
University of Waterloo

Four “interesting” ways in which
history can teach us about software

Michael W. Godfrey *
Xinyi Dong
Cory Kapser
Lijie Zou

Software Architecture Group (SWAG)
University of Waterloo

*Currently on sabbatical at Sun Microsystems

1. Longitudinal case studies of
growth and evolution

• Studied several OSSs, esp.
Linux kernel:
– Looked for “evolutionary

narratives” to explain
observable historical
phenomena

• Methodology:
– Analyze individual tarball

versions
– Build hierarchical metrics

data model
– Generate graphs, look for

interesting lumps under the
carpet, try to answer why

0

1000

2000

3000

4000

5000

6000

Jan 1993 Jun 1994 Oct 1995 Mar 1997 Jul 1998 Dec 1999 Apr 2001

of

 s
ou

rc
e

co
de

 fi
le

s
(*

.[c
h]

) Development releases (1.1, 1.3, 2.1, 2.3)

Stable releases (1.0, 1.2, 2.0, 2.2)

0

20

40

60

80

100

120

140

Jan 1993 Jun 1994 Oct 1995 Mar 1997 Jul 1998 Dec 1999 Apr 2001

U
nc

om
m

en
te

d
LO

C

Average .h file size -- dev. releases
Average .h file size -- stable releases
Median .h file size -- dev. releases
Median .h file size -- stable releases

1. Longitudinal case studies of
growth and evolution

Source
code

Metrics
data

Analysis
scripts

MS
Excel

Extraction / analysis

Exploration

2. Case studies of origin analysis

• Reasoning about structural change
– (moving, renaming, merging, splitting, etc.)
– Try to reconstruct what happened
– Formalized several “change patterns”

• e.g., service consolidation

• Methodology:
– Consider consecutive pairs of versions:

• Entity analysis – metrics-based clone
detection

• Relationship analysis – compare relational
images (calls, called-by, uses, extends, etc)

– Create evolutionary record of what
happened

• what evolved from what, and how/why

g

y x

zVold

f

y x

zVnew

???

2. Case studies of origin analysis

Source
code

ER
model

Metrics
data

cppx /
Understand /

Beagle

Beagle

Extraction / analysis

Exploration

3. Case studies of code cloning

• Motivation:
– Lots of research in clone detection, but more on algorithms and

tools than on case studies and comprehension
• What kinds of cloning are there? Why does cloning happen? What

kinds are the most/least harmful? Do different clone kinds have
different precision / recall numbers? Different algorithms?

– Future work: track clone evolution
• Do related bugs get fixed? Does cloned code have more bugs?

• Methodology:
1. Use CCFinder on source to find initial clone pairs.
2. Use ctags to map out source files into “entity regions”

– Consecutive typedefs, fcn prototypes, var defs
– Individual macros, structs, unions, enums, fcn defs

3. Map (abstract up) clone pairs to the source code regions

3. Case studies of code cloning

• Methodology:
4. Filter different region kinds according to observed heuristics

– C structs often look alike; parameterized string matching returns many
more false positives without these filters than, say, between functions.

5. Sort clones by location:
– Same region, same file, same directory, or different directory

6. … and entity kind:
– Fcn to fcn
– structures (enum, union, struct)
– macro
– heterogeneous (different region kinds)
– misc. clones

7. … and even more detailed criteria:
– Function initialization / finalization clones, …

8. Navigate and investigate using CICS gui, look for patterns
– Cross subsystem clones seems to vary more over time
– Intra subsystem clones are usually function clones

3. Case studies of code cloning

Source
code

CCFinder

Extraction / analysis

Exploration

ctags

CICS gui

Taxonomized
clone pairs

Custom filters
and sorter

4. Longitudinal case studies of software
manufacturing-related artifacts

Q: How much maintenance effort is put into SM
artifacts, relative to the system as a whole?

• Studying six OSSs:
– GCC, PostgreSQL, kepler, ant, mycore,
midworld

• All used CVS; we examined their logs
• We look for SM artifacts (Makefile, build.xml,
SConscript) and compared them to non-SM artifacts

4. Longitudinal case studies of software
manufacturing-related artifacts

• Some results:
– Between 58 and 81 % of the core developers

contributed changes to SM artifacts
– SM artifacts were responsible for

• 3-10% of the number of changes made
• Up to 20% of the total LOC changed (GCC)

• Open questions:
– How difficult is it to maintain these artifacts?
– Do different SM tools require different amounts of

effort?

4. Longitudinal case studies of software
manufacturing-related artifacts

CVS
repos

Metrics
data

Analysis
scripts

MS
Excel

Extraction / analysis

Exploration

Dimensions of studies

• Single version vs. consecutive version pairs vs.
longitudinal study

• Coarsely vs. finely grained detail
• Intermediate representation of artifacts:

– Raw code vs. metrics vs. ER-like semantic model
– Navigable representation of system architecture; auto-

abstraction of info at arbitrary levels

Challenges in this field

1. Dealing with scale
• “Big system analysis” times “many versions”
• Research tools often live at bleeding edge,

slow and produce voluminous detail

2. Automation
• Research tools often buggy, require

handholding
• Often, hard to get automated multiple analyses.

Challenges in this field

3. Artifact linkage and analysis granularity
• Repositories (CVS, Unix fs) often store only

source code, with no special understanding of,
say, where a particular method resides.

• (How) should we make them smarter?
• e.g., ctags and CCfinder

4. [Your thoughts?]

