Enhancing Domain-Specific Software Architecture Recovery

Igor Ivkovic
School of Computer Science
University of Waterloo
Waterloo, ON N2L.3X1 Canada
iivkovic@uwaterloo.ca

Abstract

Performing software architecture analysis and recovery
on a large software system is expensive and time consum-
ing; when it is done at all, it is often performed within a
narrow context, focused on a few areas of particular con-
cern. However, for a long-lived system within a well un-
derstood application domain, the costs for performing de-
tailed architecture recovery may be amortized over several
generations of the system; the resulting models can also be
broadened and put into context by incorporating informa-
tion about the history and anticipated future evolution of
both the application and its underlying domain.

This paper proposes a systematic approach for organiz-
ing application domain knowledge into a unified structure
called the Architectural Domain Assets Set (ADAS). The
ADAS structure builds on previous research, as well as our
experience in performing an architecture recovery of IBM’s
DB?2. Our initial experiences in using ADAS suggest that
it brings needed focus to the recovery process and provides
assistance to domain-specific architecture recovery.

1. Introduction

The maintenance phase in the development lifecycle of
large systems is inevitably the costliest part [14]. Perform-
ing maintenance — that is, correcting outstanding problems
or adding new functionality — is hard without a clear un-
derstanding of the structure and functionality underlying the
system at hand. However, the explicit modelling of a sys-
tem’s software architecture — its structure, its major com-
ponents and their interactions, and the rationale for the cho-
sen design —- is rarely performed in practice. Instead, in
industrial settings, it is most common to target a particular
subsystem, a set of features, or a limited set of properties
that may involve many pieces of the system (e.g., compo-
nents that interface with the operating system). That is, ar-
chitecture recovery is performed strategically, with particu-

Michael Godfrey
School of Computer Science
University of Waterloo
Waterloo, ON N2L.3X1 Canada
migod @uwaterloo.ca

lar goals in mind and making use of detailed knowledge of
the application domain and the application itself.

For such focused domain-specific architecture recovery,
one would most benefit by using a recovery process that
best suits the particular type of the system (e.g., distributed
database management systems for Linux) and utilizes a
well-specified knowledge base for the corresponding ap-
plication domain and its related domain architecture. Such
a domain-specific architectural knowledge base could be a
collection of application domain-specific architectural arti-
facts meant to aid architecture recovery. Without the clear
linkage between the selected approach for architecture re-
covery and the application’s characteristics, the usefulness
of the overall re-engineering efforts to system’s stakehold-
ers will be significantly decreased [1, 15].

To further advance the research area of architecture re-
covery, we propose an organization of application domain
knowledge for purposes of domain-specific architecture re-
covery. In addition, we offer brief guidelines on how to
use this organization on practical case studies, which are
needed for validation and further refinement. Derivation of
this organization and related guidelines are based on our ex-
perience in architecture recovery of IBM’s DB2 [4].

The rest of this paper is organized in the following man-
ner: Section 2 discusses the creation of our architectural
knowledge base. Section 3 defines the idea of the Archi-
tectural Domain Assets Set (ADAS) and its key compo-
nents. Section 4 describes guidelines for how to use ADAS
in domain-specific architecture recovery. Section 5 com-
pares ADAS to other related approaches. And, Section 6
summarizes the results of this paper and proposes areas of
future research.

2. Basis for ADAS

The roots of ADAS can be traced back to a case study
in software architecture recovery of IBM’s DB2 relational
database management system (RDBMS) [4]. Based on
this experience and encountered problems, we have derived

a corresponding architectural knowledge base that can be
used to facilitate more efficient domain-specific software ar-
chitecture recovery.

2.1. Software Architecture Recovery of IBM’s DB2

IBM’s DB2 RDBMS belongs to a class of very large ap-
plications with its size of more than five million lines of
code (5 MLOC). The particular code base that we had ac-
cess to was the core of the DB2 software system, and it rep-
resented a previously released distribution of this applica-
tion for the Linux platform. The complexity of this system
stemmed from its size and its high interaction with other re-
lated technologies that were not part of this code base but
were quite frequently referenced. !

