
1

J2EE architecture analysis
using relational algebra

Michael W. Godfrey
SWAG, University of Waterloo

migod@uwaterloo.ca

From RAMP to SALSA:
A success story of migrating
research ideas into industry

Michael W. Godfrey
SWAG, University of Waterloo

migod@uwaterloo.ca

Lossy program analysis
or

Lies my extractor told me

Michael W. Godfrey
SWAG, University of Waterloo

migod@uwaterloo.ca

Research pre-history

 2002 a research project called RAMP is born
RAMP == Rapid Assisted Migration Project
An industrial research collaboration with Sun

Microsystems
Principal investigators:

UW: Profs Holt / Malton / Godfrey
Sun: Brian Down, Wai-Ming Wong

Part of the CSER research consortium:
http://www.cser.ca

RAMP goals

 Investigate aiding assisted software
migration
Quick & dirty architecture modelling and

analysis
Building a KB of discovered problems
Analysis of sw construction processes and

artifacts
…

RAMP to Jackpot

 Contacts thru Sun / RAMP / conferences led to a
sabbatical invitation
Sept-03 to Aug-04 in Sun’s Research Lab in Mountain

View, CA

 Jackpot: An AST-based analysis tool
Team members:

Michael Van De Vanter, James Gosling, Tom Ball, Tim
Prinzing

2

Sun’s Jackpot Tool

 AST-based analysis + transformation tool
 Metrics summaries
 “Bad smell” detection
 Semi-automated source transformation

 J++-to-Java migration, bad smell removal, …
 Code visualization
 “Smart” editor support

 Basic idea:
1. Suck up whole program into memory
2. “Play” with the AST
3. Output transformed source code

Jackpot

 When I arrived in Sept 2003:
Basic infrastructure works
Several bad smells can be detected automatically
Several automated transformations work
...

 But
While the technology is very promising, it’s hard for

outsiders to pick up and adapt easily
Must understand both Jackpot and javac internals
Work is slow going and very detailed (AST hacking)

“Solve a Real Problem”

 Van De Vanter introduces me to
John Crupi, who has a problem:
 “We wrote the book on J2EE patterns

(good and bad), but we’re still using
grep and perl to fix them !”

 I meet with Van De Vanter, Crupi,
several times to sketch out the
design of a prototype J2EE
architecture analysis tool based
around Jackpot

Lossy program analysis

“Lossy” fact
extractor

Program
facts

Query
engine

Source
code

Canned
design queries

Simplified
prog lang schema

Live
queries

Kinds of program analysis tools

1. Special purpose, batch static analysis tools
 Read in code, analyze, spit out (relatively small) result

set
 Result set typically makes no sense on its own; need

refs back to source code
 Analysis goals hard-coded into tool

 New goals? Write a new tool!

Kinds of program analysis tools

2. Whole earth / big bang analysis tools:
 Perform generic analysis (e.g. compilation) and keep

all of compilation “facts” in store
 Then allow AST walkers to generate desired info
 Source-to-source code transformation also possible

 Analysis results can be customized via new tree
walkers
 Slow and detailed work
 … but you can do just about anything to the source code

 Each run requires a new compilation (or reading in
saved AST / symbol table)

3

Kinds of program analysis tools

3. “Lossy” program analysis
 Generates a set of “facts” about the program

 An abstracted (“lossy”) view of the system, according to
a defined schema

 The facts are complete, relative to their defined
abstraction level
e.g., can spot global variable uses across packages, but no

information about how for loops are used
 Source code examined only once

• New run of the tool means only loading the “facts” into the
query engine

• Can add / refine queries using same factbase (since the facts
don’t change unless the code does)

“Lossy” program analysis

 Advantages:
Much easier to write canned queries, GUIs for navigation,

experiment / go fishing with results
Model is self-contained, complete so no need to consult or

link back to source code
Source code examined only once!

 Loading factbase usually much faster than compilation

 Disadvantage:
Source-to-source code transformation not possible

 But can feed results back into a whole-earth analsyis tool
e.g., find known bad smells, feed the fixes to a transformation

engine

Jackpot-to-SALSA

 I “finish” my extractor (still part of Jackpot), and give a
demo for Crupi’s group
 I show how to define and run pattern queries they specify (using

grok/QL) on source code they’ve provided

// Want to find all SessionBeans that call EntityBeans

extendsRTC = extends*
subtypeof = extendsRTC + extendsRTC o implements o extendsRTC
sessionsBeanClasses = classes ^
 subtypeof . {"javax.ejb.SessionBean"}
entityBeanClasses = classes ^ subtypeof . {"javax.ejb.EntityBean"}
sessionBeansCallingEntityBeans = sessionsBeanClasses o calls

o entityBeanClasses

SALSA goals [Crupi]

 Crupi pitches the idea to several big clients
 It is very enthusiastically received!
 The SALSA project (Sun Appliance for Live

Software Analysis) is born!

 Main goal:
 (Semi-) automate architectural assessment as

much as possible
 Aim for remote, collaborative, client-driven, early

feedback
 Ship with a library of known “bad patterns” +

allow application/domain knowledge to be added
 Feedback into the code (comments, annotations,

transformed source code)

Current Status

 I finished the fact extractor
 Now, a standalone Java 1.5 application

 If javac can compile your code, I can extract it!
 Extracts info about generic classes/methods, inner (non-local) classes,

exceptions, initialization clauses, parameters, …

 Ongoing work at UWaterloo
 A co-op student who worked on Jackpot has been working with me on

extending this work; will start an MMath in Fall.
 Recently completed: byte-code extractor using same schema
 Next step: characterizing NFRs (e.g., security concerns) using the

extracted facts

 Work on SALSA continues at Sun
 Patterns library
 GUI
 Infrastructure enhancements

