
Toward a Taxonomy of Clones in Source Code: A Case Study

Cory Kapser and Michael W. Godfrey
Software Architecture Group (SWAG)

School of Computer Science, University of Waterloo
�cjkapser, migod�@uwaterloo.ca

Abstract

Code cloning — that is, the gratuitous duplication of
source code within a software system — is an endemic
problem in large, industrial systems [9, 7]. While there
has been much research into techniques for clone detec-
tion and analysis, there has been relatively little empirical
study on characterizing how, where, and why clones occur
in industrial software systems. In this paper, we present
a preliminary categorization scheme for code clones, and
we discuss how we have applied this taxonomy in a case
study performed on the file system subsystem of the Linux
operating system. Our case study yielded many surpris-
ing results, including that cloning is rampant both within
particular file system implementations and across different
ones, and that as many as 13% of the 4407 functions that
are more than six lines long were involved in a clone-pair
relationship.

1 Introduction

Code duplication, or code cloning, is generally believed
to be common in large industrial systems [9, 17, 20, 18,
15, 2, 7]. Various problems are associated with code dupli-
cation, including increased code size and increased main-
tenance costs. While clone detection is an area of active
research, and several tools exist to facilitate code clone de-
tection, there has been relatively little empirical research
on the types of clones that are found, or where they are
found.

A code clone pair is a pair of source code segments
that are structurally or syntactically similar. One of the
segments is usually a copy of the other, perhaps with mi-
nor changes. Code cloning occurs when developers create
two identical or similar code artifacts inside a software sys-
tem. One cause of this is copying and pasting code. Sev-
eral methods exist for detecting code clones in software,
such as simple string matching [9], using statistical finger-
prints of code segments [12], function metrics matching
[17, 20, 18], parameterized string matching [2, 15], and

program graph comparison [7]. Problems related to clone
cloning will be discussed in Section 2.

In the following case study, we begin profile the code
cloning activity within a large software system that is in
widespread use in industry, the Linux operating system
kernel. In doing so, we hope to gain more insight into
how and why developers duplicate code, in an effort to aid
the development of code clone detection techniques and
code clone elimination strategies. We categorize different
types of cloning activity using attributes such as location
and size based on manual inspection of code clones found
in the system. We then provide empirical analysis of these
categories, and validation on our results using two differ-
ent clone detection techniques. In this study we produce a
taxonomy of code cloning which will help other examine
code cloning, and we present a case study of a real software
system.

The rest of the paper is structured as follows: in Section
2, we describe code cloning in more detail, as well as our
study subject. In Section 3, we describe the tools we used
and the methodology of our study. In Section 4, we de-
scribe the code clone categories we observed in the Linux
file-system. In Section 5, we describe the empirical results
we obtained. Section 6 describes related work, and Section
7 summarizes our work and indicate some future research.

2 Background

In this section, we provide background on code cloning
as a problem in large software systems. We give exam-
ples of reasons why code cloning occurs, as well as several
examples of problems caused by code cloning.

In addition, we give an overview of our candidate soft-
ware system for this case study, the Linux kernel file-
system subsystem. We will provide a brief description of
the Linux file-system subsystem, as well as give reasons
for choosing the file-system subsystem for our case study.

2.1 Code Cloning

Code cloning is considered a serious problem in indus-
trial software [9, 12, 13, 8, 1, 17, 20, 18, 2, 15, 7]. It
is suspected that 5 to 10% of many large systems is du-
plicated code [9, 3], and has been documented to exist at
rates of over 50% in a particular COBOL system [9]. Code
cloning occurs for a variety of reasons[12, 20, 18, 15, 2, 7]:
the short term cost of forming the proper abstractions may
outweigh the cost of duplicating code; this occurs when
the developer is aware of the existence of code that already
performs functionality similar to, or the same as, the func-
tionality required. Developers may duplicate code because
they are under time constraints; these constraints may be
imposed by deadlines, or by LOC performance evaluation.
Another likely and reasonable circumstance developers du-
plicate code is they do not fully understand the problem, or
the solution, but they are aware of code that can do some
or all of the required functionality.

Several problems can develop as a result of code copy-
ing. The size of the source code, and ultimately the size
of the object code, may become significantly larger as a
result of excessive code cloning[2, 12]. Cloning code can
lead to unused, or “dead”, code in the system, which can
cause problems with code comprehensibility, readability,
and maintainability [12]. Duplication of code may also in-
troduce improperly initialized variables, which may lead
to unpredictable behavior of a system, especially if a two
clone segments share a common variable. Cloning may be
an indication of poor design [12]. Code duplication may
indicate design problems such as improper or missing in-
heritance, or insufficient procedural abstraction[7]. Copy-
ing code may also result in copying bugs within the code
as well.These effects contribute to “software aging” [12];
over time the program becomes hard to change and possi-
bly less reliable and more inefficient.

2.2 Case Study Subject: Linux File System

Linux is a Unix-like operating system, written by Linus
Torvalds with assistance from a distributed team of pro-
grammers across the Internet. Linux aims towards POSIX
and Single UNIX Specification compliance. The version
of the Linux kernel we used for this study was 2.4.19, the
most recent stable version at the time of the writing.

We chose the Linux File System as the study subject
for our project because we hypothesized that many of the
supported file systems would contain clones among them
due to the similarity of their basic functionality. In addi-
tion, we know in advance that several components of the
file subsystem which were created with heavy influence
from existing file system types, namely ext2/ext3 and
autofs/autofs4.