Our initial goals in this architecture recovery process
were:

e to help the DB2 developers understand the architecture
of the system more clearly for purposes of program
comprehension and software evolution, and

e to verify our current tools and capabilities in architec-
ture recovery against an application as complex and as
large as DB2.

Our main obstacles in the process were identified as fol-
lows:

Application Related
e Inappropriate architectural design documents.

e Inaccessible or inappropriate lower level design
documents.

e Inability to contact the DB2 developers regularly
due to their high involvement in the release of a
new version of DB2.

e High internal complexity of the application due
to its size and underlying functionality.

Domain Related

e Lack of understanding or inaccessible documen-
tation of specialized, for the RDBMS domain,
theories or technologies employed by the system.

e Lack of evolutionary history for DB2 or inac-
cessible evolutionary history for the RDBMS do-
main.

e Lack of knowledge of underlying DB2 function-
ality or lack of an appropriate architectural do-
main model.

I Sensitive details of the actual application are left out of this discussion
in compliance with a non-disclosure agreement.

e Lack of relevant reference architecture that could
be used as a starting point for our recovery ef-
forts.

e Lack of understanding of DB2’s future evolu-
tion or inaccessible evolutionary directions for
the RDBMS domain.

Technology Related

e Nonexistent guidelines for systematic architec-
ture recovery of an application as large and as
complex as DB2.

e Inability of our tools such as the PBS toolkit [9]
to deal with detailed architecture recovery of a
system of this size and complexity.

These obstacles resulted in our overall recovery efforts
being quite inefficient and in industrial settings quite infea-
sible, especially given that our team consisted of only two
software engineering graduate students.

2.2. Perceived ADAS Benefits

The domain-related obstacles could have been resolved
if a corresponding architectural knowledge base had been
available to us before we started with the recovery. For ex-
ample, our lack of domain expertise could have been re-
solved by having access to systematically organized knowl-
edge base of specialized theories or technologies employed
by the system. In addition, we would have been able to
more clearly specify our goals for architecture recovery if
we understood or had access to appropriate evolutionary di-
rections.

Based on this experience, we have derived the follow-
ing organization of application domain knowledge, used for
domain-specific software architecture recovery, into a uni-
fied structure called the Architectural Domain Assets Set
(ADAS).

3. Introducing ADAS

ADAS is structured in accordance with the overall desire
to support domain-specific architecture recovery by system-
atically organizing and making available application do-
main knowledge. ADAS is meant to be a relatively simple
architectural knowledge base that can aid architecture re-
covery and evolution through domain understanding (Fig-
ure 2).

In addition, prior to devising the resulting ADAS struc-
ture, we analyzed the term domain expertise, in regards to
the knowledge of the application domain, that is usually
mentioned as one of the key sources of information for ini-
tial architecture recovery steps [6, 8, 9]. Based on this anal-
ysis, we aimed through ADAS to provide organization for

Architectural Domain Assets Set (ADAS)

Architectural
Domain

—>

Fundamental
Domain Information

Program
Comprehension

\

/

Archite
Domain

ctural
Model

\

/

Architecture
Recovery

Reference
Architecture

A

/

Software

Software Evolution
Directions

Evolution

Figure 1. Architectural Domain Assets Set (ADAS)

this implied knowledge base, and potentially allow those
who are not experts in the field of architecture recovery to
carry out this process successfully.

More formally, we define ADAS as follows.

ADAS is a collection of architectural information
that consists of fundamental domain information,
architectural domain model, reference architec-
ture for the domain, and directions for future evo-
lution.

Figure 1 illustrates this model and its process of creation.
More details of ADAS can be found in [11].

