

{

unlocked

J (

unlocking
barrier

|

6. System notes visit, increments visitor count
7. System locks barrier

\ [/"Visitor.notifyToGoJ J

Figure 10: Building Unified UC Statechart (6)

ment is not sufficient and money should be returned. The change was incorporated
into a new Operation 3 for UC3. Students initially captured this alternative as an
activity shown with the transition and the state drawn with a thick dashed line in
Figure 10. Since this unified UC statechart specification was carried out primar-
ily as an educational exercise, for pedagogical expediency, the author decided to
consider returning payment to Visitor as a non-decomposable and uninterruptible
activity, and thus the author indicated return money as an action rather than as
an activity.

Figures 11 and 12 show the modifications to Operations 4 and 5 of UC3 and
their integration into the unified UC statechart. At first, it appeared that Operations
4 and 5 could be integrated in a straightforward fashion as depicted in Figure 11,
but analysis of both UC3 and the unified UC statechart exposed a logical problem
with having System instead of Visitor rotating Barrier. The students noticed
that Barrier is an external entity and should, therefore, be outside of System’s
boundary. The students modified Operations 4 and 5 as depicted in Figure 12.

The analyses of Operations 4 and 5 and their subsequent integration into the
unified UC statechart showed that Barrier should be external to System’s bound-
ary. The students therefore decided to redefine System’s boundary to exclude
Barrier; they updated the context diagram, as shown in Figure 13, and the sys-
tem sequence diagrams for UC3 and UC1, as shown in Figure 14. As a result of
this exclusion, Barrier had become an actor. After some discussion, the students
realized that they had the wrong actor for UC3, i.e., Visitor instead of Barrier.
After some more discussion, the students realized that this change of actor could
be ignored at the UC3 level, and the rest of the unified UC statechart was deemed

21

turn on

UC3: Enter Area

1. Visitor inserts payment
2-System-concludes-payment can-purchase
one-entry
3-System-updates-the-number-of available
entries

2. System processes payment

5.?.5‘5 FURIOGKS DarHer-payme HOK-ane
3. System unlocks barrier if payment OK and
notifies Visitor, else system returns money to
the Visitor
4. Visitor pushes barrier
5. System rotates barrier
6. System notes visit, increments visitor count
7. System locks barrier

controlling access

-

waiting for | insert payment(payment) (processing

t
paymen

payment

[payment NOK]/return money [payment OK]

unlocking
barrier

/MVisitor.notifyToGo

rotating
barrier

barrier
unlocked

Figure 11: Building Unified UC Statechart (7)

turn on

UC3: Enter Area

1. Visitor inserts payment
2-System-concludes-payment-can-purchase
one-entry
3-System-updates-the-number-of-available
entries

2. System processes payment

55.3.55..‘ SEKS DarHe ayment OK-ane
3. System unlocks barrier if payment OK and
notifies Visitor, else system returns money to
the Visitor

4. Visitor rotates barrier
5. System tracks barrier rotation

6. System notes visit, increments visitor count
7. System locks barrier

controlling access

-

insert payment(payment)

waiting for processing

t
paymen

payment

[payment NOK]/return money [payment OK]

unlocking
barrier

[\Visitor.notifyToGo

tracking
barrier
rotation

barrier
unlocked

rotate barrier

Figure 12: Building Unified UC Statechart (8)

22

<<business system>>
Turnstile

Paybox —‘

<<system>> %
Turnstile Switch
Controller

Visitor Barrier Operator

Figure 13: Redefined System Boundary

correct. The reason that the change of actor could be ignored was that the only
responsibility of Barrier was to act as a user interface without providing addi-
tional complex functionality. The only required change was the additional system
outputs, shown in Figure 14, that go to the actors.

So, the students defined a new system boundary in which the CBS under spec-
ification is Turnstile Controller. They realized that the old System was in fact
a business system that included Barrier, Paybox, Switch, and the new System,
as is shown in Figure 13. Again, the students decided that there was no need to
change the UCs since the new actors, Barrier, Paybox, and Switch, acted merely
as user interfaces between System and the old actors, Visitor and Operator,
without providing any additional functionality.

Thus, the students moved away from the traditional recommendation of what a
UC should capture and how the actors and system boundary ought to be modeled.
This movement is not surprising. We have observed the same tendency to ignore
actual actors in many other cases, such as using a Writer as an actor rather than a
keyboard as an actor in a specification of a word processing system.

Figure 15 shows the simplification of the second part of Operation 6 of UC3.
The students judged the second part as redundant since it was at a lower abstrac-
tion level than the first part of the same operation, the noting visit activity. Some
students judged incrementing visitors count to be a part of the noting visit ac-
tivity. Therefore, the noting visit activity needed to be decomposed further during
a later refinement of the unified UC statechart.

Figure 16 shows the integration of the last operation of UC3 into the unified
UC statechart.

