
Clone Detection: How accurate is your data set?

Cory J. Kapser and Michael W. Godfrey
David R. Cheriton School of Computer Science

University of Waterloo
Waterloo, Ontario, Canada

cjkapser, migod@uwaterloo.ca

Abstract

Duplication of code in software systems is considered to
be a serious problem that can affect a systems maintain-
ability and extendability. It is reported that 10-15% of
code in a software system is involved in cloning. How-
ever, because of the difficultly of objectively measuring
the number of false positives in a clone result set, the ac-
curacy of these reports is difficult to evaluate. Although
an important topic, little work has been done in the area
of evaluating the accuracy of clone detection methods. In
this paper we propose a study to estimate the number of
false positives that are likely to be in a data set in an ob-
jective way by measuring the number of clones found in a
large body of unrelated code. We also propose a method
to measure the impact of external factors such as program-
ing idioms and API protocols on the detected results set.
The results of this work will provide tools and knowledge
to better evaluate the current state of the art of clone de-
tection research.

1 Introduction

Analysis and detection of clones in software has recently
become a popular area of research. Code cloning, gener-
ally referred to as the practice of duplicating code within a
software system, is considered a serious problem by many
sources [4, 6, 8, 10, 15, 16, 18]. Some problems associ-
ated with code clones are unnecessary increase in code
size, duplicated bugs and duplicated maintenance effort
to fix them, introduction of unused code, and increased
code complexity. If code cloning is not managed costs as-

sociated with maintaining and extending the system will
increase needlessly.

Typically, clone detection tools report that 10-15% of
the lines of code in a software system contribute to clones.
In extreme cases, the duplication can be as high as 50%
of the software system [8]. However, not all of these re-
ported clones are related to the duplication of source code
[12, 13]. In many cases false positives are also part of
the result set. False positives are segments of code that
are reported as clones but in fact are not. In many cases
these matches are caused by segments of code with very
simple and repetitive structure [13]. Many of these falsely
reported clones can be removed from the result set using
filters, but additional manual inspection of clones is re-
quired to refine the results further [13].

In addition to false positives, there is another type of
clone not directly related to the duplication of source code
that may be reported by clone detection tools. These
clones, called “incidental clones”, are segments of code
that are similar in structure and function not because of
explicit copy-and-paste activities but rather arise due to
other factors such as programming idioms, API interac-
tions, and the inherent structure of programs written in a
programming language. These clones can be very difficult
to filter, both manually and automatically, because their
form and function may actually be related. For example,
building a GUI is a highly repetitive task, and interactions
with the API may result in many repeated calls to the same
set of functions. In these cases, it is difficult to classify the
cause of the clone as copy-and-paste or incidental.

It is important that we measure the proportion of clones
in a result set that are false positives or incidental clones if

1



we wish to properly evaluate the effectiveness and accu-
racy of clone detection tools, yet little work has been done
on this topic. This is largely because this type of evalu-
ation would have required human subjects to classify the
clones, a task that was found to be highly subjective [19].
With the recent existence of large source code reposito-
ries such as csourcesearch.net [1], we can now take an
objective approach to measuring the amount of incidental
cloning and false positives, there by giving us insight into
the degree of true cloning within a software system.

This paper proposes an experiment that will measure
the commonality amongst a very large set of unrelated
open source projects taken from the csourcesearch.net
project. Because these systems will be generally unre-
lated we expect that the code will be equally unrelated,
giving us a baseline of false positives that are detected in
unrelated code. This will provide insight about how many
clones are detected amongst unrelated code when inspect-
ing a software system, and giving us a way to more accu-
rately estimate the amount of true cloning in a software
system. In addition, we will also measure the effect of
API protocols on clone detection results by measuring the
amount of cloning that occurs between software that uses
the same API or library. In this work we expect the com-
monalities amongst software systems to be low, provid-
ing further validation of the significance of cloning found
within a software system.

2 Methodology
The goal of this study is to estimate the amount of false
positives and incidental clones that exist in the results
of a clone detection tool. We will do so by measuring
the amount of clones that are detected amongst unrelated
code, under the assumption that most clones that are de-
tected will be false positives. This assumption was de-
rived from the results of our previous work comparing
source code of similar open source projects [2] where we
found that the open source projects in our study did not
share code, even though they were related in functional-
ity.

The experiment will consist of two phases. In the first
phase we will detect clones amongst a random sample of
projects, giving us an estimate of false positives and in-
cidental clones detected amongst unrelated code. In the

second phase, our study subjects will consist of source
code that is related to GUI construction. This phase will
provide us with an estimate of the amount of incidental
cloning that is detected by clone detection tools. For each
phase, we will carry out the following steps:

1. Randomly select study subjects.

2. Detect clones between each study subject pair.

3. Detect clones within each study subject.

4. Measure overlap of clones within software systems
with clones occurring between them.

Each of these steps will be discussed in more detail below.