/ Design

Domain- .
omalr.| Specific Forward
Architecture Enal ¢
Recovery ngineering
A / K —

Application Domain
Knowledge

Domain

. : Domain
Engineering

Figure 2. Domain-Specific Re-Engineering

3.1. ADAS: Fundamental Domain Information

Performing architecture recovery without a clear under-
standing of the application domain is risky. The software
engineers performing the recovery will either have to red-
erive a conceptual model of the domain each time a recovery

is undertaken or risk making ill-informed decisions. For this
reason, the ADAS structure includes an explicit model of
Fundamental Domain Information that can be of aid to the
software engineers in their recovery efforts. Having such a
repository of information about the application domain can
improve the quality of the resulting architecture models and
reduce the risk of poor decisions being made subsequently.
Additionally, it can serve as a teaching tool for engineers
that are new to the project or the application domain.

In ADAS, fundamental domain information consists of
elements relevant for the understanding of the analyzed do-
main and its evolution. Such elements are:

Domain Origins To understand an application domain,
one must understand why the domain exists in the first
place and how it was derived. This information rep-
resents a rationale for major design decisions and is
also relevant when deciding the future of an applica-
tion in one such domain. For example, in the context
of ADAS for RDBMS, to understand the current status
of DBMS and related functionality and provide justi-
fication for existing conditions, one should realize that
DBMSs were created in response to the inadequacies
of the file-based system that preceded them. Docu-
menting this information and making it available al-
lows those working on a DBMS to quickly derive the
rationale behind the current structure, and make more
informed decisions about the future of the application.

Domain Evolution Another important part of the applica-
tion domain understanding is the comprehension of the
domain’s evolutionary history. Understanding the key
environmental forces that influenced the domain evo-

lution allows software engineers to proactively deal
with the complexity of change in an application that
belong to the domain of interest. This evolutionary in-
formation should at a minimum contain a lightweight
summary of the domain history noting the key mile-
stones in the domain evolution.

Domain Fundamentals Each application domain is sup-
ported by specific theory and technology that repre-
sents the basis of each such domain. Understanding
this basis and its key parts is crucial to comprehending
the domain itself. Therefore, the domain fundamentals
part of the fundamental domain information includes
a comprehensive summary of the relevant theoretical
and technological pieces of the application domain.
For example, for the RDBMS domain, domain fun-
damentals include: data definition languages (DDLs),
data manipulation languages (DMLs), data dictionary,
indexes, transactions, and stakeholders.

Domain Taxonomy Application domains are not homoge-
nous; they typically exhibit a certain degree of vari-
ability. Understanding this variability and its factors is
necessary for comprehending the details of the domain
itself. As a result, domain taxonomy includes the de-
scription of the driving forces that define and separate
subfamilies of applications inside the domain. For ex-
ample, for the RDBMS domain, factors that influence
this variability include: data model type, number of
supported users, number of database sites, type of the
DBMS software, cost, and functionality.

3.2. ADAS: Architectural Domain Model (ADM)

We define an architectural domain model (ADM) as a
collection of the following artifacts [2]:

e A definition of the program family and its scope; that
is, a defined boundary between system and environ-
ment for each member of the family: required to un-
derstand the components of a typical system in the do-
main that are encapsulating the interactions between
the system and the outside world.

e A definition and semantics of the information that
flows across the defined system boundaries: required
for a more in-depth understanding of the boundary
components and their interactions with the environ-
ment.

e A set of features that are common for each member of
the family: required for understanding the purpose and
structure of the non-boundary components of a typical
system in the domain.