At this point, the students were ready to tackle the last UC, UC1. Figure 17

23

A

<<system>>
Turnstile

A

Visitor
| insert payment

Ope‘rator
|

barrier unlocked

<<system>>
Turnstile
turn off

notifyToGo

barrier locked

rotate

return money

barrier locked

Figure 14: UC3 and UC1 System Sequence Diagrams

turn on

UC3: Enter Area

1. Visitor inserts payment
2-System-concludespayment-can
purchase-one-entry
3-System-updates-the-number-of available
entries

2. System processes payment

° EjEE.F.‘ oeKs DarHertpay oAtC
3. System unlocks barrier if payment OK
and notifies Visitor, else system returns
money to the Visitor

4. Visitor rotates barrier

5. System tracks barrier rotation

6.S isit i -
count

6. System notes visit

7. System locks barrier

controlling access

-

waiting for

payment

insert payment(payment) processing

paymer&t}O

noting visit

rotation over

[payment NOK]/return money [payment OK]

unlocking
barrier

[\Visitor.notifyToGo

tracking
barrier
rotation

barrier
unlocked

rotate barrier

Figure 15: Building Unified UC Statechart (9)

24

turn on .
[controlling access \

UC3: Enter Area
1. Visitor inserts payment

2. System concludes payment can

purchase-one-entry . waiting for insert payment(payment) processing
3. System updates the number of available

ontrios payment paymer&t}O
2. System processes payment

S—Sy&emunleeks%ameﬂf—paymen%% [payment NOK]/return money [payment OK]
and-netifies-Visitor locking

3. System unlocks barrier if payment OK barrier :

and notifies Visitor, else system returns unlocklng
money to the Visitor barrier

4. Visitor rotates barne_r /AVisitor.notify ToGo

: noting visit
5. System tracks barrier rotation

6.-System notes-visit;-increments-visitor tracking ;

. ' barrier barrier

count . :

6. System notes visit rotation over rotation rotate barrier unlocked

7. System locks barrier \ /

Figure 16: Building Unified UC Statechart (10)

shows integration of Operation 1 of UC1 into the unified UC statechart. Decid-
ing from which state to send the turn off event indicated that the earlier decisions
of treating UC2 to be at a higher abstraction level than UC3 and of introducing
the composite controlling access state were very useful. The introduction of
the composite state would have been required at this stage anyway since the turn
off event has to be handled from every state in the unified UC statechart. There-
fore, the students captured the turn off event on a transition originating from the
envelope of the composite controlling access state.

The students judged Operation 2 of UC1 to contain information at a lower
abstraction level than what is captured in the UC2, whose functionality is oppo-
site of that of UC1. Some of the students pointed out also that it was not clear at
all from the context what resetting counters for available entries and visitors
meant. Therefore, the students decided to move this operation to a higher abstrac-
tion level and to postpone its decomposition. They changed Operation 2 to be the
resetting activity, which needed further decomposition.

Figure 18 shows that the students judged also Operation 3 to be a part of the
resetting activity, and Operation 4 became the new Operation 3 in the modified
UC1.

Figure 19 shows that the first part of the new Operation 3 introduced the need
for a new state Off, while the second part of the new Operation 3 was judged as

25

turn on

UC1: Turn Off System

1. Operator turns off Turnstile
2-Systemresets-counters-for

2. System resets itself

3. System locks barrier

4. System stops responding to events
except “turn on”, shall return payment
immediately if it was made at this point

resetting
oo turn off

-

controlling access

waiting for | insert payment(payment)

processing

payment

[payment NOK]/return money
locking barrier

noting visit

tracking
barrier

rotation over rotate barrier

rotation

paymergo
[payment OK]

unlocking
barrier

/"Visitor.notifyToGo

barrier
unlocked

Figure 17: Building Unified UC Statechart (11)

.\turn on

controlling
access

UC1: Turn Off System

1. Operator turns off Turnstile
2.-System-resets-counters for-available
2. System resets itself

!

3. System stops responding to events
except “turn on”, shall return payment
immediately if it was made at this point

turn off

resetting
oo

Figure 18: Building Unified UC Statechart (12)

26

turn on

UC1: Turn Off System
1. Operator turns off Turnstile

2. System resets counters for available controlling
entries-and-visitors access

2. System resets itself A
3.-System-locks-barrier

3.-System stops responding to-events turn off
except-“turn-on”;shall return-payment

N liatelv it) hi i

resetting

3. System turns off
oo

Figure 19: Building Unified UC Statechart (13)

setting up
oo

UC2: Turn On System turn on

1. Operator turns on Turnstile

2-System-(again)-accepts-externalevents

2-System-waits-for-payment off controlling

2-System-controls-access-to-restricted-area access
O

2. System sets up

3. System controls access to restricted turn off

area
resetting
o0

Figure 20: Building Unified UC Statechart (14)

redundant and possibly a part of the resetting activity that was to be decomposed
later.

Finally, the resetting activity in the UC1 exposed the need for a correspond-
ing setting up activity in UC2, as shown in Figure 20.

Figure 21 shows the final, integrated unified UC statechart of all three UCs.

