
Improved Tool Support for the Investigation of Duplication in Software

Cory Kapser and Michael W. Godfrey
Software Architecture Group (SWAG)

School of Computer Science, University of Waterloo
{cjkapser, migod}@uwaterloo.ca

Abstract

Code duplication is a well documented problem in soft-
ware systems. There has been considerable research into
techniques for detecting duplication in software, and there
are several effective tools to perform this task. However, a
common problem with such tools is that the result set re-
turned can be too large to handle without complementory
tool support. The goal of this paper is to describe the crite-
ria for a complete tool that is designed to aid in the compre-
hension of cloning within a software system. Furhermore,
we present a prototype of such a tool and demonstrate the
value of its features through a case study on the Apache
httpd web server. For example, in our study we found that
a single subsystem comprising only 17% of the system code
contained 38.8% of the clones.

1. Introduction

Code duplication, or code cloning, is generally believed
to be common in large industrial systems [5, 7, 9, 15, 20, 21,
23]. Management of code cloning and the various problems
associated with it is important for the successful evolution
of software systems. One such problem is the copying of
assumptions that may or may not be documented: when the
environment changes to violate these assumptions it may
not be clear where in the code changes need to be made. For
example, suppose there is an assumption of the existence of
a previously initialized global array that has been copied. If
the array is now to be initialized within a specific function,
bugs will be introduced into the system unless appropriate
constraint checking and initialization is introduced in each
copy of the code. To ensure the successful evolution of large
software systems, such problems must be addressed. The
effort to determine the required changes may be daunting in
large industrial systems.

Maintenance of clones in software is therefore impor-
tant. One problem with many clone detection methods is
that they may return a large set of suspected clones, but pro-

vide little or no additional information about them to aid the
user in their interpretation. This makes clone management
cumbersome at best and intractable in general. Viewing and
classifying or grading thousands of clones manually is time
consuming and impractical, but necessary if one hopes to
manage clones successfully, by either removing or docu-
menting important points of duplication. For example, in
our Apache httpd case study, a naive use of the clone detec-
tion tool CCFinder resulted in 13062 clone pairs. In this
study, we set the minimum clone size to be 30 tokens. The
tool we propose tries to aid in the process of clone filtering
and classification by using automatic classification and fil-
tering. The classification will help users direct their efforts
towards types of clones they believe to be most beneficial.

While automatic classification of clones may indeed aid
the user in identifying clones that are relevant to their task,
it is not enough. Clone categories may have hundreds of
clones, and these clones relay little information about the ar-
chitectural relationships these clones create within the sys-
tem. Mechanisms for navigation and exploration must be
in place. Such mechanisms should include multiple views
of the clones in the system, an architectural perspective for
example; the ability to query the clone set, for similar or re-
lated clones; and the ability to filter the clone set as the user
desires.

The goal of this work is to describe the criteria for a tool
that is general enough to be used in most tasks related to
understanding cloning in a software system, yet complete
enough to remain useful in each of these tasks. We describe
a tool we have developed to meet these criteria and perform
a case study to demonstrate the value of meeting these cri-
teria.

This work makes several contributions to the area of
clone detection research. It lays the ground work for the
requirements of an effective clone navigation and visualiza-
tion tool. It also provides a prototype of a tool that would
embody the features we believe are required to effectively
understand and ultimately manage clones in software. It
also provides further information about how cloning occurs
in software systems by means of a case study.



The paper is organized as follows: Section 2 describes
the necessary criteria for tools that enable the exploration
and comprehension of clones in software; Section 3 de-
scribes a prototype of such a tool; Section 4 describes a
case study we did using the tool; Section 5 describes related
work in this area of research; Section 6 concludes the paper.

2. A Tool To Explore Clones

In this section we briefly outline our general criteria for
a tool used to navigate and understand cloning in a software
system. We then describe in more detail the features needed
to meet these criteria. This set of criteria and features is
derived from much manual work by the authors in attempt-
ing to understanding cloning in software systems, starting
with our studies of the Linux kernel file-system subsystem
and the database server Postgresql [16, 17]. Some features
were also taken from suggestions by students in a senior
level graduate course who used the tool Gemini [25] and
CLICS, the tool described in this paper, to perform an anal-
ysis of clones within the Linux kernel source code.

2.1. Criteria

The core challenge to the maintenance and management
of cloning in software systems is comprehending the ac-
tual types of clones and the dependencies they create in
the software system. To complete such a task, duplica-
tion must be detected and then cloning must be evalu-
ated throughout the system at a variety of different lev-
els of abstraction. Methods to find the duplication in the
source code has been a topic of research for some time
now and there is a large variety of methods to detect clones
[5, 6, 7, 9, 12, 15, 21, 22, 23]. However, clone detection
tools can return very large result sets and viewing every pos-
sible clone is infeasible. To address this problem, tools and
processes need to be developed to help guide the software
maintainer toward the information they require to complete
the task.

We consider that any tool designed to help navigate and
understand cloning in a software system should provide:

• facilities to evaluate overall cloning activity.

• mechanisms to guide users toward clones that will be
most effectively used in their task.

• methods for filtering and refining the analysis of the
clones.

Each of these criteria is described in more detail below.