Legend:

Reference
Subsystem

Network

End
nd Users DAs/DBAs Conmection
Control
External saL bmL Privileged Flow
Application al SaL bbL Instructions Multiple
API Calls Dependency
| RDBMS
Data Communication Controller
| y Y
DML DDL ‘System
J Precompiler Compiler L__I:llili(ies
4
o | y A |
-onceptual ryvry
D el oy Query Ditionary Database Manager
focessor anager Authorization
V4 Controller
/7
| Database M v d Integrity Run-Time
atabase Manager
L \Y Controller Command
\\ Recovery
—_— Controller -
\ Transaction
c Controller
Storage Manager \\ Controller
I \ Buffer Pool
I Controller
y File Storage Raw Storage l
1 I Manager Manager
Internal & l
Level I v
0s
Abstraction Sy.s'lt_em ?yslgm
Utilities Libraries
I. Controller

Figure 3. RDBMS Reference Architecture

e Qualitative requirements to be met by each member of
the family: required for understanding the intricacies
of the communication among components.

Described artifacts are usually extracted using a typical
domain analysis method such as the Feature-Oriented Do-
main Analysis (FODA) [12].

3.3. ADAS: Reference Architecture for the Domain

The ADM is used as a basis for extraction of a reference
architecture for the domain, and reference architecture is a
result of mapping the ADM onto software components and
data flows among those components. Such structure is ex-
tracted using corresponding commonality analysis [7] and
functionality-to-component mapping, and an architectural
style that is valid for the product domain. More specifically,
extraction of this structure includes the following steps.

Step 1. Architectural Style Extraction: Based on the
analysis of the underlying ADM, related literature,
and related fundamental domain information, a cor-
responding architectural style can be derived and can

serve as a starting point in the extraction of a related
reference architecture. Properties of existing archi-
tectural styles (e.g., separation of concerns in tiered
architectures) and familiarity of domain stakeholders
with a particular style can also be considered and
taken into account in this process. For example, in the
extraction of a reference architecture for the RDBMS
domain, it was recognized that the most RDBMSs
reflect the underlying ANSI-SPARC three-level data
architecture that emphasizes three-level separation of
concerns [3].

Step 2. Commonality Analysis: Using previously ex-
tracted architectural style and Eixelsberger’s common-
ality analysis [7], the corresponding component-level
details of the reference architecture can be ex-
tracted. This process emphasizes representation of
the core functionality found in the related ADM
through as-minimal-as-possible set of components
and as-simple-as-possible structure.

Step 3. Functionality-to-Component Mapping:
Represents a verification that all of the core func-
tionality contained in the related ADM is satisfied by
the extracted reference architecture. Most suitably
represented in a tabular format where each of the
ADM functionalities is described in the context
of a particular reference architecture component.
Adjustments are made for the missing or incorrectly
represented functionality.

Step 4. Evaluation: The extracted reference architecture
will not satisfy all aspects of interests in regards to a
particular program family. Therefore, in this step, the
scope of applicability of the extracted reference model
is explicitly stated and justified.

Figure 3 depicts a reference architecture for RDBMSs
that was derived using the afore-mentioned approach.

3.4. ADAS: Directions for Future Evolution

After extracting the model of the domain through the
previous three artifact subsets, in the context of understand-
ing a particular domain, it is also important to consider di-
rections for future evolution of applications in the domain.
Having a clear insight of the related future trends allows in-
terested stakeholders to proactively deal with the evolution
of software systems in the domain.

The evolution of a particular domain is characterized by
the following [5, 13]:

e Number of iterations

e Total time of the evolution process

Scale of iteration

Type of iteration (i.e., extension, correction, adapta-
tion, perfection)

Granularity of increments in terms, size, or compo-
nents

Staff (e.g., how many person involved)

Identification and classification of potential evolutionary
directions for the application domain is necessary to proac-
tively deal with change of any particular member of the pro-
gram family. Such information is collected in this ADAS
component, and it includes data of the form:

e Problem / Cause — description of the environmental
or system factor that requires change;

e [teration Type — indicator whether a change is an ex-
tension, correction, adaptation, or perfection of the ex-
isting functionality; and

e Direction — description of the future evolutionary di-
rection.

In an industrial setting, this evolutionary information
could be extended with the application or product line spe-
cific information. Such an extension will describe factors
and resulting directions of change not already included in
the directions for future evolution of the domain itself.