6 Evaluation of UCUM

The evaluation of the effectiveness of UCUM was carried out through three case
studies, the TCS and two additional case studies. The second case study of UCUM
use, the Elevator case study (ECS), concerns 12 SRSs for a medium-sized con-
troller CBS for two-elevators in a low-rise building. Each SRS was produced by
one CS846 graduate student working independently. Rather than working from
a fictitious project description, students were required to analyze an already de-
ployed elevator system, to ensure that all the students had a common starting
point. Moreover, any ambiguity, which might exist in a fictitious project descrip-

27

/ controlling access \

waiting for | insert payment(payment)

payment

processing
t
paymen

setting up
turn on [SaS)
off

[payment NOK]/return money [payment OK]

locking barrier

unlocking
barrier

["Visitor.notifyToGo

noting visit

tracking
barrier

resetting
OO
rotation

turn off \ /

barrier
unlocked

rotation over rotate barrier

Figure 21: Final Unified UC Statechart

tion, could be resolved by observing the actual elevators’ behavior. The effort re-
quired for a good specification of this system is approximately 100 person hours.
This time estimate is based on the discussions with students and comparison of
the results.

Each student handed in two partial SRSs before handing in the final SRS. Each
SRS was required to show a specific set of artifacts. The first partial SRS had to
show the initial set of UCs for the CBS. Each student was allowed to see all the
students’ sets of UCs before handing in the second partial SRS so that each student
could have as good a set of UCs as possible before constructing the unified UC
statechart. However, thereafter, no student was allowed to see any other’s work.
The complete set of partial and final SRSs can be found at the CS846 course
website!4,

The third case study of UCUM use, the VoIP case study (VCS), concerns 46
SRSs for a large-sized VoIP CBS. The description of the CBS can be found at
the course website!®. The VCS was carried out over two terms of CS445. Each
SRS was produced by a group of 3 or 4 primarily undergraduate CS445 students
working together, with 4-member groups being in the majority. We estimated the
effort required for a good specification of this system to be approximately 400

“Yhttp://se.uwaterloo.ca/~dberry/ATRE/ElevatorSRSs/
Bhttp://se.uwaterloo.ca/~dberry/cs445w06

28

person hours.

In the first term, each group handed in two partial SRSs before submitting
its final SRS; also, two weeks before the final SRS was due, each group led a
formal walkthrough of its work in front of another group and a TA. In the second
term, the groups were not required to hand in the first partial SRS, but each group
had to perform a formal walkthrough to the TA and course staff demonstrating
the UCs they had found so far. In both terms, each successive partial and final
SRS was required to show a growing set of specific artifacts. Each group worked
independently, and no group was allowed to see any other group’s work except
during the formal walkthroughs. Each group worked with its own TA, who served
as its customer in a simulated customer—analysts relationship.

The results of the ECS and the VCS are mostly positive, but several problems
were noted. The negative results, which concern mostly working with large CBSs,
are explained with examples from the VCS. Thus, the VCS, with the largest CBS
among the three case studies, served as a real test for the usefulness of the unified
UC statechart and for the effectiveness of UCUM.

6.1 Positive Results

We observed nine positive results altogether coming from the process of unifying
the UCs into a unified UC statechart. Each of the first seven positive results is
only that when the unification was being done, it was easier than in the past for
an analyst to do something beneficial. It would be improper to state the results
more strongly. Therefore, the statement of each of these positive results should
begin with “When unifying UCs of a CBS into a unified UC statechart, it was
easier than in the past for an analyst to”. Since this long phrase would be repeated
seven times, to save some space, we abbreviate it as: “Unification Helps To”.

The first five of these positive results were observable in the SRSs of all three
case studies, while the last four were observable in the SRSs of only the ECS and
the VCS, those with the larger CBSs. Therefore, the first five positive results and,
thus, the general usefulness of building a unified UC statechart from a CBS’s UCs
do not depend on the size of the CBS.

The nine positive results are:

1. Unification Helps To identify the boundary of the CBS under specification.
The set of actors and UCs for a CBS both depend on and help determine
the CBS’s boundary. Therefore, the full set of actors and UCs for a CBS
cannot be known until the CBS’s boundary is known. Conversely, until all

29

<<business system>>
Turnstile
X
Paybox
i
<<system>>
— «‘I'sgrsnt:t?lqe» Turnstile — Switch %
Controller
Visitor Operator Visitor Barrier % Operator

Figure 22: CBS Boundary Change

of a CBS’s actors and UCs are known, it is hard to define the CBS’s exact
boundary. Defining the boundary is even harder when there are multiple
analysts and multiple stakeholders each with a different perception of the
CBS’s boundary. Even for the small Turnstile, the boundary established in
the SRS'® from which we took the initial 3 UCs proved to be wrong. The
correct boundary, as discovered through UCUM, is as shown in Figure 22.
Interestingly, for the elevator controller CBS, many a student found that the
CBS’s boundary should be around the controller hardware and software, ex-
cluding other devices with which the passenger interacts, e.g., elevator cab,
buttons, etc. In other words, the actors implied by the tighter boundary were
the devices that serve as interfaces between passengers and the controller.
It is irrelevant to the controller what or who causes a button to be pushed.
Even after learning about the tighter boundary, many a student made a con-
scious decision to stick with the traditional boundary around the passengers,
even though a passengers never touches the controller.