2.1 Unrelated Code
For the purpose of this experiment, we will use 200
randomly selected projects, selected from the list of
downloaded projects published by the author of csource-
search.net. csourcesearch.net is an on-line searchable
repository of a very large number of C projects. It allows
the use to query the source code using a variety of mech-
anisms. To detect clones amongst files that include GUI
libraries, we will use the “includes” search functionality.
There will be no restriction on size of project. However,
the source language will be restricted to C, the only lan-
guage currently in the repository.

After selecting the projects, we will proceed to down-
load the source and run clone detection tools on them.
In this study we will use two clone detection techniques
to gather our results, parametrized sting matching as de-
scribed by Kamiya et al. [10] and exact match string
matching as described by Ducasse et al. [8]. This will
allow us to measure the impact of the detection technique
on the results as well as provide us with a comparison of
the amount and type of false positives that are detected by
the two different approaches.

In our first step of clone detection we will only detect
clones that occur across each possible pair of software
systems. Because we expect most of the source code to be
unrelated, most clones should in fact be false positives or
incidental clones. From this set of results, we will record
the average percent of commonality between each pair of
systems and the average size of the clones. This will pro-
vide us with a baseline of the amount false positives that

2



occur in a results set from each of the clone detection tech-
niques.

Through manual inspection of the results in this step,
we will try to analyze the types of clones that tend to occur
in both, in an effort to profile the types of code that cause
false positives in the clone detection techniques we are
using.

In our next steps we will detect the clones that occur
within each project and measure the amount of code that
occurs in both the set of clones across projects and within
the projects. This will give us a further indicator as to
how much code that is likely to be part of a false positive
contributes to the detected clones in a software system.

2.2 GUI Code
In our next step, using csourcesearch.net we will search
for any files in the repository that include header files from
widget libraries such as GTK, GNOME Widgets, and xlib.
Partitioning the files by project, we will detect the clones
occurring across projects using the same libraries. By de-
tecting the clones that occur between code using special-
ized libraries such as GUI libraries, we can gain insight
into the degree of “incidental cloning” that is detected by
clone detection tools. These clones will in many cases
represent strategies or protocols required for the use of
the libraries, something that can not be avoided. Perhaps
the result of studying these clones can lead to further ab-
stractions with the libraries themselves.

As in the first phase, will will detect clones within
each of the projects as well. By measuring the overlap,
well will gain insight into the contribution of “incidental
clones” as part of a result set of detected clones.

3 Related Work
There is a wide variety of clone detection techniques that
have been developed. These methods range from string
comparison, metrics comparison, and program graph
comparison strategies [4, 6, 8, 10, 16, 18, 9, 5, 17, 14].
Currently we propose to only use two of these methods
of clone detection as a pilot study. The study we propose
could be expanded to other clone detection techniques.
Several case studies have been performed on cloning with
a software system [3, 7, 10, 11, 12, 13], but none of these

studies have considered measuring cloning across soft-
ware systems.

There are very few studies that perform clone detection
across software systems. Kamiya et al. [10] investigated
the cloning across the source code of three different oper-
ating systems: Linux, FreeBSD, and NetBSD. Their anal-
ysis showed that there was about 20% cloning between
FreeBSD and NetBSD, whereas there was less than 1% of
the code cloned between Linux and FreeBSD or NetBSD.
Because FreeBSD and NetBSD have the same origin, the
cloning between them was not surprising. Because Linux
was developed independently from the BSD systems, very
little cloning was detected. In [2] we found similar results,
finding that very few clones are detected across software
that was not related. However, in both of these case, the
study size is very small, making the results not general-
izable. In addition, neither study considers the effects of
using libraries such as GUI libraries on the clone detec-
tion results.

4 Conclusion

Previously it has been very difficult to objectively mea-
sure the amount of false positives are returned by a clone
detection tool, yet this is important if we wish to confi-
dently analyze the results of clone analysis and clone de-
tection research. In this paper, we propose a study that
will effectively find the lower limit of this value. In addi-
tion we also aim to measure the impact of the protocols re-
quired to use APIs on the clone detection results, helping
us measure the effects of incidental cloning in a software
system.

The results of this work will provide not only more in-
sights into the accuracy of clone detection tools, but it also
provides a platform from which we can investigate the
weaknesses of tools, and also improve data filtering tech-
niques. For example, from the resulting detected clones
between software system and within software systems one
may be able to train learning algorithms to classify true
clones and false positives, something that we would like
to research further.