2.1.1. Overall System Evaluation. As a first step in un-
derstanding cloning within a software system, regardless of
the end goal, maintainers must have an understanding of the
cloning from a high level of abstraction. This understanding

will allow the user to evaluate the extent and the severity of
the duplication in order to estimate cost and/or necessity of
the task. This information will also be a starting point to
guide them through the rest of their task.

Several mechanisms can be used to evaluate cloning
from a high level. These mechanisms can be visualization
methods, such as scatter-plots [5, 9, 15, 24, 25] for example.
They can also be metric oriented, such as reporting the per-
cent of lines cloned, average length of clone, etc. Whether
the method is visualization or metric oriented, it is impor-
tant that the information provided is scalable and covers a
wide range of aspects.

2.1.2. Guide and Empower the user. The possibly large
sets of clones returned by the clone detection methods make
it infeasible to look at each individual clone. A tool de-
signed to aid in the comprehension of cloning in a software
system should provide a means of guiding the user to clones
relevant to his/her task and reduce the data set as much as
possible without loss of information.

There are several ways to direct users toward the clones
they seek. Metrics can be used to query the data set [11].
Some examples of metrics that might be used are the size
of the clone, the types of changes made to the clone, and
types of external dependencies a code segment has. Such a
method can direct users to promising refactoring opportu-
nities. Other methods of querying the data set can also be
used, such as querying based on location of the clones in
the software and the type of code the clone exists in. As an
example of such a query, a user might be concerned about
cloning of macros originating in a particular file. Query-
ing mechanisms provide flexible and customizable analy-
sis, allowing users to leverage their own knowledge about
the software and cloning, making the user more effective in
their task.

Upon initial survey of a software system, users may not
be fully aware of what types of information they want or
need. Query facilities can suffer from this weakness and
strong static analysis of the data set is also required. Static
analysis should provide low level metrics about cloning ac-
tivities in the system, as well as a method of navigating
through clones in such a way that the user has some knowl-
edge about the clones they are seeing. An example of this
would be categorization of the clones as is done in [6, 17].

Cloning should be described in terms of the system ar-
chitecture in some views. We believe that relating cloning
and architecture can have great benefits to comprehension
of cloning. Cloning is a type of implicit architectural de-
pendency, and as such can provide information about the
architecture and design of the system. This also enables
users to use their own knowledge of the architecture of the
system when evaluating clones.



2.1.3. Analysis Refinement. Due to the subjective nature
of the analysis of clones, from the perspective of the user,
there will always be clones that do not apply to their task,
For this reason, it is important that tools supporting the com-
prehension of cloning provide mechanisms to remove and
filter clones from the analysis.

3. The CLICS System

This section provides details of a sample implementa-
tion of a tool written to meet the criteria listed above. The
CLone Interpretation and Navigation System (CLICS) is a
prototype implementation of a tool that meets the criteria
listed above. It is an example of the types of features that
can be used to provide a high level initial view, guide users
through the clone understanding process, and refine the fact
base as users learn more about the cloning in the software
system.

3.1. System Overview

CLICS was first described in [17]. While the tool could
be used with any number of clone detection tools, it uses
clone detection results from the tool CCFinder [15] as the
dataset. CLICS uses a taxonomy of clone types to catego-
rize clones and generate statistics about clones in a software
systems. The taxonomy, described in [17], has been con-
structed through manual classification of clones in several
software systems. The most recent version of the taxonomy
can be found at [3]. Currently, CLICS supports clone anal-
ysis in C/C++ and Java.

3.1.1. Extracting Regions from Source Code. In our first
step we use ctags, a tool for extracting indices of language
objects found in the source code. We then find the end
points of functions, macros, structs, unions, and enumer-
ations. Then we join consecutive objects of the same type
if they are type definitions, prototypes, or variables into re-
gions.

Using this information we map the file to eight types of
regions: consecutive type definitions, prototypes, and vari-
ables; individual macros, structs, unions, enumerations, and
functions. Comments are ignored in the analysis. Sub-
regions are also extracted for fuctions. These regions in-
clude initialization or variables, code blocks such as control
flow statements, and series of function calls.

3.1.2. Mapping Clone Pairs to Regions. In the next step
of the process, for each clone pair we map both segments
of the clone to a region in a file. We consider a segment’s
region to be the one that contains the largest portion of its
code. The tool CCFinder ends clones that are part of a
function at the end of the function, so we are not concerned

about clones that may map to several functions. In the case
where a clone maps to several different region types, it may
be better to break the clone up, but in practice we find the
current method to work quite well.

If two regions have cloning between them, we say they
have a cloning relationship. For each region with a cloning
relationship we group together all the clones that form this
relationship, and we call this a Regional Group of Clones
(RGC). An example of such a group would be several clones
between two functions. The concept of RGC is useful for
both visualizing and filtering clones.

3.1.3. Filtering. CLICS begins by filtering the dataset of
several common types of false positives that are detected by
parameterized string matching methods. These filters work
by enforcing stricter criteria for a clone match in particu-
lar areas of the code. There are currently four filters we
have implemented. In all cases, the thresholds were chosen
through rigorous trials.