2. Unification Helps To identify abstraction level clashes and redundant op-
erations in the UCs. Correcting the abstraction levels of UCs is necessary
to successfully unify the UCs of a CBS into a unified UC statechart. For
example, in the original SRS for the Turnstile, the abstraction level of the
UC Turn Off System was inconsistent with that of its opposite, the UC
Turn On System. Turn Off System’s definition gave low-level details,
such as resetting counters and Turn On System’s definition was written at
a higher abstraction level with no reference to internals. The solution was

1ohttp://se.uwaterloo.ca/~dberry/cs445w06/turnstilesystem.pdf

30

to write each UC with no reference to internals. Each decomposition was
left to appear in the unified UC statechart.

. Unification Helps To identify incorrect ordering of operations in a UC’s de-
scription. It is often the case that a UC’s operations are out of order, because
of the scope of the UC or the informality of UC description. For example,
in the original SRS for the Turnstile, in Operation 4 of the UC Turn Off
System, the payment was being returned after the CBS was shut down.
Moreover, it was not even certain that the payment should be returned. The
problem was diagnosed as the analyst’s having detected an exception and
having inserted the exception too quickly into a random operation. Includ-
ing this exception into the unified UC statechart proved to be awkward, if
not impossible, and more analysis was needed to find its rightful place.

. Unification Helps To detect missing functionality among the UCs. While
the first three results address consistency of UCs, the fourth result addresses
completeness of UCs from each actor’s perspective. Detecting missing
functionality requires domain expertise, and even then it is hard. Any re-
quirements analysis method can help but not guarantee that the SRS will
describe all needed functionality. Since one can never be certain when the
last function is found, it is hard to know how complete an SRS is. Nev-
ertheless, it appears that in each of the case studies, unifying the UCs of
the CBS into a unified UC statechart did help expose functions of the CBS
that were missing in the UCs. The kind of rework that appears in the middle
column of Figure 23 is typical. The left column of Figure 23 shows the orig-
inal UCs of the Turnstile before specification of the unified UC statechart,
the middle column shows modifications to the UCs during specification of
the unified UC statechart, and the right column shows UCs affer the uni-
fied UC statechart was completed. An observable weakness of the standard
UC-driven requirements analysis methods is the lack of a way detect func-
tionality needed to support concurrency among UCs. One way to detect this
kind of functionality is to attempt to integrate the UCs, exactly what unifi-
cation of the UCs into a unified UC statechart is doing, and is doing before
coding begins.

. Unification Helps To simplify the descriptions of UCs. This result is a nat-
ural consequence of the first four. Building a unified UC statechart almost
universally led to simplifying and clarifying the descriptions of the UCs that
were being unified. In many a case, an operation whose description was a

31

UC1: Turn Off System

UC1: Turn Off System 1. Operator turns off Turnstile

1. Operator turns off Turnstile

2. S.y stem res_ets coun?e_r s for available-entries-and-visiters UC1: Turn Off System
available entries and visitors -)
- 2. System resets itself 1. Operator turns off Turnstile
3. System locks barrier ! .
. 3-System-locks-barrier 2. System resets itself
4. System stops responding to .
P . - 3. System turns off
events except “turn on”, shall . M
return payment immediately if X . y ’ 5. .

it was made at this point 3. System turns off

UC2: Turn On System
1. Operator turns on Turnstile

2. System (again)-accepts external i
UC2: Turn On System events UC2: Turn On System .
. . 1. Operator turns on Turnstile
1. Operator turns on Turnstile 2-System-waitsforpayment
2. System (again) accepts i 2. System sets up
: : 3. System controls access to

external events area
2. System sets up
3. System controls access to restricted

area

restricted area

UC3: Enter Area
1. Visitor inserts payment
p.urehaseeneuenky
3-System-updates-the-number-of

UC3: Enter Area ; . UC3: Enter Area

1. Visitor inserts payment 2. System processes payment

2. System concludes payment
can purchase one entry

1. Visitor inserts payment
2. System processes payment
3. System unlocks barrier if

S:S orif

3. System updates the oK ifios. \Visi payment OK and notifies
number of available entries - Visitor, else system returns
. 3. System unlocks barrier if payment -
4. System unlocks barrier o - money to the Visitor
a0 . OK and notifies Visitor, else system L .
5. Visitor pushes barrier 4. Visitor rotates barrier

retur_n‘s money to the _V|5|tor 5. System tracks barrier

rotation
6. System notes visit
7. System locks barrier

6. System rotates barrier
7. System notes visit,
increments visitor count
8. System locks barrier

4. Visitor rotates barrier

5. System tracks barrier rotation
a. S.“SIE otes-visit-incroments
6. System notes visit

7. System locks barrier

Figure 23: Turnstile UC Changes

32

full paragraph of text was replaced by a single sentence description. Clearly
defining goals and activities during construction of a unified UC statechart
exposed overly complex descriptions of UCs. Simplifying UC descriptions
in turn allowed easier identification of goals, activities, inputs, outputs, and
other data.