The Linux file system subsystem is organized as a lay-
ered design, with the upper most layer being the Virtual
File System (VFS). The VFS provides a standard interface
for the operating system to use when interacting with var-
ious file systems types. The underlying file system types,
such as ext2 and intermezzo, provide function point-
ers for the VFS to use when interacting with the file system.

Because the various file systems must interact with, or
provide service to, the same upper layer, and are provid-
ing similar functionality, we expected to see at least some
cloning between file systems. After a preliminary inspec-
tion we expected to see a lot of cloning between ext2 and
ext3; jffs and jffs2; fat and msdos and umsdos
and vfat; autofs and autofs4. These systems were
either closely related in functionality or were known to
have evolved directly from the same code base.

The Linux file system subsystem consists of the
VFS infrastructure plus 42 file system implemen-
tations: adfs, affs, autofs, autofs4,
bfs, coda, cramfs, devfs, devpts,
efs, ext2, ext3, fat, freevxfs, hfs,
hpfs, inflate fs, intermezzo, isofs,
jbd, jffs, jffs2, lockd, minix,
msdos, ncpfs, nfs, nfsd, nls, ntfs,
openpromfs, partitions, proc, qnx4,
ramfs, reiserfs, romfs, smbfs, sysv ,
udf, ufs, umsdos, vfat. There are a total of 538
.c and .h files, and 279,118 lines of code (including
comments and blank lines).

3 Study Methods

In this section, we describe the two methods we used to
gather code clone information from the system. First, we
describe parameterized string matching, as implemented
by the tool CCFinder. Second, we describe our approach
to metrics-based clone detection, for which we used Un-
derstand for C/C++ to obtain the raw metric information,
as well as a set of Python scripts that we created to perform
the clone analysis. Finally, we describe our methodology
for performing categorization and analysis.

3.1 Clone Detection

In this study we have primarily used the tool CCFinder,
developed by Toshihiro Kamiya et al [15]. The tool uses a
uses a parameterized matching algorithm to search for code
clones within C/C++, Java, and COBOL files. This type of
clone detection is good at finding clones with name sub-
stitution and line structure changes; the former can cause
problems for line by line matching algorithms. Baker in-
troduced a similar algorithm in [2].

The tool CCFinder begins by performing a lexical anal-
ysis of the source code, resulting in the creation of a list of
tokens as part of the syntax of the given programming lan-
guage. The tokens of all the files are concatenated into
a single string. As part of the code transformation, all
white space is removed from the string and comments as
well. Next, several language specific transformation rules
are applied. Then type, variable, and constant identifiers
are replaced by a special identifier (such as $P).

Once the source code has been transformed into this ab-
stract token stream, an exact match algorithm is performed
to find maximal matching strings within the transformed
code. This is done by constructing a suffix tree and lo-
cating matching substrings within the tree, as proposed by
Baker [2, 3]

After the exact matches have been found, parameter
matching is performed. That is, starting from the beginning
of a pair of exactly matched transformed strings, CCFinder
begins parameter matching of the parameters on each line.
As the parameters are matched, if a conflict is found but a
sufficiently large number of lines have been matched, the
clone is reported, and parameter matching begins again af-
ter the line creating the conflict.

Once the clone detection phase is complete, the detected
clones are mapped back onto their source files. Then, this
information is used as input in the GeminiE user interface,
where clone classes are generated and the results of the
clone detection are presented. These clone classes are gen-
erated based on the fact that the clone relation is an equiva-
lence relation [15, 14]. The clone relation exists when two
code segments match according to parametric matching. A
clone class is the equivalence class of the clone pair rela-
tion, i.e., it is the maximal set of clones for which the clone
relation holds [15].

The results of the clone detection process are presented
in several ways in a graphical user interface [22]. The in-
terface provides a scatter plot showing the user the matches
between files, highlighted source code, and clone class
metrics. Users can browse the detected clones pair by pair
or by clone class. For a small number of files, the scat-
ter plot can provide useful information, but when a large
number of files is present with many lines, i.e., 200,000 or
more, significant clones become difficult to detect through
visual inspection of the scatter plot. For this study, we
found that we made the most use of the tool by browsing
the clone pairs individually, and by browsing the clones
classes.

Before using the clone pairs extracted by this tool, we
filtered out many of the clones we felt were meaningless, to
improve the accuracy and relevancy of our results. Mean-
ingless clones are segments or code that match but are not
necessarily cloned code, or clones that were of no impor-

tance if they are duplicated code. For example, the inner
block of structure definitions and lists of function declara-
tions would be a meaningless clones. After the initial ex-
traction of clone pairs, we were presented with 5000 clone
pairs, and 1809 clone classes. We deleted 1996 clones in
an effort to remove at least a significant number of mean-
ingless clone pairs. This left us with 1604 clone classes,
a decrease of only 200 clone classes. We do not claim to
have removed all of the meaningless clones, but we believe
that we have removed a significant number of them.

3.2 Metrics-Based Clone Detection

Metrics-based clone detection methods use groups of
metrics to generate “fingerprints” for each function in the
source code. These metrics are often gathered using both
the program source, as in the case of number of lines of
comments, and from an Abstract Syntax Tree, as in the
case of cyclomatic complexity. Metrics-based clone detec-
tion was introduced by Mayrand et al. in [20] and Konto-
giannis et al. in [18]. Further studies using function metrics
as a basis of clone detection include [4, 6, 5, 8, 1, 17, 21].