The first filter operates on structs, union, type defini-
tions, variables, and prototypes. If an RGC has one region
of the previously mentioned types, any clone in this RGC
must have a minimum of 60% of its lines match exactly. In
our experience this filter eliminates a substantial number of
clone pairs from the result set without removing many, if
any, true positive matches.

We also filter clones occurring on statements that are
“simple function calls”. Regions of code that are “sim-
ple function calls” are sequences of code of the form func-
tion name(token [, token]*). The criteria for a match is 70%
of the function names in either region must be similar. We
consider two function names to be similar if the edit dis-
tance, as computed by the Levenshtein Distance algorithm,
is less than half the length of the shortest of the two func-
tions being compared.

We found that clones within switch statements are often
false positives. To filter clones in these areas, we require
that 50% of the lines of code in these areas match. Clones
in very simple if-then-else blocks are also filtered in this
way.

Clones whose two segments of code overlap by more
than 30% of their length are also removed. Although the
filtering mechanisms are quite simple, they are quite effec-
tive. Using these filters we are able to reduce the dataset by
approximately 60%.

3.1.4. Sort Clones into Taxonomy and display results.
Once we have a set of initially filtered clones, we can sort
them into the taxonomy. Then the user is presented with a
GUI containing views of clones using trees of hierarchical
classification, clone classes, and system architecture views.
The taxonomy is only briefly described in this paper.



3.2. The Clone Taxonomy

Here we provide a very brief overview of the clone tax-
onomy. For a more detailed description, see [3, 17]. The
taxonomy is a hierarchical classification of the clones using
attributes such as location and functionality. Its goal is to re-
flect the types of clones that occur in software systems, and
is based on manual inspection of detected clones in several
software systems.

A compressed version of the taxonomy can be seen in
Table 2. There we can see the hierarchical structure of the
taxonomy. First, clones are divided by how close the two
code segments of the clone are within the system. Clones
at this level are either Same File, Same Directory - Different
File, or nth Cousin Clones where n is the distance measured
by the closest common node in the file-system of the soft-
ware system. For example, Same Directory, Different File
clones are synonomous to 1st cousin clones, clones occur-
ring in two different directories that have the same parent
directory would be 2nd Cousin Clones and so on.

Clones are then partitioned by the type of region they are
found in. Clones between two functions are called Function
to Function Clones. All other clones are referred to here as
Non-function Clones for brevity.

Function to Function clones are subdivided as functions
that are nearly the same Function Clones; functions that are
very similar, Partial Function Clones; functions where a
large portion of one is cloned into another, Cloned Function
Bodies; and small segments of code are shared between two
functions, Clone Blocks. Clone Blocks is further subdivided
in the taxonomy but due to space limitations not described
here.

3.3. Meeting the Criteria For a Clone Navigation
Tool.

The following section describes the features we imple-
mented to meet the criteria we described for a clone com-
prehension tool. It is a proof of concept implementation.

3.3.1. Overall System Evaluation. To provide a general
system overview, we compute a series of metrics encom-
passing several aspects of the system: system size, percent-
age of system cloning, and frequency of clone types. The
metrics detailing system size include the number of files and
LOC.

Metrics describing percentage of system cloning include
percentage of lines that have a clone, percentage of meth-
ods containing a clone, and percentage of files containing
a clone. Metrics describing the percentage of lines with
clones and the percentage of methods with clones are useful
indications of the degree of cloning in the software system.
The percentage of files containing clones is a useful metric
when determining the clone density in the system.

To describe the frequency of different types of clones in
a software system, we list the the number of occurrences of
each clone type in the taxonomy, similar to Table 2. These
metrics can provide indications as to the types of problems
that may be occurring in the system and may indicate the
degree of difficulty of the investigation and management.

3.3.2. Guide and Empower the user. CLICS uses several
mechanisms to enable the user to perform an in-depth anal-
ysis of clones in the system. These mechanisms include vi-
sualization of clone relations of subsystems using a hierar-
chical containment graph, metrics for entities at all levels of
architectural abstraction, clone navigation through the tax-
onomy, clone navigation through the subsystem tree, and
query facilities.

To visualize the cloning activity we use LSEdit, part of
the architecture recovery toolkit, SWAGKit. LSEdit is a
graph visualization tool that is designed for the exploration
of software “landscapes”. Landscapes are graphs repre-
senting software architectures and their dependencies. The
nodes of the graphs are software artifacts such as a subsys-
tem, file, or method. The edges of the graph are depen-
dencies between two software artifacts. For the purpose of
clone investigation, the edges are clone relationships. Enti-
ties of the graph can be hierarchically contained, allowing
varying levels of abstraction during analysis. LSEdit is a full
featured graph exploration tool with a rich set of features for
navigation and display of architectures.

We visualize the clones in this way because we believe it
is more scalable than scatter-plots used in [5, 9, 25]. Users
can see the dependency between subsystems easily via car-
dinalities and arrow heads indicating magnitude of depen-
dency. They can also see unexpected cloning relationships
quickly, such as the dependency between server and include
in Figure 1. These two clones were caused by cloning of
four function prototypes and one cloned file, discussed be-
low.