3.5. Creating and Maintaining ADAS

For a well-established domain such as RDBMS, success-
fully creating an ADAS requires:

e in-depth review of the available literature for the do-
main, and available documentation or code bases for
the applications in the domain;

e experience in architecture recovery of at least one ap-
plication that is an authentic representative of the se-
lected program family; and

e consultation with the domain experts for validating the
extracted domain knowledge.

After creating the ADAS repository, one then needs to
make it available to other software engineers working in
the area or in the domain to facilitate reusability and ex-
tensibility. However, systematic creation and maintenance
of ADAS is an area of future research.

Extracting ADAS for an emerging application domain
(e.g., web servers) would not be as straightforward given
that the information about such a domain is not as easily
available and not as clearly specified in literature. In such

situations, one would have to focus on extracting the re-
quired domain information (e.g., domain fundamentals) first
and then work on documenting such information in the con-
text of ADAS structure. More specifically, for the creation
of ADAS for various other domains, the following aspects
would be of importance:

Application-Domain Maturity — maturity indicator for
a particular application domain. Most clearly shown
by the accumulated amount of recognized information
(i.e., books, papers, tech reports) about applications
in one such domain. For a more mature domain such
as RDBMS, extraction of the required ADAS compo-
nents would focus on unifying the information from
various sources instead of creating it from scratch. For
a less mature domain, the required ADAS components
would first have to be created and then specified in the
ADAS context, thereby leading to greater complexity
and time requirements.

Application-Domain Complexity — complexity indica-
tor for a particular application domain. Some domains
are relatively easy to understand and quite clearly rep-
resent a particular functionality set (e.g., compilers).
At the same time, some domains are relatively hard
to understand, and represent very complex function-
ality sets (e.g., large GUI-intensive applications). For
these relatively complex application domains, creation
of ADAS would first have to entail clear definition of
scope of analysis based on the identification of partic-
ular functionality set, and then would have to proceed
with the extraction of other ADAS components.

Application-Domain Size — size indicator for a particu-
lar application domain. Domains represented by a rel-
atively large number of applications (e.g., image and
graphics editing applications) would be more complex
to analyze with precision as the coverage of all of these
applications would entail significant amount of time
and effort.

Application-Domain Variability — change indicator for
a particular application domain. Rate of change for a
particular domain would be a direct influence on the
usefulness of the extracted ADAS. For less mature do-
mains that are still experiencing rapid change (e.g.,
web applications), creating ADAS would not be as
beneficial given that the extracted information would,
after the occurrence of the next major shift in the ap-
plication domain, lose its significance and would need
to be updated. Therefore, the amount of time spent
in creating and updating of the corresponding ADAS
could outweigh the related benefits.

4. Enhancing Domain-Specific Software
Architecture Recovery: Guidelines

Detailed extraction of software architecture artifacts in
practice is not always feasible [16]. For the domain with
the corresponding architectural artifacts and the application
from the program family that represents that domain, this
recovery should not aim for overall program comprehen-
sion, due to related costs and time requirements, but could
instead aim to benefit a particular evolutionary or program
comprehension aspect of the system. Every one of these
recovery efforts is then meant to satisfy a particular set of
goals, and such goals are not trivial and have to be expressed
in detail.

Derivation of these goals is made easier by having the
ADAS for the domain in question available before starting
the extraction endeavor, and using ADAS to derive the se-
mantic information (e.g., rationale, meaning) about differ-
ent elements in the actual architecture of the system. Fur-
thermore, measuring the success of reverse engineering ef-
forts in general depends on the initial context of extraction
that is clearly specified. Based on the context, various ex-
traction strategies are then to be identified and evaluated,
and the best-matching one is selected. Derivation of such
strategies is supported by the ADAS knowledge base.