In our case study we used the following set of metrics:

1. Line counts: total number of lines, count lines blank,
count of lines of code, count lines of declarations,
count lines of executable code, count lines of com-
ment.

2. Count number of parameters, number of global vari-
ables used.

3. Count number of parameters or global variables mod-
ified.

4. Cyclomatic complexity.

5. Maximum level of nesting.

These metrics are different than those used in other
studies such as [20, 18] but as stated in [1], in large sys-
tems the choice of metrics does not sufficiently affect the
results. We have used a subset of those metrics used in pre-
vious work [20, 18]. From this we would expect that our
returned pairs be less precise, and more false positives to
be present, but this is not the case. Upon visual inspection
of several hundred of the clone pairs, false matches were
very rare, confirming that the choice of metrics does not
affect the results. That is, as long as a range of metrics that
cover a variety of aspects of a function are chosen, such as
layout, control flow, and function communication, just as
in other studies.

As in [1, 8] we searched for functions that had identical
metric fingerprints. This corresponds to ExactCopy and

DistrinctName classes which were defined in [20]. As in
[1, 8], we did not use function name as a parameter.

To perform function matching based on metrics, we
gathered our metrics using the tool Understand for C/C++.
We then wrote a small program that performed the function
matching grouping functions together one metric at a time.
Function comparisons based on metric fingerprints can be
done in������ time where n is the number of functions.

3.3 Classifying and Evaluating Clones

To classify the clone pairs, we used the results from the
clone detection using CCFinder. Because of the large vol-
ume of information presented to us, caused by the large
wealth of information given to CCFinder, it was difficult to
see any interesting trends that might occur amongst related
files. This is because the clones were distributed among
many files and many of the clone pairs appeared as blocks
of code and it was difficult to get a feel for the cloning ac-
tivity as a whole within the file system. To remedy this, we
researched the file systems included with the Linux kernel
to evaluate the relationships between them, and to pinpoint
places where cloning activity is likely to have occurred. We
also found some interesting relationships between several
file systems, which we did not expect, by graphically dis-
playing the amount of clone-pairs occurring between each
file-system.

After narrowing down where we would begin to look,
we manually viewed a large percentage of the clone pairs
found in that area of the system. As we saw trends, we
identified types of clones and began classifying many of
the clone pairs that fell into these various categories. Once
we had created many of the clone categories we have now,
we browsed clones within the entire file system to find if
there were clone categories we had not yet seen.

When we had a set of clone categories that we were sat-
isfied with, we wrote scripts to place the clone pairs into
the categories we had created. The criteria we based these
scripts on were as follows: for functions to be classed as
clones, 60% of their code must be common between the
two. Initialization clones must start within the first 5 lines
of a function and end within the first half of the code. Fi-
nalization clones must start in the last half of the function
and end in the last 5 lines. Blocks of code not in the same
function must not be in any of the above clone types. All
clone types are exclusive, so a clone pair that is part of a
cloned function relationship can not also be an initializa-
tion clone.

After categorization, and for any other empirical results
we have presented, we performed manual inspection of a
large percentage of the clone pairs in the given experiment
to ensure that they were within the criteria that we specified
and that they were accurately found as clones.

3.4 A Basis for Comparison

As a way to compare the results given to us from the
two methods we used to find clone pairs, we manipulated
the data extracted from one to be close in form to the other.
Because full function matches were a smaller subset of
CCFinder’s returned clone pairs, we molded CCFinder’s
results to the form of function pair matches found by the
metrics method.

In doing so, we defined a criterion for which to decide
when a function was matched with another based on the
code segments matched between the two. For two func-
tions to match, more than 60% of their individual code
must be common between the two. This may be in the
form of a single segment of code duplicated between the
two, or several individual code segments.

Another issue to consider in comparing the two meth-
ods was the minimum size of code segments that could be
classed as a clone pair. Originally, we defined the min-
imum size of a function which could be compared to be
five lines of code. However, we found that this often found
function matches that were too small for CCFinder to find,
because we had set CCFinder to find code segments of a
minimum size of 30 tokens. Several values of minimum
line numbers were tried, five, six, and seven and the results
of these are described in Section 5.3.

4 A Taxonomy of Clones

In the following subsections we present a taxonomy of
the types of clones we found during this case study using
the clone pairs from CCFinder; in the following section we
analyze our findings.

The categories of clones are described using the follow-
ing template: the first paragraph describes the structure of
the clone; the second paragraph describes problems caused
by this type of clone; the third paragraph describes reasons
why these clones may be introduced into the software; and
the fourth paragraph describes a possible solution to that
form of cloning activity.

4.1 Duplicated blocks within same function

Characterized as repeated blocks of code within the
same function, these blocks are of non-trivial size (such as
5 to 127 lines of code) and each copy expresses the same
semantic idea, generally with very few variables changed
(often only one). We found that this type of clone occurs
often in the Linux file-system subsystem.

The major problem that this can cause is increased code
size; in particular it can cause functions to grow long and
unreadable. In addition, this type of cloning may lead to

unintended diverging evolution of the code blocks if a de-
veloper changes one block, and not another. A bad ini-
tialization or ’value changed’ type of error can very easily
happen in this type of code, because it is likely variables
used by the blocks in each other’s scope.