Cloning can be explored through two other mechanisms.
The first is via the clone taxonomy described earlier. This
view uses a clone type navigation tree similar to those found
in several file management programs. This structure is well
suited for this purpose because of the taxonomy’s hierar-
chical nature. Users can view clones in each category, and
remove any clones they believe to be false positives. This
method of navigation is useful when performing initial anal-
ysis of clones in the system. Clones themselves are dis-
played using highlighted text. Clones residing in the same
region as the selected clone are also highlight to show the
user the degree of cloning in that region. From this view,
and all other views of the source code, the user can query
for clones related to the currently select clone and source
code.

The second form of navigation of clones is done through



Figure 1. Architectural View

system navigation tree. This is structured to represent the
subsystem containment hierarchy of the software. As users
select a node on the tree, they are given various sources of
information about the entities contained within it. This in-
formation includes cloning metrics, subsystems in a cloning
relationship with the entity, and the file source code. Table
3 shows the metrics of the mpm subsystem of the Apache
httpd server. For each software artifact within the selected
entity, the following metrics are shown:

• number of clones involving only entities within the ref-
erenced entity

• number of clones with one segment within the refer-
enced entity, and one segment somewhere else in the
software system.

• percentage of lines of code of the software system con-
tained within the given entity.

• percentage of total clones that are involved with refer-
enced entity.

These metrics give the user information to quickly see
cloning “hotspots”. A “hotspot” would be an artifact (a sub-
system, file, method, etc) containing a substantially larger
portion of clones than other entities near it. For example,
in Table 3 we see that the server subsystem contains 38.8%
of the overall clones in the system, but only has 17% of the
lines.

Currently only limited query support is implemented in
CLICS. CLICS supports querying clones based on loca-
tion, based on clones relations to code segments, and clones
of a particular size. Queries of clones based on location in-
clude clones strictly within a given entity, clones going from
one entity to another, and clones that have at least one of its
code segments in the entity. All query results are displayed
in a categorized clone navigation tree as described above.

Querying for clones related to a region of code includes
queries for clones that are directly related to the code, and

queries for clones that are related transitively. Directly re-
lated clones are clones where one of the segments of a clone
pair is within that region. Queries for transitively related
clones return the result of the transitive closure of the clone
relation. Such queries often uncover clone relations that
are missed clones, missed because the code segments differ
enough to not be detected as actual clones. Each of these
clone queries can be modified to restrict the query to a par-
ticular line of code, restricted to the same clone type as the
current clone selected, and generalized to all clones involv-
ing that region.

3.4. Analysis Refinement

Refinement facilities in CLICS are currently restricted
to the manual removal of clones and removal/addition of
files from the analysis. Users can remove individual clones,
whole RGCs, and clone classes. They can also select files
to be excluded from the analysis. More advanced filtering
mechanisms are currently being developed.

4. Case Study

In this section we will describe the case study we per-
formed on the Apache httpd web server [1]. Based on
NCSA httpd 1.3, the first release of Apache was made in
April 1995. Since then, it has become tremendously pop-
ular. As of March 2005, it has been found that more than
68% of web sites are served by Apache [2].

Through a case study, we show the value of many of
these features at different levels of the analysis. We also
show the value of viewing cloning as a dependence rela-
tionship in a software architecture. We show the value of
metrics as a tool for initial inspection of the cloning, and
also as a guide to find hotspots in the system and why they
occur.

We chose Apache as our case study because it is of non
trivial size, and has several interesting characteristics in its
architecture that we wished to investigate. The first charac-
teristic is that it runs on several different platforms: BeOS,
Netware, OS/2, Unix, and Windows. In particular, there is
a Multi-Processing Module (MPM) for each of these plat-
forms. It also has several experimental MPMs released with
the source. These modules were expected to have a high
degree of cloning amongst them as they were implementing
very similar functionality.

Apache is a medium sized software system. Our study
focused on Apache version 2.0.49, which consists of 709 .c
and .h files. There are 261,219 LOC. It has a plugin style ar-
chitecture, with a core responsible for process management
and low level data transmission and receiving. Modules
“hook” into the core by defining points in the data process-
ing chain where they can fill a particular need [1, 10]. The



architectural representation we use to represent Apache was
derived directly from the directory structure of the source
code.

4.1. The Data Set

Using CCFinder we detected clones in the source code.
CCFinder allows the user to set the minimum size of a
clone that will be detected. We chose 30 tokens to be the
minimum size of detected clones.

Using the filters we described earlier, a significant por-
tion of clones were removed from the data set. Table 1 il-
lustrates the usefulness of our filters. We were able to re-
move 8081 clones, 61.8% of the total, with high confidence
that very few true positives were removed. We assessed the
quality of the filtering through manual analysis of the fil-
tered clones. After removing a single subsystem that was
clearly causing false positives we were able to remove an
additional 1405 clones from the data set.

This subsystem was test suites for the apr subsys-
tem. These test suites use the C Unit Testing Framework
(CuTest). CuTest uses a very simple and repetitive method
of adding tests to a test suite. There were 1380 clones within
this subsystem, the vast majority between code for building
the test suite.

After the automatic and slight manual filtering, we began
to look more deeply into the cloning of the httpd server. The
reader should note that while the number of clone pairs in
the data set was greatly reduced, there was only a minor re-
duction in the actual percentage of the system that contains
clones, as shown in Table 1. This is because only small
portions of the code generate a large percentage of the false
positives.