. Unification Helps To see how to restructure the descriptions of the UCs. We
saw that many a student restructured the descriptions of her UCs after fin-
ishing the unified UC statechart. Typically, the student used pseudocode to
describe UC operations, particularly for iterative and alternative paths. We
interpreted this restructuring to be a positive result because the restructuring
helped the student to detect often-overlooked alternative paths. The use of
pseudocode might be considered a negative, but we feel that the positive of
finding more alternative paths outweighs this negative.

. Unification Helps To detect opportunities for concurrent UC execution. Re-
call that the fourth positive result is that unification allows detection of miss-
ing functionality among the UCs and that among the missing functions de-
tected was the support needed for concurrent execution of UCs. Still it
is necessary to be able to detect opportunities for concurrent execution of
UCs. The act of unifying UCs into a unified UC statechart shows clearly
which UCs can be unified temporally, i.e., can be executed concurrently.

. The benefits of unifying UCs of a CBS into a unified UC statechart are inde-
pendent of the exact method by which the unification is done. Each student
seemed to gain the benefit of the unification no matter which variation of
UCUM she used. Some wrote UC statecharts for the UCs before unifying
the UCs into a unified UC statechart, and some unified directly from the
original UC descriptions. Regardless of how a student or group did the uni-
fication, the resulting unified UC statecharts and the resulting SRSs were
significantly better than those produced in the CS445 course prior to the
introduction of UCUM.

. The average grade for a CS445 group’s VoIP SRS in any UCUM-using term
was the same as it was in any previous, non-UCUM-using term, despite
that the evaluation criteria were higher and the marking was stricter in the
UCUM-using terms. Thus, we found that the UCUM-assisted SRSs were
overall of higher quality than non-UCUM-assisted SRSs.

33

Manifestations of the first five positive results can be seen in the refinement, shown
in Figure 23, of the three initial Turnstile UCs. As much scrutiny as these UCs
had from us and about 140 students, there are still some unresolved problems.
For example, it is not clear which actors’ goals are served by either the Turn On
System or the Turn Off System UC. Also, Operation 3 of the Turn Off System
UC is a postcondition rather than the activity it should be. These two examples
make it clear that

1. one can never be certain about the quality of UCs, and

2. while unifying UCs into a unified UC statechart does help find problems in
the UCs, it cannot guarantee finding all of them.

Even with a very small CBS such as the Turnstile and even with about 140 persons
analyzing it, it was not possible to fix all problems caused by the initial choice
of UCs. Of course, abandoning the initial choice of UCs might lead to better
fixes, but in our experience, just finding a problem can be harder than fixing it.
Fortunately, a benefit of unifying UCs into a unified UC statechart is that it helps
the analyst to find problems.

In summary, all the positive results and the deepened understanding of the
domain can be attributed to the the ability of a unified UC statechart to provide
a big picture of a domain model more systematically and more formally than is
possible with only UCs. Nevertheless, not all results were positive.

6.2 Negative Results

This subsection discusses pernicious and persistent problems that remain despite
all our best efforts. First, this subsection discusses the problems that we believe
can be resolved. Then, it discusses problems that we believe are inherent to the
method itself and as such cannot be fixed.

The first problem that we observed is the difficulty of determining what about
a CBS should be modeled. We explained that subsystems, devices, user interface
screens, and so on, should not be modeled in the states of a unified UC state-
chart. Nevertheless, an occasional student did include in his unified UC statechart
what was not covered by agreed upon unified UC statechart semantics. Despite
the grade penalty for inclusion of non-conventional unified UC statechart states,
many of those penalized continued to do it. Therefore, it would be profitable to
determine why anyone was getting bogged down in details that are irrelevant at
the UC level.

34

The second problem that we observed is the lack of direct support in unified
UC statecharts for representation of concepts and objects. UCUM is supposed to
be a part of an object-oriented domain analysis method for our course projects.
As such, conceptual analysis is supposed to follow the completion of the unified
UC statechart. One of the analysis steps is assigning to concepts the activities
captured during unification to the unified UC statechart. How to represent this
assignment of activities to concepts was left to the students to figure out. Some
used comments, some extended activity names to include responsible concepts,
etc. In any case, none of these representations is a part of the standard SC notation.
We did observe the tendency of a typical student to include in her unified UC state-
chart some high-level conceptual analysis constructs such as subsystems. This
tendency suggests the usefulness of extending SC notation with some conceptual
analysis notation, as suggested by Glinz [7].

The third problem that we observed is the difficulty of unifying UCs one by
one in some cases. Many a student claimed that it was easier

1. to grasp all UCs together and then to build the unified UC statechart than

2. to unify UCs one by one into a growing unified UC statechart in either of
the two ways suggested by UCUM.

We suspect that this preference comes from the typical low quality of UC de-
scriptions. Many UC descriptions were poorly structured, with ill-defined CBS
boundaries, and with actors missing. Consequently, it was very difficult to build
SCs for the UCs. It appears that many a student was simply discouraged by the
perceived effort to redo all the UC descriptions, and jumped directly to producing
a unified UC statechart, which turned out to require lots of rework. We say “per-
ceived effort”, because in the end, the thinking needed to fix the poor unified UC
statechart was the same as would be needed to redo the UC descriptions. The typ-
ical directly produced unified UC statechart had a large number of inconsistencies
with use cases, was more difficult to refine, and was at much higher abstraction
level than the typical unified UC statechart produced by unifying UCs one by one.
Occasionally, the directly produced unified UC statechart was at such a high ab-
straction level that its nodes represented use case names, and these nodes were not
decomposed any further. As a consequence, we strongly believe that UCs should
be unified one by one into a growing unified UC statechart, as it was suggested to
the students in the first place.