Situations where this typically occurs are in control
structures such as switch and if/else statements. The
cause of this may be that some developers do not anticipate
a condition that may require a similar block, so they do not
think to make the block a function from the start. Also,
making the function that encapsulates the functionality of
this clone block may appear to be too much work, because
of the number of local variables involved in the code block.
Another reason may be time: it is very fast to just copy and
paste the block just a few lines down, and the developer
“knows” the code works, so it is a quick and dirty solution.
Performance may also be an issue, if many local variables
are required to be passed, stack creation and destruction
may be time consuming.

A solution to this problem, as with many code clones,
would be to create a new function or macro to represent
the block, and call the function where these clones occur.
Parameters to the function would be the few changed vari-
ables that occur in the code block. One would expect this
change to be simple and straightforward to implement.

4.2 Similar functions, same file

This type of clone occurs when a programmer has two
functions performing very similar tasks, with minor vari-
ations. These types of clones are often characterized by
changing only a few function calls, variable initializations,
constants, or other minor things. We consider any func-
tions which both match 60% of their code to be cloned
functions.

Consequences of this type of clone are increased code
size and fixing bugs may be harder because same error may
be spread across several functions, as well as the functions
may evolve on separate paths as various maintainers update
them.

Developers are likely to do this when the effort required
to parameterize the code block and create a more general
function appears to be too great when compared to sim-
ply copying the code. Also cloning the function may ac-
tually make the program conceptually simpler, because the
function names can be specific and meaningful. This type
of cloning we do not consider extremely harmful because
clones are not physically far apart, but it is recommended
that such cloning activity should be documented as it may
not be apparent to future maintainers which functions are
clones of each other.

Solutions for this can be very simple, or quite complex.
Possible solutions would be to introduce function pointers

to the parameter list, adding more parameters for initializa-
tion, etc.

4.3 Functions cloned between files within the
same directory

This type of clone occurs when the same functionality is
required among multiple files. The majority of code dupli-
cation that occurs within a directory (excluding duplication
with the same file) is related to duplicated functions, more
than 80% of clone pairs that occurred within the same di-
rectory (but not in the same file) were related to the dupli-
cation of functions. It often occurs with no changes at all
to the cloned segment of code, or minor changes such as
the function name and some variable or function calls. At
times, several constants may be changed, global variables
accessed and in these cases a solution is harder to find.

Consequences of this type of clone are code size in-
crease, and error finding and changing. The copied code
segments are no long localized in the same file and can
easily be identified, but may be scattered across as many
as four or five files. At times, this type of code duplica-
tion may contribute to source code that is easier to read.
Functions will be easier to understand because they will
not include extra logic and flows of control which would
be required to restructure a function to encompass the more
general functionality required of it to eliminate duplicates.
This case is less frequent however, and quite often the use
of function pointers or some minor conditional operations
would create a function which may perform the desired
task.

A simple solution to this is to create a common file to
use as a library, and migrate the function definitions and
prototypes of the cloned functions to this file. This will
work best in the case of exact copies, or clones with minor
changes.

4.4 Functions cloned across directories

This type of clone may occur when the same functional-
ity is common among several different components in the
software. As with functions cloned within a subsystem,
it may entail no changes at all to the cloned segment, or
minor changes such as the function name and some vari-
able or function calls. We often saw this type of clone for
generic kinds of tasks such as parsing options or outputting
errors.

Consequences of this type of clone are code size in-
crease, and may increase labor for error fixing. Also, it
may be the case that one developer created one compo-
nent, and is unaware of the clones existing in the rest of the
system. In this case, when an error is found, repairs may

not even have a chance to be propagated to the rest of the
clones.

This type of cloning may occur when a new subsys-
tem is being created, and the design and implementation
is based on previous work of another subsystem.

Creating a set of library function may be the easiest so-
lution, but if the function is cloned only between several
clones, the effort put into creating a new library, and main-
taining it, to be shared by all components may be more
work than it is worth.

4.5 Cloned files (possibly with some changes)

This type of clone occurs when a new program arises
with requirements that are very similar to those of an exist-
ing software system, and the source code is readily avail-
able. For example, when new file system is introduced to
the system, it may be possible to copy another’s file, and
make only minor changes. We saw a very good example
of this when we compared ext2 and ext3, in particular
buffer.c in both systems. This is a very rare occurrence
from what we have seen in the file-system subsystem, but
in other systems such as this SCSI subsystem this type of
cloning activity seems to be much more frequent [10].

Consequences of this type of cloning can be much more
severe than function cloning, because the clone has now
introduced a large number of lines of code that are com-
mon between the two files, and must be changed together,
especially when bug fixing. Because it is likely that there
will be some alterations to some of the code, it may not
be clear where or how to change the cloned file when re-
flecting changes that have been made to the original code.
Also, this is one of the worst-case scenarios for code size
increase. In addition, it is possible that side effects (such
as inefficient device usage and settings) can occur if the
developer does not fully understand the code that he/she
has copied. This may lead to inefficiencies in the code and
instability. This type of cloning will occur when speed of
development may be a factor, or a developer may not com-
pletely understand the problem at hand. We have also seen
this when drivers are made for related hardware, although
not part of this study.

Solutions to this problem may not be as simple as other
cloning types. Because the two files are used on differ-
ent products or include different features, they may need
evolve separately from this point on. As well, changes that
have been made to the duplicated code may make it diffi-
cult to re factor both subsystems completely just to remove
to code duplicates. That said, a workable solution may be
to try to take the common invariant code and place it into
a common library file which both subsystems could use.
This solution may lead to a slightly more complex archi-
tecture.