4.2. Cloning - From the High Level

At first glance, Apache exhibits several differing charac-
teristics from previous reports on other software systems.
Studies suggest that cloning tends to occur within the same
directory or subsystem [15, 16, 17]. In Tables 1 and 2 we
see cloning is somewhat more prominent across subsystems
rather than within the same subsystem. Table 1 describes
the number of clones in the same file, same directory and in
different directories. It illustrates the distribution of clones
at various levels of filtering, including no filtering, auto-
matic filtering as described above, removing the apr/test
subsystem, and the final data set. Table 2 illustrates the
types of clones in the system and their distribution. It shows
the total number of clone pairs in each category, and the to-
tal number of RGCs with clones in these groups.

Both tables show us that a high degree of cloning has
occurred across subsystems. After filtering, both manu-
ally and automatically, we see that 51% of the clones in

Apache are crossing subsystem boundaries, shown in Table
2 as the cousin groups. This is explained by the method of
behavioral duplication the Apache team used when porting
Apache to the platforms it runs on today. In many cases,
when platform specific code was required, such as in the
mpm subsystem, much code appears to have been copied
and then ported to the platform.

Table 2 illustrates the importance of filtering. There is a
drastic difference in the number of Same Directory Clones
from the initial automatic filtering and the subsequent man-
ual filtering carried out. This can also be seen in Table 1.
Two important points can be drawn from this observation.
First, one can see the impact of false positives on the re-
sults and the importance of careful inspection of the data
set before reporting results. Second, it highlights the use-
fulness of providing metrics for each subsystem as the users
browses from the architectural perspective. Within five min-
utes, the authors identified the apr/test subsystem anomaly
by noting the disproportionate percentage of clones in the
subsystem when compared to its relative size.

Table 2 also tells something about the types of clones that
are in the system. We see in the table that 60% of clone pairs
contribute to function clones. For clones outside of the same
file, 70% of clones contribute to function clones. From this
set of clones, we can see that function clones outside of the
same file are composed of 2.5 clones on average. This is
an interesting result. It indicates that the functions that have
been cloned possibly have several non trivial changes in the
code. This indicates that the functions are likely going to
be difficult to be refactored. We can also see from this ta-
ble that there are several non-function clones. These clones
are Macro clones, Prototype clones, and Clones of Global
Variables.

Immediately from these results we can see the value of
providing a variety of views and metrics to facilitate initial
high level analysis of the system. Without metrics describ-
ing both the type and the frequency of clones throughout the
system, it would be difficult to have such an in-depth anal-
ysis of the overall cloning in the software system at such an
early stage in the process.

4.3. Inspecting the code

During our initial inspection, we were concerned with
the various edges between unrelated subsystems, as pic-
tured in Figure 1. In particular, we wanted to determine the
causes of the edges, and eliminate any false positives con-
tributing to them. The end result of that investigation led, in
addition to the filtering mention previously, to the removal
of several false positives, and the corresponding metrics for
the taxonomy are list as “More Filtering” in Table 2. The to-
tal time spent refining the results and investigating the high
level dependencies depicted in 1 was under two hours. The



Filtering Same File Same Dir 2nd Cousin 3rd Cousin and more Total % of System
None 2809 1464 1494 7294 13061 15.6%

Automatic 1471 1334 883 770 4458 12.7%
Automatic & Manual 1291 135 883 753 3053 12.1%

More Manual 912 135 840 641 2528 12.0%

Table 1. Frequency of clones at different levels of filtering

Auto. Only More Manual
Type Num. Clone Pairs Num. Region Pairs Num. Clone Pairs Num. Region Pairs

Same File 1471 970 912 845
Same Region 584 200 528 180
Function to Function 877 760 749 655

Function Clones 530 491 451 416
Partial Function Clones 67 54 42 38
Cloned Function Body 27 22 24 19
Clone Blocks 253 193 232 182

Non-Function Regions 10 10 10 10
Same Dir. Different File 1333 326 135 90

Function to Function 1332 324 134 89
Function Clones 1211 241 62 53
Partial Function Clones 65 34 38 9
Cloned Function Body 25 25 8 8
Clone Blocks 31 24 26 19

Non-Function Regions 1 1 1 1
2nd Cousin 883 400 840 394

Function to Function 877 394 834 388
Function Clones 658 240 592 237
Partial Function Clones 52 41 45 38
Cloned Function Body 22 22 22 22
Clone Blocks 175 102 175 91

Non-Function Regions 6 6 6 6
3rd Cousin 693 267 611 241

Function to Function 683 257 601 231
Function Clones 477 147 465 143
Partial Function Clones 72 32 34 24
Cloned Function Body 9 9 7 7
Clone Blocks 125 69 95 57

Non-Function Regions 10 10 10 10
4th Cousin 65 25 19 18

Function to Function 33 9 18 17
Function Clones 64 9 7 7
Partial Function Clones 10 3 2 2
Cloned Function Body 1 1 0 0
Clone Blocks 20 11 9 8

Non-Function Regions 1 1 1 1
5th Cousin 12 12 11 11

Function to Function 11 11 10 10
Function Clones 6 6 6 6
Clone Blocks 5 5 4 4

Non-Function Regions 1 1 1 1

Table 2. Frequency of clone categories — Parametric String Match



reader should note that the authors had some knowledge
about the architecture of Apache httpd prior to this study.
As mentioned above, the difference in the resulting data set
is quite dramatic.