The fourth problem that we observed is that some students could not fix all of
their UCs due to time limitations. This problem is related to the third, namely that

35

building a unified UC statechart can require completely redoing all UC descrip-
tions. Many a student, who had written very poor UC descriptions and postponed
unified UC statechart specification, simply did not have the time to redo all his UC
descriptions. To solve this problem, we need to give students a clear indication on
how much effort it takes to build a unified UC statechart and what the impact of
poor UC specifications can be.

Finally, we describe the problems that we believe are inherent to UCUM and
therefore not fixable.

The main negative effect of unifying UCs of a CBS into a unified UC state-
chart for the CBS is the additional effort that has to be invested as a result of the
steep learning curve and the inherent difficulty of specifying behavior. We saw
the additional effort only with the VoIP CBS because we could compare the effort
spent by students writing SRSs of the VoIP CBS in UCUM-using terms with the
effort spent by writing SRSs of the same VoIP CBS in previous, non-UCUM-using
terms.

Teaching students and TAs UCUM required 4 hours that were not originally
allocated to the course. Of these 4 hours, 2 were spent teaching unified UC state-
chart unification and 2 were spent teaching how unification fits in the overall RE
process. An additional hour was set aside for a question-and-answer session about
the material. The head TA, Svetinovic, responsible for answering students’ ques-
tions found his workload increased about 30% over that in previous terms, in
which UCUM was not used.

Each term in CS445, we have each TA report his or her actual workload for
the course. As a result, we are able to say that the average number of meetings
in a term between a group and its TA, as analysts and customer, increased from
about 6-8 in previous non-UCUM-using terms to about 10 in the UCUM-using
term. That is, learning and using any variant of UCUM required about 25% more
elicitation effort. Because we had anticipated at the beginning of the first UCUM-
using term that UCUM might require more work, we switched from encourag-
ing 3-person groups to encouraging 4-person groups. In retrospect, the increased
specification workload for UCUM is proportional to the increase in group size.

The increased workload was not without benefit, namely in the observed in-
creased overall quality of the SRSs that the groups produced. In particular, the
typical group elicited more requirements along the way than in the past.

The other negative result is the continued difficulty of dealing with multiple
processes and object concurrency, a difficulty not really addressed by any existing
method. That this difficulty remains with UCUM is disappointing because unified
UC statecharts are supposed to explicitly expose opportunities for concurrency

36

[4], and indeed the seventh positive result was that Unification Helps To detect
opportunities for concurrent UC execution. However, the only concurrency that
is detected is among the UCs. More general concurrency, e.g., among processes
and objects, remains hidden. A possible approach for more complete concurrency
detection is merging the SC notation with others to build more general models
that expose concurrency opportunities better, as suggested by Glinz [7].

7 Related Work

This section compares the work of this paper to that of the three papers that in-
spired UCUM, namely papers by Glinz, Whittle ef al., and Harel et al. [6, 26, 11].
Each of these papers describes one formal treatment of unification of UCs into
a statechart similar in semantics to our unified UC statechart'’. Several others,
including Somé et al. [21], van Lamsweerde et al. [25], Khriss et al. [13], Somé
[22], and Damas et al. [3] describe algorithms and methods for synthesizing vari-
ous domain models, including one in the statecharts notation, from UCs. Detailed
comparisons of the three methods on which UCUM is based, among a number
of other scenario and statechart unification methods, are offered by Saiedian et
al. [20] and by Liang et al. [16].

Glinz presents a method, intended to be automated, of constructing a state-
chart expression of the domain model of a CBS from a set of statecharts, one for
each UC of the CBS. During the construction, whenever an inconsistency shows
up, e.g., two transitions from one state going to two different states under the same
event, the original UC statecharts must be modified. Glinz’s plan was to automate
the construction so that analysis, including checking for inconsistencies, can be
automated as well.

Harel et al. describe an algorithmic method to synthesize a statechart expres-
sion of a domain model of a CBS from a set of live sequence charts (LSCs), one
for each UC of the CBS. LSCs are formally defined enhancements of sequence di-
agrams (SDs) with precise semantics, the ability to define existential or universal
UCs, and specified preconditions. Their algorithm has been implemented as part
of a tool that animates LSCs. When the algorithm fails, due to inconsistencies
among input LSCs, the user is expected to correct the problems in the LSCs.

Whittle et al. describe an algorithmic method to generate a statechart expres-
sion of a domain model of a CBS from a set of SDs, one for each UC of the CBS.

17Each of the works described in this chapter uses the term “scenario” for what we call “UC”.

37

Whittle et al. have implemented the algorithmic method in a tool. The tool re-
quires user assistance, particularly when the tool detects an inconsistency among
the input SDs. The user’s response is to change one or more SDs; to change parts
of the statechart expression of the domain model that are outside the SDs, e.g.,
data and preconditions; or both.

