Concept Identification in Object-Oriented Domain Analysis: Why Some Students Just Don’t Get It

D. Svetinovic D. M. Berry M. W. Godfrey

School of Computer Science
University of Waterloo
Waterloo, Canada

International Requirements Engineering Conference
Paris, 2005
What is the real value of object-orientation (OO) and object-oriented domain analysis (OODA)?

Not clear!

Does OODA produce high-quality conceptual models?

Case studies suggest NO!
Introduction

- Object-Oriented Analysis (OOA) is extremely popular.
- Object-Oriented Design (OOD) is extremely popular.
- Object-Oriented Programming (OOP) is extremely popular.
- Lots of people swear by OO.

Object-Oriented Domain Analysis (OODA) is OOA of the problem domain.
Need for Validation

Despite being widely used, OO has not been extensively validated.

- Hatton, Kaindl, and Kramer have indicated an urgent need for experimental validation of the effectiveness of not just OO but of all SE abstraction techniques and methods.

- Our work attempts to explore the issues of incompleteness and non-predictability of conceptual models (CMs), important components of quality.
Quality of CMs is Important

- We must ask:

 How complete and predictable are the CMs produced by the OODA efforts of groups of analysts?

- Our experience in evaluating CMs produced by student groups has shown that a good surrogate question is:

 How mutually consistent are the CMs of the same problem domain produced by OODA efforts of independent groups of analysts?

- Answer to both questions: “Not very”, as we shall see!
Motivation

- Observations of the students’ work in a Software Requirements Specification course at University of Waterloo.
- The term-long project for CS445 is to produce an SRS for
 1. a small telephone exchange or a VoIP telephone network and
 2. its related accounts management subsystem.
- Over 5 years, 740 students and 195 projects, 31 of which were examined closely.
- The incompleteness and variation in the CMs is breathtaking.
Students relied upon a typical set of OODA techniques:

- use case modeling,
- noun phrase analysis,
- category analysis,
- group consolidation,
- evaluation by customers (teaching assistants), and
- general domain knowledge.

They were instructed also in related project management techniques and UML.
Results: VoIP System Specifications

In the 31 closely examined group projects:

Total number of concepts: 527
After elimination of syntactic duplicates: 259
Number of semantically unique concepts: 134

Per group:

Minimum: 8
Maximum: 31
Average: 17
Median: 16
Results: VoIP System Specifications

Of the 134 semantically unique concepts:

- Only 51 appear in at least 2 SRSs
- Only 40 appear in at least 3 SRSs
- Only 8 appear in at least 50% of SRSs
- Only 6 appear in at least 80% of SRSs
The most frequently observed difficulty is that of *just doing* OODA, that is,

- identifying concepts of the system’s domain and
- ascribing the system’s functionality to these concepts.

We call this the **fundamental difficulty (FD)** of OODA.
FD in Small Systems?

Originally, we had thought that the FD came from the large size of the problem, but in another case study, we demonstrated that:

Also small systems suffer from the FD!

Even, for example, polished educational case studies of specifying elevator systems published by OODA experts.
Results: Elevator System Specifications

Look at how little overlap there is among three specifications!
Very little commonality among the 3 specifications:

- **Total concepts: 44**

<table>
<thead>
<tr>
<th>Case Study</th>
<th>Discovered</th>
<th>% Discovered</th>
<th>Ignored</th>
<th>% Ignored</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS1</td>
<td>6</td>
<td>14</td>
<td>4</td>
<td>9</td>
</tr>
<tr>
<td>CS2</td>
<td>19</td>
<td>43</td>
<td>7</td>
<td>15</td>
</tr>
<tr>
<td>CS3</td>
<td>6</td>
<td>14</td>
<td>25</td>
<td>57</td>
</tr>
</tbody>
</table>

Table: Numbers of Concepts

- In the first case study, the ratio of discovered to ignored concepts is 3:2; in the second, the ratio is 3:1; and in the third, the ratio is 1:4.

See paper for the detailed concepts table and evaluation.
Thus, we have found in these two studies of large and small systems that:

- OODA models are underspecified.
- OODA models of the same system are drastically different.
- A typical specification has a large number of software concepts at inconsistent abstraction levels.

∴ the FD is independent of problem size!
Why is OODA Difficult?

- Not due to the size of the system
- Not due to the analysts’ lack of OODA experience
- We believe that the OODA is difficult because it is poorly suited to deal with two inherent properties of complex business systems:
 1. Each of most concepts fulfills only a subactivity of a larger activity by interacting with other concepts.
 2. Each of most concepts participates in many different activities, each for different purposes.
What Analysts Actually Do

- Analysts try to assign responsibilities that are fulfilled through the collaboration of multiple concepts to only one concept.
- Analysts tend not to capture passive concepts, concepts that are produced or consumed by interaction of other concepts.
Solutions?

- Skipping OODA all together?
- Other paradigms?
- Improving OODA?
- Postponing and constraining OODA through additional refinement of RA artifacts?

From my observation of what works with students, I feel that the last option is the most promising solution.
Future Research

- Defining and constraining RA artifacts as a source of concepts beyond use cases and general domain knowledge.
- Exploiting goal theory and goal-based approaches.
- More precise functional modeling of the overall system before OODA.
Future Research

- We will pursue the last option, with a choice of detailed system high-level requirements specification using state-based modeling.
- Other options include activity modeling, aspect-oriented modeling, agent-oriented modeling, etc.
- We are pursuing state-based modeling due to its widespread use and simplicity, compared to other approaches.
Concept Identification in Object-Oriented Domain Analysis: Why Some Students Just Don’t Get It

Questions?