A surprising dependency seen in Figure 1 is the cloning
between include and two other subsystems, server and sr-
clib. A single file, pcreposix.h and several function proto-
types have been copied from include. Such a dependency
should not exist, and this is an example of bad cloning. Un-
necessary effort is required to keep the header files synchro-
nized. The authors believe that these clones should be elim-
inated by maintaining only one copy of this file.

Clones between the srclib and other subsystems were
unexpected. srclib is primarily composed of the Apache
Portable Runtime Project (APR). It is shipped with the
Apache web server source code, it is not directly related
to web services. It is designed to provide a consistent,
platform independent API to underlying platform specific
functionality. Cloning between the server and scrlib in-
volved cloning of time and date formatting, queue control,
and bucket management. It was composed of eight func-
tion clones and a few other clone types, most of which were
identical clones. In the cases of the function clones, the
names were the same, or very close. os and srclib shared a
single function clone, again an exact duplicate with only the
name of the function and the parameter type were changed.
srclib and modules share clones involving the management
of a hash table. There are three function clones and a partial
function clone in this set. While the function clones clearly
have the same origin, and are nearly identical, we would not
suggest refactoring in this case because they are only a few
function of many that are responsible for managing the hash
tables in the two subsystems. A much better approach to
management would be to either refactor the code using the
modules hash to use the one in apr or document the func-
tions and maintain them in parallel. These two subsystems
also share a small code segment involved with command
formatting.

We were not surprised to see dependencies between
modules and server. Much of the servers http processing
code was moved from the server to the modules with the
release of version 2.0. Because we tend to find clones in
closely related files in regards to architecture, we were not
surprised to see clones here. Additionally, both modules and
server process the same data types. This is reflected in the
types of clones we see, which primarily involve handling of
the bucket brigade and translating document requests. That
said, there was still relatively little cloning between the two
subsystems, with a total of eight clones.

Cloning between modules and test and support were sur-
prising. The support subsystem consists of several indi-
vidual executables used for benchmarking and configuring
the server. The clones we found were between the Apache

Name Internal External %Clones %Lines
httpd

srclib 1165 22 40.8 39.8
server 1103 24 38.8 17.0

modules 513 19 18.3 40.5
support 68 7 2.6 3.1

os 9 3 0.4 1.2
test 3 6 0.3 0.6

include 0 3 0.1 1.9
server/MPM

experimental 155 512 23.0 2.9
worker 11 281 10.1 1,2
prefork 5 222 7.8 0.6
netware 4 192 6.8 0.6
winnt 18 166 6.3 2.2
beos 5 174 6.2 0.5

mpmt os2 1 118 4.1 0.4

Table 3. Distribution in Subsystems

Benchmark utility and the mod ssl subsystem. They were
simple function clones involving the setup of an ssl connec-
tion. Clones between test and modules involved converting
time strings, there were only two.

Most of the clones we listed above, specifically function
clones, involved generic high level concepts that should be
implemented in a standard library, such as srclib. For most
of the above redundant code, it would be sensible to factor
out the commonalities to such a place. Overall, however,
the cloning at the high level was mostly superficial, and not
overly concerning.

It is important to point out several features were very
important at this stage of the analysis. Visualization using
LSEdit provided us with the questions we needed to ask
about the high level dependencies in the software. Being
able to query for only clones occurring between a set of en-
tities was vital in the analysis. This feature gave us quick
access to the clones composing a given edge in the graph
making the investigation fast and efficient. Automatically
categorizing the query results using the clone taxonomy de-
scribed earlier made it very easy to determine the types of
dependencies that bound the subsystems.

4.3.1. Deeper Into MPM. An example where cloning
across subsystems is very high within the Apache web
server is the server/mpm subsystem. As mentioned earlier,
it is also a good example of what we call “hotspots”. This
subsystem contains the implementation of the process man-
agement for the various platforms. In Table 3 we see that
there is a very high degree of external cloning within the
mpm subsystem. The view in LSEdit (not shown here) is
one of a fully connected graph, each subsystem being re-
lated to every other subsystem. It is interesting to note that,
aside from experimental there is relatively little cloning
within each entity, but the external cloning is very high.

Looking at the categorised clones within this subsystem
provides more detail about the cloning within mpm. From
this we noted that 78.0% of the clones in mpm contribute to



function clones. Also, 93% of clones in this subsystem are
2nd and 3rd cousin clones.

There are several functions that contribute to large
clone groups within this subsystem, with names simi-
lar to setserver limit, ap mpm query, set deamons to start,
set max free, set min spare threads, set signals. The rea-
son for this high degree of cloning is that the high level
behaviour of the systems are similar. We believe that this
subsystem would benefit greatly from a language that sup-
ports inheritance.

Due to space limitations, we can not describe the full
analysis of the mpm subsystem here. We can, however,
mention the features that are important when analyzing the
cloning at this level and in such a complex web of de-
pendencies. Querying for related clones, or generating the
clone class, of a region of code is very important when de-
termining the degree of cloning and the types of changes
that have been made. Also, metrics were invaluable when
expressing the type of cloning activity in this system.