After establishing the context and selecting the corre-
sponding strategy, the actual execution can begin and is per-
formed iteratively with the evaluation stage and if necessary
recovery context and strategy adjustments at the end of each
cycle. Initiation of the next cycle will depend on whether
the current extraction results satisfy the initial context and
if they do, to what extent, and the human judgement re-
flecting the overall re-engineering strategy will decide if an-
other iteration is indeed required. Figure 4 depicts the pro-
posed domain-specific architecture recovery method, pro-
vided only as guidelines on how to use ADAS in domain-
specific software architecture recovery.

5. Usefulness of ADAS

We now relate ADAS to previously published research
to validate its usefulness and applicability, and to determine
what improvements are made through ADAS over the ex-
isting methods.

5.1. ADAS vs Application Domain Model

Having an application domain model itself is not suffi-
cient for successful architectural recovery efforts, and ex-
traction of architectural views for a particular application
requires more than just an understanding of the underlying
functionality. In addition, it requires in-depth understanding

ADAS

Domain-Specific Software
Architecture Recovery

Architectural
Domain

Recovery Context

Establish

A

Program

Comprehension

v

Select Strategy for

Recovery

v

Execute Selected

Software

Strategy Evolution

v

Evaluate Results

e e e — e —— — —

Figure 4. Enhancing Domain-Specific Architecture Recovery with ADAS

of the domain itself and the related theories and technolo-
gies.

ADAS includes a version of the application domain
model, which we named architectural domain model and
specified using previously published research by Clements
[2], and therefore provides equivalent benefits to it in terms
of architecture recovery. However, ADAS also includes re-
lated fundamental domain information, which helps facili-
tate more efficient understanding of the domain and related
theory and technology.

5.2. ADAS vs Reference Architecture

A reference architecture represents a mapping of the
domain model onto software components and data flows
among components, which is extracted by analyzing rele-
vant case studies in the domain. Benefits of reference ar-
chitecture include reduction of software development and
maintenance complexity, and streamlining the documenta-
tion production.

ADAS includes a reference architecture for the domain,
but unlike previously published research, it provides de-
tailed subdomain information and a systematic approach for
its extraction (e.g., Eixelsberger’s commonality analysis). It
therefore provides equivalent benefits of reference architec-
ture along with systematic guidelines for its extraction and
use. Moreover, it provides directions for future evolution
which is useful for understanding the evolutionary context
of architecture recovery.

5.3. ADAS as a Teaching Tool

Recently, the ADAS structure was used in a third year
software engineering course at Wilfrid Laurier University as

a structure to facilitate understanding of a particular domain
[10]. Students in the course were asked to analyze an appli-
cation domain of interest, and create ADAS-like knowledge
bases about the applications in the domain. After the project
was completed, student projects were read and marked, and
were mostly quite successful. In general, students were able
to use this structure to understand a complex application
domain (e.g., operating systems, word processors, cryptog-
raphy software, enterprise management systems, graphics
software), extract needed information from the domain, and
produce precise documentation that was well structured and
easily comprehended by a non-expert.

Based on this experience of successfully applying ADAS
to application domains of varied complexity, size, and ma-
turity, we conclude that this structure has potential as a
teaching tool in software engineering. ADAS provides
means to more efficient learning about applications in a par-
ticular domain and becoming a domain expert.

6. Conclusions

In this paper, we have proposed a structure called the
Architectural Domain Assets Set (ADAS), an architectural
knowledge base that can aid architecture recovery and evo-
lution through domain understanding. We have also pro-
vided guidelines on how to use ADAS through an iterative
approach to domain-specific architecture recovery.

Based on our findings, we claim that our proposed
ADAS structure provides benefits including:

e Expanding previously published application domain
models with the corresponding fundamental domain
information for more efficient understanding of the do-
main, and related theory and technology.

Expanding previously published reference architecture
information by including

a systematic approach for its extraction,

specific area of its applicability (i.e., exact appli-
cation type based on domain taxonomy),

rationale used in the extraction, and

directions for its future evolution.

Allowing reusability of architectural domain knowl-
edge through its lightweight character that is not ar-
chitectural style or recovery process specific.