4.6 Blocks across files

This type of cloning is similar to the first one but it oc-
curs in different files within the same directories or across
file systems. Often, in the case of cloning blocks across
directories, we see that the cloned block is in fact the
remains of what appears to be a cloned function. The
function is often changed to suit the developers own per-
sonal style and also to meet the specific needs of his/her
own project. Based on our observations, we would argue
that most clones that occur across files start out as whole
function clones and then are manipulated to fit the current
project goals until what remains are scattered blocks of
code which can still be captured as code duplicates.

The main problem with this kind of clone is when the
developer wants to modify or change these blocks of code
or when they find bugs, it will be very difficult to fix and
change these blocks everywhere else, and it is possible
that the developer may be completely unaware of the other
clones. If any logic on which this block depends changes,
then all the blocks may be harmed, and it may be difficult
to find all the blocks affected.

The solution for this problem is relative to the size and
number of clones that occurs across files. In certain con-
texts it might be proper to leave the clones as it is, such as
in the case of if or case statement, sometimes making
function calls may break the understanding of the logic of
the code. In other cases a common library should be made.

4.7 Initialization and finalization clones

This type of clone occurs within the same file or across
file systems when initializing data parameters or cleaning
up at end of function; we have found that the main por-
tion of the function can perform quite different tasks. This
usually occurs when using the same data types or when
performing the same tasks such as memory allocation and
de-allocation or variable initialization. Finalization clones
often encompass exit conditions and logging.

Problems with this type of clone are much less severe
than other clone types, and in many cases are unavoidable.
Certainly increased code size may be an issue, but other
problems related to code duplication do not seem as large
of a concern.

Solutions to this sort of problem may be the use of
macros or functions, but this seems too complex for some-
thing that is of such little issue.

5 Case Study Results

In this section, we discuss cloning activity in terms of
clone pairs, not numbers of lines cloned. We consider that

discussion about the number of lines that have been cloned
can be misleading and confusing. In the case of clones
within the same file, many clone pairs may overlap each
other, in contrast to clone pairs outside of the directory,
which in many cases do not intersect. The latter will seem-
ingly have a larger number of cloned lines than the former,
but in fact the degree of the cloning activity might actually
be higher in the former.

In regards to the total number of lines cloned, allowing
for lines to be counted more than once did not prove to
be any more beneficial than discussing clone pairs, so we
chose the former for simplicity.

The Linux file system contains 42 different file-system
implementations in C. There are 538 .c and .h files, with
a total of 279,118 lines of code. We detected 3116 clone-
pairs after filtering, giving us 33,707 unique lines, or 12%
of the source code, that were involved in code cloning ac-
tivity. The average length of the clone pairs is 13.5 lines,
with a median of 12 lines, an upper quartile of 15 lines and
lower of 8 lines. The minimum length is 1 line and the
maximum is 123 lines.

5.1 Families of Systems Based on Duplication

As illustrated in Figure 2, several families of file–
systems, or groups where code is similar, become appar-
ent. The most notable is the shared code between ext2
and ext3. Here we see 85 clones common between the
two file systems. After investigating the code, the reasons
are very obvious. Ext3 is based on ext2, and it appears
the development of ext3 started by copying all of ext2
into a new folder.

Two unexpected results appeared when viewing this
chart. The intermezzo file-system seems to be highly
related to the main file-system code. By inspecting the
code, we see that much of what was cloned involved get-
ting and setting the path, and various navigation codes.
The intermezzo was inspired by coda, although re–
engineered and restructured, and we see some significant
evidence of this by 11 clones appearing between the two.
We also see that the JFFS file-system has cloned much
from the inflate fs. Here we see that most of the
clones in this case are grouped into one file, although they
are taken from many files within inflate fs.

5.2 Frequency of Clone Types

As can be seen in by Figure 1, the major cloning trend
is to duplicate code from within the same subsystem. 78%
of code duplication occurs from within the same directory.
Some notable exceptions to this trend are ext2/ext3
and AUTOFS/AUTOFS4. In these cases, ext3 was cre-

ated based on ext2, and AUTOFS4 was created based on
AUTOFS.

This result is significant. It suggests that problems asso-
ciated with code duplication such as copying bugs in most
cases will be restricted to within a single subsystem. This
also gives developers good reason to focus our efforts on
eliminating code duplication within subsystems first before
doing system wide repair.

Reasons for this are probably the most obvious ones.
The developer is most familiar with his/her own code, so is
most likely to use code from within their own system. As
well, because it is within the same system, it is more likely
that relevant and similar code exists in this system.

Table 1 shows the number of clones that occur in the
same file, in the same directory but not in the same file, and
in different directories. From this table, we can see that the
average size of a clone pair (the number of lines of code) is
nearly the same, but the number of clones that occur in the
same file is more than double the number of clones in the
same directory but different files, or in different directories.
We saw this again when analyzing the cloning activity on
the 3D bar charts as described above.

Table 2 summarizes the frequency of the various types
of clones. In this table, one should note that when we say
that a function has been cloned, we mean that more than
60% of the code between two functions has been cloned.
The number of duplicated functions in this table refers to
the number of duplicated function pairs, or in other words
pairs of functions that are in a clone relationship.

From Table 2, we see that over 30% of the clone pairs
that occur within the same file are blocks of code dupli-
cated within the same function. We also see that 244 func-
tion pairs occur within the same file. This number can be
decomposed somewhat. From these pairs, there are 293
unique functions which are part of a code clone relation-
ship. 341 combined clone pairs are part of these relation-
ships, of which 173 encompass more that 60% of the func-
tion code.