3



References
[1] csourcesearch. "http://csourcesearch.net/",

2006.
[2] Raihan Al-Ekram, Cory Kapser, Richard Holt, and

Michael Godfrey. Cloning by accident: An empirical
study of source code cloning across software systems. In
2005 Intl. Symposium on Empirical Software Engineering
(ISESE-05), 2005.

[3] G. Antoniol, U. Villano, E. Merlo, , and M. Di Penta. Ana-
lyzing cloning evolution in the linux kernel. In Information
and Software Technology 44(13), 2002.

[4] B. S. Baker. On finding duplication and near-duplication
in large software systems. In WCRE ’95: Proceedings of
the Second Working Conference on Reverse Engineering,
page 86, Washington, DC, USA, 1995. IEEE Computer
Society.

[5] Magdalena Balazinska, Ettore Merlo, Michel Dagenais,
Bruno Lague, and Kostas Kontogiannis. Advanced clone
analysis to support object-oriented system refactoring. In
Proceedings of the 7th. Working Conference on Reverse
Engineering, pages 98–107, 2000.

[6] Ira D. Baxter, Andrew Yahin, Leonardo Moura, Marcelo
Sant’Anna, and Lorraine Bier. Clone detection using ab-
stract syntax trees. In ICSM ’98: Proceedings of the Inter-
national Conference on Software Maintenance, page 368,
Washington, DC, USA, 1998. IEEE Computer Society.

[7] G. Casazza, G. Antoniol, U. Villano, E. Merlo, and M. Di
Penta. Identifying clones in the linux kernel. In First IEEE
International Workshop on Source Code Analysis and Ma-
nipulation, pages 92–100. IEEE Computer Society Press,
2001.

[8] Stéphane Ducasse, Matthias Rieger, and Serge Demeyer.
A language independent approach for detecting duplicated
code. In Hongji Yang and Lee White, editors, Proceedings
ICSM’99: International Conference on Software Mainte-
nance, pages 109–118. IEEE, 1999.

[9] J. H. Johnson. Substring matching for clone detection and
change tracking. In Proceedings of the International Con-
ference on Software Maintanence, pages 120–126, 1994.

[10] Toshihiro Kamiya, Shinji Kusumoto, and Katsuro Inoue.
Ccfinder: A multilinguistic token-based code clone detec-
tion system for large scale source code. In Transactions on
Software Engineering 8(7), pages 654–670. IEEE Com-
puter Society Press, 2002.

[11] Cory Kapser and Michael W. Godfrey. Toward a taxonomy
of clones in source code: A case study. In Evolution of
Large Scale Industrial Software Architectures, 2003.

[12] Cory Kapser and Michael W. Godfrey. Aiding comprehen-
sion of cloning through categorization. In Proc. of 2004 In-
ternational Workshop on Principles of Software Evolution
(IWPSE-04), pages 85–94, 2004.

[13] Cory Kapser and Michael W. Godfrey. Improved tool sup-
port for the investigation of duplication in software. In The
2005 Intl. Conference on Software Maintenance, 2005.

[14] Raghavan Komondoor and Susan Horwitz. Using slic-
ing to identify duplication in source code. In SAS ’01:
Proceedings of the 8th International Symposium on Static
Analysis, pages 40–56, London, UK, 2001. Springer-
Verlag.

[15] K Kontogiannis. Evaluation experiments on the detection
of programming patterns using software metrics. In Pro-
ceedings of Working Conference on Reverse Engineering,
pages 44–55. IEEE Computer Society Press, 1997.

[16] Kostas Kontogiannis, Renato DeMori, Ettore Merlo,
M. Galler, and M. Bernstein. Pattern matching for clone
and concept detection. Autom. Softw. Eng., 3(1/2):77–108,
1996.

[17] Jens Krinke. Identifying similar code with program de-
pendence graphs. In Proc. Eigth Working Conference on
Reverse Engineering, pages 301–309, 2001.

[18] J. Mayrand, C. Leblanc, and E. Merlo. Experiment on
the automatic detection of function clones in a software
system using metrics. In Proceedings of the Interna-
tional Conference on Software Maintenance, pages 244–
253. IEEE Computer Society Press, 1996.

[19] Andrew Walenstein, Nitin Jyoti, Arun Lakhotia, Junwei
Li, and Yun Yang. Human judgment of function clones:
Problems for automated tool evaluation. In 10th Working
Conference on Reverse Engineering (WCRE’03), 2005.

4