Becoming a teaching tool by showing potential for fa-
cilitating more efficient learning about applications in
a particular domain.

In general, based on our experience on architecture re-
covery of IBM’s DB2, it is apparent that extracting this
structure and having it available before initiating the recov-
ery process would have:

helped bring focus into the entire effort,
assisted with particular steps in the process, and

provided more value to the system developers who
claim interest in the endeavor’s final results.

6.1. Future Research

Future research in this area includes:

Refinement of the proposed ADAS structure through
additional case studies in RDBMS domain and other
well-established domains.

Refinement and more detailed specification of an iter-
ative process for domain-specific architecture recovery
that is ADAS-based as we have only provided guide-
lines for how to use ADAS.

Development of an infrastructure for creating, access-
ing and expanding the ADAS structure for a particular
domain.

References

(1]

(2]

J. Bergey, D. Smith, N. Weiderman, and S. Woods. Options
analysis for re-engineering (oar): Issues and conceptual ap-
proach. Technical Report CMU/SEI-99-TN-014, Software
Engineering Institute, Carnegie Mellon University, Pitts-
burgh, PA, 1999.

P. Clements. From domain models to architectures. In Pro-
ceedings of the Workshop on Software Architecture 1994,
Los Angeles, CA, 1994. USC Center for Software Engineer-
ing.

(3]

(4]

(5]

(6]

(7]

(8]
(9]

(10]

(11]

[12]

[13]

[14]

[15]

(16]

T. Connolly and C. Begg. Database Systems: A Practi-
cal Approach to Design, Implementation, and Management.
Addison-Wesley, Essex, England, 2002.

I. B. M. Corporation. Db2 product family. Online, 2002.
http://www.ibm.com/software/data/db2/.

S. Demeyer, T. Mens, and M. Wermelinger. Towards a
software evolution benchmark. In Proceedings of Interna-
tional Workshop on Principles of Software Evolution (IW-
PSE2001), Vienna, Austria, September 2001.

L. Ding and N. Medvidovic. Focus: A light-weight, in-
cremental approach to software architecture recovery and
evolution. In Proceedings of the 2001 Working IEEE/IFIP
Conference on Software Architecture (WICSA 2001), Ams-
terdam, the Netherlands, August 2001.

W. Eixelsberger. Recovery of a reference architecture: A
case study. In Proceedings of the 3rd International Work-
shop on Software Architecture, Orlando, FL, November
1998.

R. R. Group. Rigi: A visual tool for understanding legacy
systems. Online, 2000. http://www.rigi.csc.uvic.ca/.

R. C. Holt. Pbs: The portable bookshelf. Online, 2002.
http://www.swag.uwaterloo.ca/pbs.

I. Ivkovic. Cp 317 - software
ing. Wilfrid Laurier University,
http://sauron.wlu.ca/physcomp/cp317/.

I. Ivkovic. Enhancing domain-specific software architecture
recovery. Master’s thesis, University of Waterloo, 2002.

L. Kean. Feature-oriented domain analysis. Soft-
ware technology review, Software Engineering Insti-
tute, Carnegie Mellon University, Pittsburgh, PA, 1997.
http://www.sei.cmu.edu/str/descriptions/foda.html.

engineer-
Online, 2002.

T. Mens. Proceedings of ecoop2002 work-
shop on benchmarks for empirical studies in
object-oriented ~ software evolution. Online,
2002. http://www.cs.kuleuven.ac.be/ dirk/ada-

belgium/events/02/020610-ecoop-besoose.html.

S. R. Schach. Classical and Object-Oriented Software Engi-
neering with UML and C++. WCB/McGraw-Hill, Reading,
MA, 1998.

M. Shaw and D. Garlan. Software Architecture: Perspectives
on an Emerging Discipline. Prentice-Hall, Upper Saddle
River, NJ, 1996.

M. Shaw. The coming-of-age of software architecture re-
search. ICSE 2001 Keynote Presentation, 2001.