Within the same directory, we see that there are 653
function pairs that are in a clone relationship. 658 clone
pairs contribute to this, making more than 80% of the clone
pairs occurring in the same directory but not in the same
file part of a function clone relationship. 166 unique func-
tions were cloned, meaning that many of these function
pairs are part of larger clone classes.

Outside of a directory, there are 129 function pairs,
with 156 unique functions. 175 pairs contribute to these
full function matches. From this result, we see that func-
tion cloning decreases significantly, even though the actual
amount of cloning activity does not drop so dramatically.
We also see that functions are less likely to appear in clone
classes when cloned across directories.

Figure 1: Number of Clone Pairs Between File Systems

Figure 2: Number of Clone Pairs Between File Systems (excluding themselves)

Clones in Same File Clones in Same Directory Clones in Different Directories
of clone pairs 1628 806 682
Average LOC 12.7 14.5 14.3

Max LOC 63 71 123
Min LOC 2 4 1

Table 1: Profiles of cloning locality — All clones

Type Count Average Length
Same File

Blocks in Same Function 589 13
Duplicated Functions 244 26
Initialization Clones 28 14
Finalization Clones 82 13
Cloned Blocks 588 13

Same Directory
Duplicated Functions 658 16
Initialization Clones 2 14
Finalization Clones 11 10
Cloned Blocks 135 14

Different Directories
Duplicated Functions 129 27
Initialization Clones 6 12
Finalization Clones 45 11
Cloned Blocks 456 14

Table 2: Frequency of various clone categories — Parametric String Match

In Table 3 we see that the metrics–based clone detec-
tion validates our results that are based on parameterized
string matching. Regardless of the constraint of minimum
lines of functions, in all three cases, cloning of functions
was most often found within the directory but not the same
file, followed distantly by cloning of functions in the same
file, and then cloning functions from outside the directory,
just as what can be seen in the previous section. It is inter-
esting to note how quickly the number of functions drops
off as the minimum number of lines of a function is in-
creased. A large portion of the functions that we lose are
false matches, although some are not.

Initialization clones and finalization clones were not as
frequent as were first expected they might be. The clones
did find, however were significant. We expect to find more
of these clones in other parts of the Linux kernel, in partic-
ular driver source code. A surprising result is that initial-
ization clones appear to occur much less often than final-
ization clones. After inspection of code block clones, we
see that when code for initializing a function is copied, of-
ten local variables are added to the cloned list or removed
from it. This makes it difficult to classify many of the ini-

tialization clones automatically. Therefore, we take the fre-
quency of initialization clones as an underestimate. Better
approaches to automatically find this class of clone need to
be investigated further.

Cloned blocks of cloned code are difficult to character-
ize completely, as there are many circumstances leading to
the cloning of these blocks. However, we have found that
locality does correlate somewhat to the structure and rea-
sons of this type of clone. In the cases of clones in the same
file and same directory, these clones are often the prod-
uct of copying blocks contained within a control structure,
such as if/else statements. In some cases however, they
are what remains of what was once a initialization clone or
a finalization clone.

When we inspect clone blocks across directories, it is
often the case that the blocks are the remains of copied
functions, changed enough that the functions no longer can
be classed as cloned functions technically, but by man-
ual inspection these functions are still clearly in a form
of clone relation. These blocks raise interesting questions
about the evolution of clones.

In many cases, clone blocks represent function pairs

Metric Match String Match
Minimum Function Length (LOC) 5 6 7 N/A

Same File 141 110 108 244
Same Directory 1157 1152 619 658

Differenct Directory 116 80 38 129

Table 3: Number of function clones found in metrics based clone detection and parameterized string match

where 60% or more of one function has been copied to an-
other, and additional states have been added. These func-
tion pairs, which we call partial-match function pairs, rep-
resent an interesting form of code cloning. It would be
difficult for this form of function cloning to be detected by
metrics based clone detection algorithms, but they are cer-
tainly function clones. In many cases, one function is en-
tirely copied, and a significant number of statements have
been appended to the end. In total, these partial function
matches accounted for 72 same file clone blocks, 22 same
directory clone blocks, and 109 different directory blocks.

This case study show that the taxonomy is not complete.
The presence of so many cloned blocks leads may be an
indication that more categories of clones exist, and further
investigation must be done.

5.3 Metrics vs. Parametric String Matching

In Table 4, we see the summary of results in compar-
ing the function pairs found by the metrics method to those
found by the parametric method. In all cases, we see that
between 708 and 716 function pairs match. These function
pairs are in most cases very clearly clones of one another.
Also, in all cases, between 353 and 361 function pairs were
only found by the paramertirized string based approach. In
these cases, the functions tend to be longer than average,
their average length being 30 lines of code. Often, lines
have been added and removed, or fan in or fan out metrics
have changed. This shows us that using exact match crite-
ria may not always be sufficient in searching for function
pair clones.

In the cases of functions pairs found only to metrics
we see two things. First, functions of sizes five LOC
and six LOC are often too small to be detected when us-
ing a minimum criteria of 30 tokens in the parameterized
string approach. Secondly, small functions of sizes five,
six and seven LOC are often hard for parameterized string
matching to detect clones in when there are enough tokens
present. This is because if one token violates the paramet-
ric match, then there is little chance that enough tokens
were already matched to make a clone that is re-portable,
and there is also little chance of enough tokens remain-
ing in the function to create a re-portable clone. Often a

function call that takes a different number of parameters or
changed mathematical operators can cause the parameter-
ized string matching to miss matches in small functions.