4.3.2. Other Sources of Heavy Cloning. The mpm sub-
system is not the only entity in the system where duplicate
behavior through code duplication is performed. The sys-
tems threadproc, lock and fileio in apr also exhibit similar
activity. These subsystems are also cloning “hotspots”. The
subsystem threadproc contains 9.7% of the clones, but only
2.3% of the lines of code of the software. They display
a similar distribution of clone types as mpm. Within mpm
in particular, transitive queries were useful when trying to
grasp the full extent of the cloning within the subsystem.

4.4. Summary

Upon initial inspection, Apache appears to deviate from
previous findings that cloning tends to occur within subsys-
tems. However, closer inspection reveals that this still tends
to be true. While cloning was most often between two dis-
tinct subsystems, most subsystems sharing code were con-
tained within the same higher level subsystem. In fact, as
described in our case study, cloning across the highest level
subsystems was quite rare in comparison to cloning within,
shown in Table 2 as 4th and 5th Cousin Clones.

The Apache case study has raised interesting questions
about cloning in multi-platform software systems. In this
case study, we found that platform specific code often had
a high degree of cloning. It appears that such cloning is
a reasonable design strategy, in terms of flexibility and de-
sign of the software system. Activities like this provide a
way to “bootstrap” the porting of platform specific code,
without requiring major changes to the design of the overall
system. This can be an advantage in the initial stages of de-
velopment when appropriate abstraction levels and degrees
of commonality between subsystems are unclear. In later

stages of the program development cycle, this can still be
an appropriate method of duplicating behavior in a software
system. In cases of experimental additions to the system,
such as mpm/experimental, it is reasonable to clone code
because you do not want prototypes or exploratory projects
infecting the currently stable and maintainable code.

We have observed that while the code of platform spe-
cific implementations can be quite similar, there are many
slight variations in the duplicated code. It would be difficult
to completely refactor the software at these points without
breaking the understandability of the code. For this reason,
it seems that cloning like this in similar systems is a sensible
practice.

5. Related Work

Visualization of clones is commonly done using scatter-
plots to present matched lines of code [5, 9, 24, 25] These
scatter-plots provide the ability to select and view clones,
as well as zoom in on regions of the plot. In practice, we
have found scatter-plots do not scale well with medium to
large software systems. The representation of the clones be-
comes so small that it is difficult to pick out all but the most
severe cloning. Additionally, scatter-plots do not easily lend
themselves well to providing the context of cloning from an
architectural perspective.

Gemini [25] and Aries [11] are two tools that use
CCFinder as their core clone detection mechanism. In
addition to scatter-plots, Gemini also provides visualiza-
tion through metrics graphs and file similarity tables. It
allows users to browse clones either pair by pair, or using
clone classes. Aries is a refactoring support environment
for duplicated code. Aries supports refactoring using met-
rics based querying. Users can query for clones matching a
variety of metrics and thresholds. While Aries provides the
capability to refine the displayed clones using queries, these
tools do not support data set refinement or views mapping
clones to system architecture.

In [13], Johnson used Hass diagrams to visualize cloning
relationships. In [14], he proposed the use of hyper-linked
documents to navigate cloning relationships. Reiger et. al.
describes five polymetric views with the focus of showing
what parts of the system are connected via code cloning and
what parts are cloned the most [24]. These views have been
designed to educate the user about the cloning in a software
system at different levels of abstraction, providing progress-
ibly more infomation about the cloning in the software. Us-
ing metrics, architectural graph representations and the Sys-
tem Navigation Tree we also provide the first four views.
Our work differs from the above works in that we aim to
provide the criteria required to make a complete clone com-
prehension tool. Providing high level views and navigation
through visualization is one part of the overall system. We



also require filtering facilities, metrics reporting, querying
facilities.

There is a wide variety of clone detection techniques
that have been developed. These methods range from string
comparison, metrics comparison, and program graph com-
parison strategies [6, 5, 7, 9, 12, 15, 19, 21, 22, 23]. Clone
classification schemas have been previously suggested, usu-
ally based on the degree of similarity of segments of code
and also the type of differences [6, 23]. These classifica-
tions are limited to function clones only.

Recent studies have shown that cloning in software tends
to occur between files that are close within the system [15,
16, 17]. Studies have also shown that in the Linux kernel
the addition of similar subsystems was done through code
reuse rather than code cloning [4, 8]. From our case study,
we see that the Apache development team tended to clone
when adding code related to a specific platform. Studies on
how programmers actually create clones in code were done
by Kim et. al. [18].

6. Conclusions

Cloning in software systems is an important maintenance
challenge. It requires tool support to make analysis and
management a tractable and feasible problem to solve. The
purpose of this paper was to layout a set of criteria for tools
designed to aid in the understanding of clones in a software
system. We described the types of features that could be
used to meet these criteria and then demonstrate the use of
prototype of a tool designed to meet those criteria. Through
a case study, we show the value of many of these features at
different levels of the analysis. We also demonstrate the im-
portance of relating cloning to architectural dependencies.

References

[1] The apache http server project. "http://httpd.
apache.org/", 2005.

[2] Netcraft: Web server survey archives. "http:
//news.netcraft.com/archives/web_
server_survey.html", 2005.

