
Detecting merging and
splitting using origin analysis

Lijie Zou and Michael Godfrey
Software Architecture Group (SWAG)

University of Waterloo

Problem
Developers use merging/splitting to reduce complexity,
improve cohesion, …

Easy to see the effects of the changes, but the
intent/rationale is often lost

“rcsdiff –r1.2 –r2.0 foo.c”
vs.

“we moved the error handling from foo.c to bar.c”

Goal:
Want to recover the changes and capture the intent
behind these changes to better understand system evolutionary
history.

Two phases of our approach

1. Use improved “origin analysis” to detect
software entities involved in
merging/splitting

2. Derive patterns using detailed analysis of
change of call relations and other attributes
- understand intent

Origin Analysis

Definition:
F was an apparently new

entity in Vnew.

“Origin analysis” is the
process to decide whether F
was newly introduced in Vnew,
or it should be viewed as a
renamed, moved, or otherwise
changed version of an entity
from Vold, say G. G

Y X

ZVold

F

Y X

ZVnew

???

Origin Analysis – “How to”

Basic techniques: match software entities
from multiple attributes.

Name
Declaration
Metrics
Relation (e.g., call relation)

Detecting merges/splits at the
function level

Version 1 Version 2

S1 S2

Name-Matcher

Declaration-Matcher

Metrics-Matcher

Relation-Matcher

…

When one function is found to have
multiple origins

1: select entity sets 2: choose matcher

?
3: decide real matches

H

Detecting chained merges/splits
at the function level

A

B

G

F

C

K
L L

Functions involved are interdependent
Multiple iterations

Detecting merges/splits at the file
level

Manually

File merge:
A new file G is found to be composed of
most functions from two old files F1
and F2

File split

Scatter Plot

Version 1

Version 2

Functions from version 1

Functions from version 2

F

G

Two phases of our approach

1. Use improved “origin analysis” to detect
software entities involved in merging/splitting

2. Derive patterns using detailed analysis
of change of call relations and other
attributes
- understand intent

Patterns

Clone elimination
Pipeline extraction
Service consolidation
Parameterization
Partial clone elimination

F1in1

F2in2 G outin1 in2

outout1 out2

Pattern 1: clone elimination

1. out1 ≈ out2 ≈ out

2. in1∩in2 ≈ Ø , in1 U in2 ≈ in

F1, F2, G : functions
in1,in2, in : callers of F1, F2 or G
out1, out2, out : callees of F1, F2 or G

Pattern 2: pipeline contraction

1. out1 U out2 ≈ out

2. in1 ≈ in

F1, F2, G : functions
in1,in2, in : callers of F1, F2 or G
out1, out2, out : callees of F1, F2 or G

F1 out1

F2 out2

G out1 out2

in1

inin1

Pattern 3~5
Service consolidation
Two functions that perform different services, but are called at
the same time by the same clients, are merged into a new,
larger function

Parameterization
Two similar functions F1 and F2 are combined into a new
function G by adding a parameter to distinguish different
functionalities

Partial clone elimination
A chunk of code found in F1 and F2 are clones. These clones are
extracted out to form a new function G.

Case study - PostgreSQL

OSS, ORDBMS, widespread used
12 releases from v6.2 (Oct. 1997) to
v7.2 (Feb. 2002)

We looked at the backend subsystem
70% of the codebase
KLOC: 186 -> 279, 10% / year
Functions: 3262 -> 4531

Overview of Structural
changes in PostgreSQL

Structural changes in backend

0

50

100

150

200

250

6.2 ->
6.3.2

6.3.2 ->
6.4.2

6.4.2 ->
6.5

6.5 ->
6.5.1

6.5.1->
6.5.2

6.5.2 ->
6.5.3

6.5.3 ->
7.0

7.0 ->
7.0.3

7.0.3 ->
7.1

7.1 ->
7.1.3

7.1.3 ->
7.2

split
merge
rename
move

10
1

6
expression tree walking

Patterns

27

3

29

1

7

of
instances

…Partial clone elimination

…Parameterization

…Pipeline extraction

Gettypelem, typtoout
-> getTypeOutAndElem

Service consolidation

getAttrName, get_attname
-> get_attname

Clone elimination

ExamplesPattern

Group of merges/splits
Function level

17 splits in 10 files (expression walker)
6 splits in 4 files from 2 subsystems (to modify
expression tree)
4 splits in 4 files in subsystem access (callback
mechanism)

Scattered in different files and subsystems

File Level

parser restructuring (6.2 -> 6.3.2)
cleaning up of optimizer subsystem
(6.4.2 -> 6.5)

Summary & Future work

Summary
Techniques and tool for detecting
instances of merging and splitting
Merge/split patterns

Future work
CVS log
Catalog of patterns

Questions?

Patterns

27

3

29

1

7

of
instances

…Partial clone elimination

…Parameterization

…Pipeline extraction

Gettypelem, typtoout
-> getTypeOutAndElem

Service consolidation

getAttrName, get_attname
-> get_attname

Clone elimination

ExamplesPattern

F1in1

F2in2 G outin1 in2

outout1 out2

F1 out1

F2 out2

G

inin1 in2

in out1 out2F1 out1

F2 out2

G out1 out2

in1

inin1