In general, we found when using metrics-based clone
detection, it was better at finding small function matches
than CCFinder, but CCFinder was better at finding large
function matches. When using CCFinder with the Gemini
GUI, we found that it was difficult to grasp the total cloning
activity in the system, but when clone pairs were grouped
by the taxonomy we have presented, interesting cloning
activity becomes more evident. We found that metrics-
based clone detection finds very very close matches, but
CCFinder is able find function matches which exhibit more
change. As a preliminary result, we found that parameter-
ized string matching presented more interesting and useful
clones to use than using ExactMatch metric-based clone
detection. Future work will investigate the comparison of
these two approaches but allowing more flexibility in the
metrics-based matching.

6 Related Work

There are several types of clone detection techniques
that have been developed. Metrics-based clone detection
tools which detect clones of full blocks of code such as
functions based on various metrics extracted from them
have been developed by Mayrand et al. [20] and Konto-
giannis et al. [18]. Parameterized string matching is dis-
cussed by Baker et al. [2, 3] and Kamiya et al. [15]. Baxter
et al. [7] have developed a clone detection tool by perform-
ing subtree matching on abstract syntax trees. Program de-
pendence graphs have been used by Krinke et al. [19] and
Komondoor et al. [16] in detecting duplicated code. John-
son [13, 12] proposed using a fingerprinting algorithm on
substrings of the source code. Kontogiannis et al. define
two other methods to detect clones in [18]:dynamic pat-
tern matching which finds the best alignment between two
code fragments, and statistical matching between abstract
code descriptions patterns and source code. Balazinska et
al. [4, 6, 5] uses metrics based clone detection to quickly
find candidate clones and uses an algorithm based on Kon-
taogiannis et al.’s dynamic pattern matching algorithm.

Minimum Number of Lines 5 6 7
Function pairs found by both 716 716 708

Found in Parametric Only 353 353 361
Found in Metrics Only 698 626 57

Table 4: Comparison of # of function clones found by the two clone detection algorithms

Clone detection case studies on the Linux kernel have
been reported in [10, 8, 1]. In [8], Casazza et al. use
metrics based clone detection to detect cloned functions
within the Linux kernel. They performed analysis across
the major subsystems, and then on the architecture depen-
dent code of the memory management subsystem and the
kernel core. To evaluate the degree to which cloning oc-
curs, they define a common ratio between two files, which
is the percentage of functions in one file which are cloned
in another with respect to the number of functions in the
first. As noted in [1], this common ratio must be used with
great care and absolute values need to used as well. The
conclusions of this study were that in general the addition
of similar subsystems was done through code reuse rather
than code cloning, and more recently introduced subsys-
tems tended to have more cloning activity. Antoniol et al.
[1] did a similar study, evaluating the evolution of code
cloning in the Linux. They too used function metrics clone
detection as their technique and their conclusions were the
same, adding that the structure of the Linux kernel did not
appear to be degrading due to code cloning activity. In [11]
a preliminary investigation of cloning among Linux SCSI
drivers was performed.

Kamiya et al. [15] also performed tests on the Linux
kernel as well as JDK, FreeBSD, and NetBSD. None of the
above studies have talked about the types of clones they
have found, or talked about the locality of code cloning
other than comparing subsystems. Although it is not cer-
tain that this work addressed how much code cloning oc-
curs within subsystems themselves, and how this compares
to the code cloning between subsystems.

A work similar to this also tries to categorize clones for
the purpose of software maintenance. In [4], Balazinska et
al. create a schema for classifying various cloned methods
based on the differences between the two functions which
are cloned. The results produced in [4] are used by Bal-
azinska et al. in [6, 5] to produce software aided re engi-
neering systems for code clone elimination. This differs
from our work in that our classification scheme is based
on locality as well as clone type, and copied functions are
only one type in our case, although in [4] they break this
down into 18 categories. One of our main research goals is
to determine how much developers clone and from where.
This question is not answered by the clone classification

scheme in [4]. In addition, this work ignores code clones
which are not function clones.

7 Summary and Conclusions

This preliminary study began as in-depth evaluation
of cloning in a large software system. In this study we
found that the Linux file-system subsystem has a signif-
icant amount of code duplication within it, the majority
being localized within each individual file-system type, or
sub-subsystem. We also defined a preliminary taxonomy
by which non-function and function clones can be catego-
rized. This will be used in future research when character-
izing cloning in all of the Linux kernel.

Our first goal, to begin to produce a finely grained
analysis of code cloning in a large scale software system
has begun, and future work will attempt to characterize
more subsystems, in particular the driver subsystem where
source code and functionality is vastly different from the
Linux file-system subsystem. This work will provide sup-
port for generalizing these results, as well as more insight
into the growth of the Linux kernel as documented in [11].

During our study, we found that 3D visualization pro-
vides much convenient information. From the 3D bar
charts we were able to see very quickly related groups of
subsystems, and also which subsystems were trouble spots
for cloning activity. We would suggest that including the
ability to visualize clone detection results in such a way
may be a very useful addition to maintenance environments
involving clone detection.

8 Future Work

Research on this topic is ongoing. We intend to con-
tinue this study, to fully characterize the Linux kernel in
terms of code clone activity. We will also investigate how
other subsystems compare to these results. From prelimi-
nary testing, many may be quite similar.