Comparisons between the steps, restrictions, and problems in the methods and
algorithms of Glinz, Whittle et al., and Harel et al. and those of UCUM are similar
to comparisons between other pairs of automated and manual processes. More-
over, the benefits that they observe of their methods and algorithms are consistent
with the benefits that were observed of UCUM. Thus, it can be said that this work
and their work constitute independent confirmations of each other.

8 Conclusion

This paper describes the results of three case studies that evaluate a practical
method for unifying UCs of a CBS into a unified UC statechart for the CBS that
can be used as part of a RE process to produce a SRS for the CBS. The method
was iteratively prototyped through in-course uses of variants of the method. Thus,
the case studies both refined the method and validated the usefulness of the unified
UC statechart and the effectiveness of the method both to improve the starting UCs
and to yield a quality unified UC statechart that becomes part of a quality SRS.

The TCS, the ECS, and the VCS have demonstrated the usefulness and prac-
ticality of UCUM, a method similar to the UC unification methods described by
Glinz, Whittle et al. and Harel et al.. Moreover, UCUM has been used on CBSs of
relatively large size and has been carried out by a large number of students lacking
expertise in statecharts and domain modeling. The three case studies have shown
UCUM to provide specific practical benefits to the analysts who apply it, and have
exposed the drawbacks of the method.

Specifically, we found that unifying UCs of a CBS into a unified UC statechart,
and use of UCUM in particular, makes it easier than in the past for an analyst to:

1. identify the boundary of the CBS,
2. identify abstraction level clashes and redundant steps in the UCs,
3. identify incorrect ordering of operations in a UC’s description,

4. detect missing functionality among the UCs,

38

5. simplify the descriptions of UCs,
6. see how to restructure the descriptions of the UCs, and
7. detect opportunities for concurrent UC execution.

We found also that the benefits of unifying UCs of a CBS into a unified UC state-
chart are independent of the exact method by which the unification is done, and
that UCUM-assisted SRSs were overall of higher quality than non-UCUM-assis-
ted SRSs. In addition, we found a number of drawbacks of using UCUM.

A case study of an actual method use can measure the cost of applying the
method. In particular, the three case studies have shown that adding to RE the
UCUM way of unifying UCs of a CBS into a unified UC statechart for the CBS
increases the cost of requirements elicitation and the subsequent analysis by about
25%. Recall that our student subjects were judged to be equivalent to recently
graduated software engineers. Therefore, because of the relative modeling in-
experience of the student analysts in the three case studies, this cost increase is
probably near a worst-case upper bound.

It is true that performing a unification completely manually forces continual
reexamination of the UCs. However, having a tool with picky restrictions on the
expression of the input UCs forces more precision in the descriptions of UCs.
Perhaps, it is the case that the students of the case studies, having heavily sweated
manual unification would greatly appreciate both either of the Whittle et al. or the
Harel et al. tool and the discipline required to prepare the input to the tool.

Finally, subject to the limitations described in Section 3.1, the three case stud-
ies support acceptance of the hypothesis raised at the very end of Section 2.

In the future, we would like to perform additional case studies and controlled
experiments. In particular, we want to focus on measuring the cost of performing
UCUM and the scalability of UCUM.

Acknowledgments

We thank all students and TAs who participated in the case studies and who
provided feedback. We thank all reviewers of all earlier versions of this paper
for their helpful comments. Davor Svetinovic’s work was supported in parts by
Canadian NSERC Postgraduate Scholarship PGS B-255929-2002 and a Cana-
dian FCAR Doctoral Scholarship. Daniel Berry’s, Michael Godfrey’s, and Nancy

39

Day’s work was supported in part by Canadian NSERC Grant Numbers NSERC-
RGPIN227055-00, NSERC-RGPIN217236-99, and NSERC-RGPIN240537-01,
respectively.

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

Rolv Brak and @ystein Haugen. Engineering real time systems: an object-
oriented methodology using SDL. Prentice Hall International, 1993. ISBN
0-13-034448-6.

Alistair Cockburn. Writing Effective Use Cases. Addison-Wesley, Reading,
MA, 2000.

Christophe Damas, Bernard Lambeau, and Axel van Lamsweerde. Scenar-
i0s, goals, and state machines: a win-win partnership for model synthesis.
In SIGSOFT °06/FSE-14: Proceedings of the 14th ACM SIGSOFT inter-
national symposium on Foundations of software engineering, pages 197-
207, New York, NY, USA, 2006. ACM Press. ISBN 1-59593-468-5. doi:
http://doi.acm.org/10.1145/1181775.1181800.

Bruce Powel Douglass. Doing hard time: developing real-time systems with
UML, objects, frameworks, and patterns. Addison-Wesley Longman Pub-
lishing Co., Inc., Boston, MA, USA, 1999. ISBN 0-201-49837-5.

Martin Glinz. Statecharts for requirements specification - as simple as pos-
sible, as rich as needed. In Proceedings of the ICSE2002 Workshop on Sce-
narios and State Machines: Models, Algorithms, and Tools, 2002.