[3] A taxonomy of clones in software. "http://swag.
uwaterloo.ca/˜cjkapser/CLICS/taxonomy",
2005.

[4] G. Antoniol, U. Villano, E. Merlo, , and M. D. Penta. Ana-
lyzing cloning evolution in the linux kernel. In Information
and Software Technology 44(13), 2002.

[5] B. S. Baker. On finding duplication and near-duplication
in large software systems. In WCRE ’95: Proceedings of
the Second Working Conference on Reverse Engineering,
page 86, Washington, DC, USA, 1995. IEEE Computer So-
ciety.

[6] M. Balazinska, E. Merlo, M. Dagenais, B. Lague, and
K. Kontogiannis. Advanced clone analysis to support object-
oriented system refactoring. In Proceedings of the 7th.
Working Conference on Reverse Engineering, pages 98–107,
2000.

[7] I. D. Baxter, A. Yahin, L. Moura, M. Sant’Anna, and L. Bier.
Clone detection using abstract syntax trees. In ICSM ’98:

Proceedings of the International Conference on Software
Maintenance, page 368, Washington, DC, USA, 1998. IEEE
Computer Society.

[8] G. Casazza, G. Antoniol, U. Villano, E. Merlo, and M. D.
Penta. Identifying clones in the linux kernel. In First IEEE
International Workshop on Source Code Analysis and Ma-
nipulation, pages 92–100. IEEE Computer Society Press,
2001.

[9] S. Ducasse, M. Rieger, and S. Demeyer. A language
independent approach for detecting duplicated code. In
H. Yang and L. White, editors, Proceedings ICSM’99: Inter-
national Conference on Software Maintenance, pages 109–
118. IEEE, 1999.

[10] A. E. Hassan and R. C. Holt. A reference architecture for
web servers. In Proceedings of WCRE 2000: Working Con-
ference on Reverse Engineering, 2000.

[11] Y. Higo, T. Kamiya, S. Kusumoto, and K. Inoue. Aries:
Refactoring support environment based on code clone anal-
ysis. In The 8th IASTED International Conference on Soft-
ware Engineering and Applications(SEA 2004), pages 222–
229, 2004.

[12] J. H. Johnson. Substring matching for clone detection and
change tracking. In Proceedings of the International Con-
ference on Software Maintanence, pages 120–126, 1994.

[13] J. H. Johnson. Visualizing textual redundancy in legacy
source. In CASCON ’94: Proceedings of the 1994 confer-
ence of the Centre for Advanced Studies on Collaborative
research, page 32. IBM Press, 1994.

[14] J. H. Johnson. Navigating the textual redundancy web in
legacy source. In CASCON ’96: Proceedings of the 1996
conference of the Centre for Advanced Studies on Collabo-
rative research, page 16. IBM Press, 1996.

[15] T. Kamiya, S. Kusumoto, and K. Inoue. Ccfinder: A multi-
linguistic token-based code clone detection system for large
scale source code. In Transactions on Software Engineering
8(7), pages 654–670. IEEE Computer Society Press, 2002.

[16] C. Kapser and M. W. Godfrey. Toward a taxonomy of clones
in source code: A case study. In Evolution of Large Scale
Industrial Software Architectures, 2003.

[17] C. Kapser and M. W. Godfrey. Aiding comprehension
of cloning through categorization. In Proc. of 2004 In-
ternational Workshop on Principles of Software Evolution
(IWPSE-04), pages 85–94, 2004.

[18] M. Kim, L. Bergman, T. Lau, and D. Notkin. An ethno-
graphic study of copy and paste programming practices in
oopl. In The Proceedings of the International Symposium of
Empirical Software Engineering, 2004.

[19] R. Komondoor and S. Horwitz. Using slicing to identify
duplication in source code. In SAS ’01: Proceedings of the
8th International Symposium on Static Analysis, pages 40–
56, London, UK, 2001. Springer-Verlag.

[20] K. Kontogiannis. Evaluation experiments on the detection of
programming patterns using software metrics. In Proceed-
ings of Working Conference on Reverse Engineering, pages
44–55. IEEE Computer Society Press, 1997.

[21] K. Kontogiannis, R. DeMori, E. Merlo, M. Galler, and
M. Bernstein. Pattern matching for clone and concept de-
tection. Autom. Softw. Eng., 3(1/2):77–108, 1996.

[22] J. Krinke. Identifying similar code with program depen-
dence graphs. In Proc. Eigth Working Conference on Re-
verse Engineering, pages 301–309, 2001.

[23] J. Mayrand, C. Leblanc, and E. Merlo. Experiment on the
automatic detection of function clones in a software system
using metrics. In Proceedings of the International Confer-
ence on Software Maintenance, pages 244–253. IEEE Com-
puter Society Press, 1996.

[24] M. Rieger, S. Ducasse, and M. Lanza. Insights into system-
wide code duplication. In 11th Working Conference on Re-
verse Engineering (WCRE’04), pages 100–109.

[25] Y. Ueda, T. Kamiya, S. Kusumoto, and K. Inoue. Gemini:
Maintenance support environment based on code clone anal-
ysis. In Proceedings of the Eighth IEEE Symposium on Soft-
ware Metrics, pages 67–76. IEEE Computer Society Press,
2002.