We will also evaluate our taxonomy throughout the
course of this study.

Additionally, we will to study the how code clones
evolve over time, in particular, we would like to test the

hypothesis that many code block clones start out as func-
tion clones, and as time goes on, the functions evolve away
from one another. We will also investigate the possibility
of using previous releases for detecting clones in current
releases.

Acknowledgments

We would like to thank Dr. Ettore Merlo for his on go-
ing help and advice.

References

[1] G. Antoniol, U. Villano, E. Merlo, , and M. Di Penta. Ana-
lyzing cloning evolution in the linux kernel. In Information
and Software Technology 44(13), 2002.

[2] B.S. Baker. A program for identifying duplicated code.
In Proceedings of Computing Science and Statistics: 24th
Symp. Interface, pages 49–57, 1992.

[3] B.S. Baker. On finding duplication and near-duplication in
large software system, 1995.

[4] M. Balazinska, E. Merlo, M. Dagenais, B. Lague, and
K. Kontogiannis. Measuring clone based reengineering op-
portunities. In Proceedings of the Sixth International Soft-
ware Metrics Symposium, pages 292–303, 1999.

[5] Magdalena Balazinska, Ettore Merlo, Michel Dagenais,
Bruno Lague, and Kostas Kontogiannis. Partial redesign
of java software systems based on clone analysis. In The
Proceedings of the 6th. Working Conference on Reverse En-
gineering, pages 326–336, 1999.

[6] Magdalena Balazinska, Ettore Merlo, Michel Dagenais,
Bruno Lague, and Kostas Kontogiannis. Advanced clone
analysis to support object-oriented system refactoring. In
Proceedings of the 7th. Working Conference on Reverse En-
gineering, pages 98–107, 2000.

[7] Ira D. Baxter, Andrew Yahin, Leonardo M. De Moura,
Marcelo Sant’Anna, and Lorraine Bier. Clone detection us-
ing abstract syntax trees. In ICSM, pages 368–377, 1998.

[8] G. Casazza, G. Antoniol, U. Villano, E. Merlo, and M. Di
Penta. Identifying clones in the linux kernel. In First IEEE
International Workshop on Source Code Analysis and Ma-
nipulation, pages 92–100. IEEE Computer Society Press,
2001.

[9] Stéphane Ducasse, Matthias Rieger, and Serge Demeyer.
A language independent approach for detecting duplicated
code. In Hongji Yang and Lee White, editors, Proceed-
ings ICSM’99 (International Conference on Software Main-
tenance), pages 109–118. IEEE, 1999.

[10] Michael W. Godfrey, Davor Svetinovic, and Qiang Tu.
Evolution, growth, and cloning in Linux: A case study.
A presentation at the 2000 CASCON workshop on
’Detecting duplicated and near duplicated structures in

largs software systems: Methods and applications’, on
November 16, 2000, chaired by Ettore Merlo; available
at http://plg.uwaterloo.ca/˜migod/ papers
/cascon00-linuxcloning.pdf.

[11] Michael W. Godfrey and Qiang Tu. Evolution in open
source software: A case study. In Proceedings of the 2000
International Conference on Software Maintenance, 2000.

[12] J. H. Johnson. Substring matching for clone detection and
change tracking. In Proceedings of the International Con-
ference on Software Maintanence, pages 120–126, 1994.

[13] J.H. Johnson. Identifying redundancy in source code using
fingerprints. In Proceedings of CASCON 93, pages 171–
183, 1993.

[14] Toshihiro Kamiya, Shinji Kusumoto, and Katsuro Inoue. A
token-based code clone detection tool - ccfinder and its em-
pirical evaluation. Technical report, 2000.

[15] Toshihiro Kamiya, Shinji Kusumoto, and Katsuro Inoue.
Ccfinder: A multilinguistic token-based code clone detec-
tion system for large scale source code. In Transactions on
Software Engineering 8(7), pages 654–670. IEEE Computer
Society Press, 2002.

[16] Raghavan Komondoor and Susan Horwitz. Using slicing to
identify duplication in source code. Lecture Notes in Com-
puter Science, 2126:40–??, 2001.

[17] K Kontogiannis. Evaluation experiments on the detection of
programming patterns using software metrics. In Proceed-
ings of Working Conference on Reverse Engineering, pages
44–55. IEEE Computer Society Press, 1997.

[18] K. Kontogiannis, R. De Mori, R. Bernstein, M. Galler, and
E. Merlo. Pattern matching for clone and concept detection,
1996.

[19] Jens Krinke. Identifying similar code with program depen-
dence graphs. In Proc. Eigth Working Conference on Re-
verse Engineering, pages 301–309, 2001.

[20] J. Mayrand, C. Leblanc, and E. Merlo. Experiment on the
automatic detection of function clones in a software system
using metrics. In Proceedings of the International Confer-
ence on Software Maintenance, pages 244–253. IEEE Com-
puter Society Press, 1996.

[21] Qiang Tu and Michael Godfrey. An integrated approach for
studying software architectural evolution. In Proceedings of
2002 International Workshop on Program Comprehension
(IWPC-02), 2002.

[22] Yasushi Ueda, Toshihiro Kamiya, Shinji Kusumoto, and
Katsuro Inoue. Gemini: Maintenance support environment
based on code clone analysis. In Proceedings of the Eighth
IEEE Symposium on Software Metrics, pages 67–76. IEEE
Computer Society Press, 2002.