Martin Glinz. An integrated formal model of scenarios based on statecharts.
In Proceedings of the 5th European Software Engineering Conference, pages
254-271, London, UK, 1995. Springer-Verlag. ISBN 3-540-60406-5.

Martin Glinz, Stefan Berner, and Stefan Joos. Object-oriented modeling with
ADORA. Information Systems, 27(6):425-444, 2002. ISSN 0306-4379.

Hassan Gomaa. Designing concurrent, distributed, and real-time applica-
tions with UML. In ICSE ’01: Proceedings of the 23rd International Con-
ference on Software Engineering, pages 737-738, Washington, DC, USA,
2001. IEEE Computer Society. ISBN 0-7695-1050-7.

40

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

David Harel. Statecharts: A visual formalism for complex systems. Sci.
Comput. Program., 8(3):231-274, 1987. ISSN 0167-6423. doi: http://dx.
doi.org/10.1016/0167-6423(87)90035-9.

David Harel. On visual formalisms. Commun. ACM, 31(5):514-530, 1988.
ISSN 0001-0782. doi: http://doi.acm.org/10.1145/42411.42414.

David Harel, Hillel Kugler, and Amir Pnueli. Synthesis revisited: Generating
statechart models from scenario-based requirements. In Lecture Notes in
Computer Science, volume 3393 of LCNS, pages 309-324. Springer-Verlag,
January 2005.

Ivar Jacobson. Object-Oriented Software Engineering: A Use Case Driven
Approach. Addison Wesley Longman Publishing Co., Inc., Redwood City,
CA, USA, 1992.

Ismail Khriss, Mohammed Elkoutbi, and Rudolf K. Keller. Automating the
synthesis of UML statechart diagrams from multiple collaboration diagrams.
In UML’98: Selected papers from the First International Workshop on The
Unified Modeling Language UML’98, pages 132—147, London, UK, 1999.
Springer-Verlag. ISBN 3-540-66252-9.

Jeff Kramer. Is abstraction the key to computing? Communications of the
ACM, 50(4):36-42, 2007.

Craig Larman. Applying UML and Patterns: An Introduction to Object-
Oriented Analysis and Design and the Unified Process. Prentice Hall, En-
glewood Cliffs, NJ, second edition, 2001.

Hongzhi Liang, Juergen Dingel, and Zinovy Diskin. A comparative survey
of scenario-based to state-based model synthesis approaches. In SCESM
'06: Proceedings of the 2006 international workshop on Scenarios and state
machines: models, algorithms, and tools, pages 5—12, New York, NY, USA,
2006. ACM Press. ISBN 1-59593-394-8. doi: http://doi.acm.org/10.1145/
1138953.1138956.

Susan Lilly. Use case pitfalls: Top 10 problems from real projects using
use cases. In Proceedings Technology of Object-Oriented Languages and
Systems, pages 1974-183, Washington, DC, USA, 1999. IEEE Computer
Society.

41

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

John Mylopoulos, Lawrence Chung, and Eric Yu. From object-oriented to
goal-oriented requirements analysis. Communications of the ACM, 42(1):
31-37, 1999.

James Rumbaugh, Ivar Jacobson, and Grady Booch. The Unified Model-
ing Language Reference Manual. Addison-Wesley, Reading, MA, second
edition, 2004.

Hossein Saiedian, Prabha Kumarakulasingam, and Muhammad Anan.
Scenario-based requirements analysis techniques for real-time software sys-
tems: a comparative evaluation. Requir. Eng., 10(1):22-33, 2005. ISSN
0947-3602. doi: http://dx.doi.org/10.1007/s00766-004-0192-6.

Stéphane Somé, Rachida Dssouli, and Jean Vaucher. From scenarios to
timed automata: Building specifications from users requirements. In APSEC
'95: Proceedings of the Second Asia Pacific Software Engineering Confer-
ence, pages 48-57, Washington, DC, USA, 1995. IEEE Computer Society.
ISBN 0-8186-7171-8.

Stéphane S. Somé. Supporting use case based requirements engineering.
Information & Software Technology, 48(1):43-58, 2006.

Davor Svetinovic, Daniel M. Berry, and Michael Godfrey. Concept identifi-
cation in object-oriented domain analysis: Why some students just don’t get
it. In Proceedings of the IEEE International Conference on Requirements
Engineering RE’05, pages 189-198, 2005.

Axel van Lamsweerde and Emmanuel Letier. Handling obstacles in goal-
oriented requirements engineering. IEEE Transactions on Software Engi-
neering, 26(10):978-1005, 2000.

Axel van Lamsweerde and Laurent Willemet. Inferring declarative require-
ments specifications from operational scenarios. IEEE Trans. Softw. Eng.,
24(12):1089-1114, 1998. ISSN 0098-5589. doi: http://dx.doi.org/10.1109/
32.738341.

Jon Whittle and Johann Schumann. Generating statechart designs from
scenarios. In ICSE ’00: Proceedings of the 22nd International Confer-
ence on Software Engineering, pages 314-323, New York, NY, USA, 2000.
ACM Press. ISBN 1-58113-206-9. doi: http://doi.acm.org/10.1145/337180.
337217.

42

